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1 Introduction

This technical report gives an outline of the IQL query language used within the
AutoMed heterogeneous data integration system, and describes query processing
in AutoMed. This report aims to serve as a guide to the query processing
components of the AutoMed toolkit.

Report outline: Section 2 describes the aspects of IQL necessary for this
report. Section 3 presents the AutoMed Query Processor and its components.
Section 4 illustrates how data querying can be performed. Section 5 discusses ex-
amples developed to demonstrate and test AutoMed. Section 6 lists the changes
made to AutoMed’s query processor since Version 1.0, and Section 7 presents
areas of future work.

2 IQL

The AutoMed Intermediate Query Language (IQL) [6] is a typed, comprehensions-
based functional query language. Such languages subsume query languages such
as SQL-92 and OQL in expressiveness [1]. Its purpose is to provide a common
query language that queries written in various high level query languages (e.g.
SQL, XQuery, OQL) can be translated into and out of. For the complete syntax
of IQL Version 1.2 see Appendix B. For a tutorial on IQL, see [7].

2.1 Datatypes, variables & functions

IQL currently supports integer and float numbers (e.g. 5, 3.46), strings (en-
closed in single quotes, e.g. ‘AutoMed’), datetime objects (e.g. dt ‘2005-05-15
23:32:45’) and the boolean values True and False. It also supports tuples
(e.g. {5, ‘AutoMed’, dt ‘2005-05-15 23:32:45’}), and enumerated lists
(e.g. [5, 5, 6, 7, 7, 7]), bags (e.g. B[5, 5, 6, 7, 7, 7]) and sets (e.g.
S[5, 6, 7]) of homogeneous values (i.e. values of the same type). In principle,
the tuple, list, bag and set value constructors can be arbitrarily nested. How-
ever, to reduce parser complexity, a limit to the levels of nesting has been set,
which is currently 40.

Variables are represented by identifiers starting with a lowercase character.
Anonymous functions may be defined using lambda abstractions. For exam-
ple, the following function, when applied to a triple of values, adds the three
components the triple:

lambda {x, y, z} (x + (y + z))

{x, y, z} is a pattern (i.e. an expression comprising values and tuple constructors
only) and is the formal parameter of the anonymous function, while (x + (y +z))
is the body of the lambda abstraction1. Thus, for example, the expression
(lambda {x, y, z} (x + (y + z))) {5, 6, 7} evaluates to 18.

IQL has built-in support for the common boolean, arithmetic, relational
and collection operators. Appendix A lists the current set of built-in functions,
which is easily extensible (see Section 3.8). The binary IQL built-in functions
are supported in both infix and prefix form, with the latter being enclosed in

1Note that the IQL parser expects the body of a lambda abstraction to be enclosed within
parentheses. See [5] for more information on lambda abstractions and functional languages.
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brackets e.g. the list append operator is ++ when used infix and (++) when
used prefix. In prefix form, such operators may be applied only to a partial
complement of their arguments (i.e. to 0 or 1 argument only) e.g. (+) 5 is a
function that adds 5 to its argument, so ((+) 5) 6 returns 11 (and is equivalent
to (+) 5 6).

2.2 Higher-level constructs

IQL also supports let expressions and list, bag and set comprehensions. These
do not add additional expressiveness to the language but are ‘syntactic sugar’,
allowing queries that are easy to write and read; they also facilitate the transla-
tion between IQL and various high-level query languages. Furthermore, several
optimisation techniques can be applied to comprehensions, as discussed in Sec-
tion 3.6.

let expressions assign an expression to a variable and this variable can then
be used within another expression. In particular, in let v equal e1 in e2, ex-
pression e1 is assigned to variable v, which appears within expression e2.

List comprehensions are of the form [h|q1; . . . qn], where h is an expression
termed the head and q1, . . . , qn are qualifiers, with n ≥ 0. A qualifier may be
either a filter or a generator. Generators are of the form p ← e and iterate a
pattern p over a list-valued expression e. Filters are boolean-valued expressions
that act as filters on the variable instantiations generated by the generators of
the comprehension.

The following is an example of a list comprehension:

[{x, y}|x ← [1, 2, 3]; y ← [‘a’, ‘b’]; x > 1]

This undertakes a Cartesian product of the two lists followed by a selection; the
result is

[{2,‘a’}, {2,‘b’}, {3,‘a’}, {3,‘b’}]
Set comprehensions have similar syntax, except starting with the symbol S[

and expecting their generators to iterate over set-valued expressions. Similarly,
bag comprehensions start with the symbol B[ and expect bag-valued expressions
in their generators.

List comprehensions may be translated into simple function applications and
lambda abstractions as follows:

[e|p ← s;Q] =⇒ flatmap (lambda p [e|Q]) s
[e|e′;Q] =⇒ if e′ [e|Q] [ ]
[e|] =⇒ [e]

Here, the if function takes three arguments and returns its second argument if
its first argument is true, its third argument if its first argument is false, and
Null if its first argument is Null. The flatmap function, operating on lists, is
defined as follows:

flatmap f [ ] = [ ]
flatmap f (Cons x xs) = (f x) + + (flatmap f xs)
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where [ ] is the empty list and Cons x xs represents a list of which x is the head
and xs the rest of the list.

We note that flatmap is an overloaded function that operates also on sets
and bags — see below. The ++ operator is similarly overloaded: it appends
two lists together, and undertakes set union and bag union on sets and bags,
respectively.

Set comprehensions may be translated into simple function applications and
lambda abstractions as follows:

S[e|p ← s; Q] =⇒ flatmap (lambda p S[e|Q]) s
S[e|e′; Q] =⇒ if e′ S[e|Q] SNil
S[e|] =⇒ (SCons e SNil)

Here, SNil represents the empty set and SCons x xs represents a set of which
x is an arbitrary member and xs is the rest of the set. The flatmap function,
operating on sets, is defined as follows:

flatmap f SNil = SNil
flatmap f (SCons x xs) = (f x) + + (flatmap f xs)

Bag comprehensions may be translated into simple function applications and
lambda abstractions as follows:

B[e|p ← s; Q] =⇒ flatmap (lambda p B[e|Q]) s
B[e|e′; Q] =⇒ if e′ B[e|Q] BNil
B[e|] =⇒ (BCons e BNil)

Here, BNil represents the empty bag and BCons x xs represents a bag of which
x is an arbitrary member and xs is the rest of the bag. The flatmap function,
operating on bags, is defined as follows:

flatmap f BNil = BNil
flatmap f (BCons x xs) = (f x) + + (flatmap f xs)

IQL supports variable unification within comprehensions, e.g. the following
query evaluates to [{3,5}]:

[{a, c}|{a, b} ← [{1, 2}, {3, 4}]; {b, c} ← [{4, 5}, {6, 7}]]

To achieve this, the input query is scanned and any variable encountered
for the first time is left as is, whereas the rest are renamed using the naming
scheme $vu n i j. The leading $ character means this is a system variable, n
is the original name of the variable, i is an integer identifying the comprehen-
sion in which n occurs, and j is an integer counting the number of times n has
appeared within the comprehension identified by i (i is useful for nested com-
prehensions). Any necessary equality qualifiers between these system variables
are then inserted at the end of the comprehension’s qualifiers. The above query
is therefore translated into the following query:

[{a, c}|{a, b} ← [{1, 2}, {3, 4}]; {$vu b 1 1, c} ← [{4, 5}, {6, 7}]; (=) b $vu b 1 1)]
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2.3 Typing

In common with many functional languages, IQL supports ML-style parametric
polymorphism of types and functions, as well as overloading of function names.
This is the same type system as the PFL functional database language [8],
excluding at present subtyping and inheritance, although these aspects could
readily be added to IQL if required in the future. However, the current AutoMed
Query Processor does not include a type checker (it is up to users to ensure the
type-correctness of their IQL queries!) although such a component could readily
be added, leveraging essentially the PFL type checker described in [8].

The syntax of IQL types is as follows, where σ ranges over type expressions,
α over type variables and κn over n-ary type constructors (such as the list, set,
bag and product type constructors — see below):

σ ::= α | σ1 → σ2 | κn σ1 . . . σn

Types of the form σ1 → σ2 are function types; the operator→ is right-associative,
so that σ1 → σ2 → σ3 and σ1 → (σ2 → σ3) are synonymous.

Types of the form κ0 are atomic types (so the set of 0-ary type constructors
and the set of atomic types are identical). IQL’s atomic types are Integer,
Float, String, Boolean and DateT ime.

Types of the form κn σ1 . . . σn, where n > 0, are structured types. IQL’s
type constructors for structured types are as follows:

List : Type → Type
Set : Type → Type
Bag : Type → Type
Product1 : Type → Type
Product2 : Type → Type → Type
Product3 : Type → Type → Type → Type
. . .

These declarations can be read as stating that a type constructor takes one
or more types as arguments and constructs a new type.

Both structured and atomic types are populated by value constructors which
return values of that type when applied to appropriate arguments. The 0-
ary value constructors populating the Integer, Float, String, Boolean and
DateT ime types are respectively the integer, float, string, boolean and date-
time values. Also available are polymorphic constructors for empty lists, sets
and bags, for lists/sets/bags consisting of a head and tail, and for tuples:

Nil :: List a
Cons :: a → (List a) → (List a)
SNil :: Set a
SCons :: a → (Set a) → (Set a)
BNil :: Bag a
BCons :: a → (Bag a) → (Bag a)
Tuple1 :: a → (Product1 a)
Tuple2 :: a → b → (Product2 a b)
Tuple3 :: a → b → c → (Product3 a b c)
. . .
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In the above declarations, a, b, and c are type variables that can be instantiated
by any type. Generally, in IQL identifiers starting with a lower-case letter are
variables while identifiers starting with an upper-case letter are constructors.

Some syntactic sugar is supported for structured values in that, for any ex-
pressions e1, . . . , en, an n-tuple {e1, . . . , en} is synonymous with Tuplen e1 . . . en,
an enumerated list [e1, . . . , en] is synonymous with Cons e1 (. . . Cons (en [ ]) . . .),
and [ ] is synonymous with Nil. Likewise for enumerated bags and sets.

2.4 Abstract representation

IQL queries are represented internally as a full binary abstract syntax tree. All
non-leaf cells are either apply cells (@) or lambda cells (λ). An apply cell
represents the left child being applied to the right child. For example, the
following tree represents the expression 1 + 2:

@

ª R
@

ª R

2

(+) 1

Note that all functions are represented internally in prefix form, and can
be partially applied to less than a full complement of their arguments. So the
result of any apply cell can be considered to be the result of its left child applied
to its right child.

Leaf cells may be constants, variables, constructors or function names. For
example, the following represents the pair {1,2}:

@

ª R
@

ª R

2

Tuple2 1

and the following the list [1,2]:

@

@

@

ª

R
Cons 1

@

ª R

ª

Rª R
Cons 2 Nil
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The same principle applies for the representation of sets and bags. The only
difference is that for sets, the constructors SCons and SNil are used, instead of
Cons and Nil, and for bags the constructors BCons and BNil.

The following figure illustrates the abstract syntax tree for the generator
{x, y} ← e of some comprehension:

@

@

e

ª

R
Gen @

@

ª R

ª

Rª R
Tuple2 x y

The following figures illustrate the abstract syntax trees for the lambda
abstraction lambda x (2 ∗ x) and for the let expression let f equal e1 in e2,
respectively:

λ

ª R
x @

ª R
@ x

ª R
(*) 2

@

ª R
e2@

ª R
@

ª R

e1

Let f

The above abstract representation for IQL queries is implemented as the
ASG class — abstract syntax graph2. The purpose of this class is to hide the
implementation details and provide useful methods to work with. It is intended
that ASG objects be the standard way to store IQL queries and that the various
elements of the AutoMed query processing software should act upon ASG repre-
sentations of queries. The following code snippet illustrates the creation of an
ASG object:

String query = "<<person,pname>>";
ASG q = new ASG(query);

Note the use of an AutoMed scheme in the above query, delimited by double
chevrons. Evaluating any scheme in IQL results in a collection of values of the
appropriate type. For example, if person is a relational table with a single key
attribute pid of IQL type Integer and a non-key attribute pname of IQL type

2Note that in general we are dealing with an abstract syntax graph rather than an abstract
syntax tree. Although parsing an IQL query results in a tree, it is possible that, when the
tree is being evaluated, some substructures become shared. Rather than duplicate these
substructures to retain a tree structure, the original abstract syntax tree may become a
directed acyclic graph.
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String, then the above query would return a list of pairs of the form {i,n}
where i is an integer and n is a string3.

A scheme s is expanded internally into the representation :P:S:M:C:s:T,
where:

• S is the name of the schema s belongs to,

• M is the name of the modelling language in which S is defined, e.g. sql,
xmldss.

• C states what kind of modelling construct s is, e.g. table, column (from
the sql modelling language), element, attribute (from the xmldss mod-
elling language).

• T is the type of the scheme s, and

• P identifies the AutoMed repository where S and s are stored (that is
useful in a peer-to-peer setting, for example, where there may be multiple
interoperating AutoMed installations).

For example, for the above scheme <<person,pname>>, its fully expanded
representation could be

:Peer5:s3:sql:column:<<person,pname>>:’List (Product2 Integer String)’

where s3 is the name of the schema within the Peer5 repository that this scheme
belongs to.

Note that it is possible for some or all of this additional information not to be
available to AutoMed in different contexts of usage. Thus, any or all of P, S, M,
C or T may be missing, though the colons remain in the internal representation
e.g. when first parsed within a query, the scheme <<person,pname>> is initially
represented by :::::<<person,pname>>:.

3 Query Processing in AutoMed

This section discusses query processing in AutoMed. Section 3.1 discusses how
the AutoMed Query Processor (AQP) handles input queries that are expressed
in a high-level query language, rather than IQL. Section 3.2 gives a brief in-
troduction to the AQP. Section 3.3 describes how users can define their own
data source integration semantics. Section 3.4 describes the configuration of
the AQP and of its components. Sections 3.5–3.8 describe each of the AQP
components. Section 3.9 discusses extensibility of the AQP components. Sec-
tion 3.10 discusses logging. Section 3.11 discusses testing of the AutoMed code.
Section 3.12 discusses memory and performance issues raised during the devel-
opment of the AQP.

3Generally, the extent of a scheme may be a list, bag or set. Currently however all the
AutoMed wrappers return list-valued extents. This may change in the near future.
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3.1 High-Level Query Translation

Query processing in AutoMed is currently tightly coupled with the IQL query
language. To enable the use of high-level query languages such as SQL and
XQuery with AutoMed, the AutoMed Translator component can be used to
translate a query expressed in a high-level query language into the equivalent
IQL query, which can then be submitted to the AQP.

The Translator interface specifies two methods, getIQL(), which trans-
lates the input high-level query into an IQL query, and translateResult(ASG),
which takes an IQL result and translates it back to the high-level language.

Currently, the AQP supports a subset of SQL (composed from possibly
nested Select-Project-Join-Union queries, aggregation functions, and GROUP
BY) and a subset of XQuery (FLWR queries without nesting) for global schemas
whose high-level data model is the relational data model or XML Schema/XMLDSS [9],
respectively.

3.2 AQP

Figure 1 illustrates the AQP components, namely the QueryReformulator, the
QueryOptimiser, the QueryAnnotator and the QueryEvaluator.

The AQP is used to evaluate queries submitted to a virtual schema against
a set of data sources. It does this by coordinating the above components but
is agnostic of the internals of these components. Each of these components
may have more than one implementation. The implementation to be used for
each component is specified using the AQP’s QueryProcessorConfiguration
component. This configures the AQP as well as the components it contains
and is discussed in more detail in Section 3.4. QueryProcessorConfiguration
provides a default implementation for each of the components used by the AQP.

Query Processor

Query
Annotator

Query
Optimiser

IQL
result

Wrapper Architecture

Query
Evaluator

Query
Reformulator

XML
data source

...

AutoMed Metadata
Repository

STR

MDR

IQL
query

relational
data source

Figure 1: The AutoMed Query Processor Architecture.

The QueryProcessor class implements the AutoMed Query Processor. An
instance of this class can be created by calling the default constructor. The
AQP does not require any initialisation and any number of AQP instances can
be created, for example so as to parallelise the processing of multiple queries.
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When a query needs to be evaluated, the process method of the Query
Processor class is called with the following parameters:

• the query, in the form of an ASG

• the target schema i.e. the virtual schema against which the query is to be
evaluated

• the array of data source schemas with respect to which the query will be
reformulated prior to evaluation

• the required data integration semantics: can be one of “choose”, “(++)”,
“intersect”, “union”, an expression, or null — in which case the default is
“(++)”; see Section 3.3 for more details

• the AQP Configuration — see Section 3.4 for more details.

The input query is first reformulated using the QueryReformulator com-
ponent to an equivalent query that only contains data source constructs. The
QueryOptimiser component then optimises the reformulated query and the
QueryAnnotator component inserts AutoMed Wrapper objects within the op-
timised query. The QueryEvaluator is then used to evaluate the annotated
query. The result of each of these stages of query processing, along with more
fine-grained debugging information, is logged.

Note that it is possible to specify the source and target schema parameters
as null, in case a user wants to use the QueryProcessor stand-alone and not
within a data integration setting. If so, the query reformulation and query
annotation steps are not performed and the query is evaluated without any
reference to any data sources.

3.3 Integration Semantics

Integration semantics define the way data from different data sources are com-
bined to form the extent of global schema constructs. Currently, only user-
defined integration semantics are supported and, if not provided, the default
“append” semantics are used. It is envisaged, however, that in the future the
default behaviour will be to inspect the semantics carried by the id transfor-
mations themselves if no user-defined integration semantics are provided.

The user has the following ways of specifying the integration semantics to
an instance of AQP:

(i) Shorthand: The following four integration operators can be used as a
shorthand notation. The AQP combines results from all the data sources
using the same operator, in the order the data sources are specified in the
input data source schemas array:

Choose: values coming from just one data source are returned; which
data source is chosen depends on the ChooseOptimiser (Section 3.6)
or, if this optimiser is not invoked, on a non-deterministic choice by
the choose IQL function (see Appendix A).

Append: all values returned by the data sources are returned, combined
using the ++ operator.
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Intersect: the values returned from the data sources are combined using
the intersect operator (see Appendix A).

Union: the values returned from the data sources are combined using the
duplicate-eliminating union operator (see Appendix A).

(ii) Verbose: The user can specify an expression containing the names of the
schemas of the data sources, composed using any of the operators listed
above or indeed any of the other operators on collections, such as −− (see
Appendix A). The schema name of each data source must be prefixed by a
$ symbol in such an expression e.g. ($S1 intersect $S2) ++ ($S1 -- $S3)

3.4 Configuration

The QueryProcessorConfiguration component allows the user to set a number
of parameters that configure the setup of the AQP and of its components. These
parameters either specify the implementation of each component of the AQP
(each component in Figure 1 may have more than one implementations) or
specify runtime options such as whether the AQP should perform optimisation
or not and the reformulation approach it should employ.

The QueryProcessorConfiguration component currently supports the fol-
lowing options:

Component implementations: each AQP component may have more than
one implementation; the default ones used are the QueryReformulator,
the StandardOptimisationProvider, the StandardQueryAnnotation-
Provider, and the Evaluator.

Reformulation approach: the default value is BAV reformulation; the user
may modify this option to specify the use of GAV reformulation or LAV
(for more on supported reformulation approaches see Section 3.5).

Range semantics: the default for this option is Range semantics; the user may
modify this option to specify the use of the lower- or upper-bound query
only (for more on Range semantics see Section 3.5).

Query language: the default query language for the AQP is the IQL query
language, but a user may modify this option to enable the use of SQL or
XQuery as the input query language.

Function table: the function table contains the IQL functions available to
the Evaluator component. The default configuration of the AQP uses
the StandardFunctionTable, which contains the built-in IQL functions
described in Appendix A. An AutoMed developer can create his/her own
IQL functions, define a new function table that references these functions,
and assign this new function table to the AQP, which will add the refer-
enced functions to the list of functions available to the Evaluator through
the StandardFunctionTable.

Optimisation: boolean option that specifies whether the AQP performs opti-
misation using the QueryOptimiser component; default value is true.
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Disjoint IDs: setting this boolean option to true specifies that key attribute
values arising in the virtual integrated schema from different data sources
are non-overlapping and therefore allows the EmptyJoinOptimiser com-
ponent (see below) to remove any such equijoins across data sources.

Type checking: boolean option that specifies whether the AQP performs type
checking; currently there is no implementation for the type checking com-
ponent, and so the default value is false.

3.5 Query Reformulation

The QueryReformulator component is able to reformulate queries submitted to
a virtual schema against a set of extensional data sources using GAV, LAV or
BAV reformulation. This section first presents the generic design and implemen-
tation of QueryReformulator component, then discusses the implementation of
each of the reformulation techniques. For more details on GAV, LAV and BAV
reformulation in AutoMed, see [4].

The AutoMed query processing components were implemented having mod-
ularity and extensibility in mind. As a result, it is possible for a user to change
at runtime the settings and configuration of the AQP. Furthermore, extending
the AQP and IQL with new reformulation techniques, IQL functions and query
processing components is straightforward.

3.5.1 Design and generic implementation

Similarly to the AQP, it is possible to have more than one QueryReformulator
instances. However, as discussed below, the data structures used by the Query-
Reformulator maintain caches of their instances, so it is possible for multiple
QueryReformulator instances to access the same set of view definitions. An in-
stance of the QueryReformulator can be obtained using the QueryReformulati-
onFactory, which initialises a QueryReformulator instance using the default
constructor, i.e. no initialisation is required while constructing an instance.
When a query on a target schema needs to be reformulated, the reformulate
method is called with the names of the target and data source schemas, the
integration semantics and a QueryProcessorConfiguration instance.

The QueryReformulator component is split into three layers in order to be
able to provide all three types of reformulation and at the same time be ready
for future extensions, e.g. adding other types of LAV reformulation algorithms.
All three currently implemented reformulation techniques produce a view map
that contains view definitions of the target schema constructs in terms of the
data source schema constructs. This map can then be used to unfold any virtual
schema constructs occurring in a user query.

Layer 1 - AtomicViewMap

The first layer abstracts and stores in memory the metadata contained in
the transformation pathways between the target schema and the data source
schemas so as to reduce costly interactions with the AutoMed repository. For
each pathway, six data structures are created, each storing a different type of
transformation for a single pathway — e.g. twelve such data structures will be
created for given a target schema and two data source schemas.
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Each such data structure is essentially a map, where the key for each row is
the SchemeInfo object corresponding to a certain schema object of the target
schema. The SchemeInfo object in this case also contains the AutoMed repos-
itory object identifier (OID) for that construct, which does not change when
a transformation is defined from one schema to another, unless it is an ident
transformation. The value corresponding to a key is the query supplied with
the transformation (for add/delete/extend/ contract transformations), the
renamed construct (for rename transformations) or another SchemeInfo object
(for ident transformations).

This functionality is provided by a single class, AtomicViewMap, meaning
that each of these data structures is an instance of this class. An instance of
this class for a given target and data source schema will be likely be used multi-
ple times during the lifetime of an instance of the AQP, so the AtomicViewMap
class maintains a cache of its own instances.

Layer 2 - CompositeViewMap

The second layer uses the data structures of the first layer to produce the
view definition of each target schema construct in terms of the schema constructs
of a single data source4. This level distinguishes between the three currently
available reformulation techniques by providing three components, one for per-
forming GAV reformulation, one for performing LAV reformulation using the
inverse rules technique, and one for performing BAV reformulation (note again
that these components operate on a target schema and a single data source). At
this point, the reason for the first layer to store the transformations of a single
pathway in six different data structures becomes clear: GAV reformulation does
not consider add and extend transformations, LAV reformulation does not con-
sider delete and contract transformations and BAV reformulation considers
all six types of transformations. Storing different types of transformations in
different data structures allows the second layer to select and consider only the
types of transformations that are of relevance to the reformulation technique at
hand.

The three aforementioned components of the second layer are the GAVViewMap,
the LAVInvRulesViewMap and the BAVViewMap; these components are subclasses
of the CompositeViewMap component, which abstracts the common functional-
ity of these components. Note also that, just like the AtomicViewMap compo-
nent, the CompositeViewMap component also maintains a cache of the instances
of its three subclasses.

Layer 3 - QueryReformulator

The third layer consists of a single component, the QueryReformulator. It
employs as many instances of one of the three components of the second layer
as there are data source schemas, and produces a map containing the view
definition of each target schema construct in terms of the schema constructs of
the data sources. This layer does not maintain a cache of its instances for two
reasons. First, due to caching at the two lower levels, producing its own set

4Note that this applies not only for GAV reformulation, but also for LAV and BAV refor-
mulation — see Section 3.5.3 and [4] for details.
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of view definitions is cheap, and, second, this simplifies the process of changing
the user-defined integration semantics at runtime.

3.5.2 GAV Query Reformulation

When using GAV as the reformulation technique, the AQP uses only those por-
tions of BAV pathways that define target schema constructs in terms of data
source constructs, namely delete, contract, rename and ident transforma-
tions (assuming a target to data source traversal of the schema transformation
pathways). The add and extend transformations are not considered, as these
cannot contribute to the view definitions of the virtual schema constructs in
terms of data source constructs (they are delete and contract transforma-
tions respectively if traversed in the direction from a data source schema to the
target schema).

The view definition for each construct of a virtual schema is derivable from
the BAV pathways using the GAV view generation algorithm described in [4].
Each GAVViewMap (a specialisation of CompositeViewMap discussed above) pro-
vides definitions of target schema constructs as views over the constructs of a
single data source schema. The GAV reformulation algorithm uses these view
definitions to unfold the query over a target schema in terms of constructs of
the data source schemas. Section 3.5.5 provides more details on how each type
of primitive transformation is handled by CompositeViewMap.

3.5.3 LAV Query Reformulation

When using LAV as the reformulation technique, the AQP uses only those
portions of BAV pathways that define data source constructs in terms of target
schema constructs, namely, add, extend, rename and ident transformations
(assuming a target to data source traversal of the pathways).

LAVInvRulesViewMap (a specialisation of class CompositeViewMap discussed
above) uses the Inverse Rules technique [2] to derive view definitions of the tar-
get schema constructs in terms of the data source schema constructs by invert-
ing the LAV view definitions of the pathway. The LAV reformulation algorithm
uses these derived view definitions to unfold the query over the target schema
in terms of data source schema constructs. If more than one view definition
is available for a particular target schema construct, these view definitions are
merged according to the semantics of the merge operator defined in [4]. Sec-
tion 3.5.5 provides more details on how each type of primitive transformation
is handled by CompositeViewMap.

3.5.4 BAV Query Reformulation

When using BAV as the reformulation technique, the AQP uses all information
contained in BAV pathways. BAVViewMap (a specialisation of CompositeViewMap
discussed above) combines the GAV and LAV techniques to derive view defi-
nitions of the target schema constructs in terms of the data source schema
constructs. If more than one view definition is available for a particular tar-
get schema construct then, the view definitions are merged according to the
semantics defined in [4]. Section 3.5.5 provides more details on how each type
of primitive transformation is handled by CompositeViewMap.
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3.5.5 Handling Primitive Transformations

AtomicViewMap stores details of primitive transformations exactly as these are
stored in the AutoMed repository. Each add/delete transformation is supplied
with a query q, describing the extent of the added/deleted construct using the
rest of the schema constructs. Each extend/contract transformation is sup-
plied with a query of the form Range ql qu, specifying a lower and an upper
bound on the extent of the construct. The lower bound may be Void and the up-
per bound may be Any, which respectively indicate no known information about
the lower or upper bound of the extent of the new construct. CompositeViewMap
handles each AtomicViewMap based on the transformation type as described be-
low.

• delete(c,q): Any occurrence of c within the view definitions is replaced
by q, which describes how to reconstruct the extent of construct c.

• contract(c,Range ql qu): Any occurrence of c within the view defi-
nitions is replaced either by the lower-bound query ql, the upper-bound
query qu, or the full query Range ql qu, depending on the Range semantics
configuration parameter of the AQP.

• add(c,q): The rule is inverted using the Inverse Rules algorithm so as to
get definitions of one or more target schema constructs defined in terms
of c. Any occurrences of these target schema constructs within the view
definitions are replaced by the body of inverted rule.

• extend(c,Range ql qu): ql and qu are inverted individually in the same
way the query supplied with an add transformation, to obtain a set of
rules with bodies of the form Range V oid q or Range q Any (see [4] for
details).

Any occurrences of target schema constructs within the view definitions
are then replaced by the lower-bound, upper-bound or full Range queries
in the inverted rule bodies, depending on the Range semantics configu-
ration parameter of the AQP.

• rename(c,c′): All references to c in the view definitions are replaced by
references to c′.

• ident: Since the key to the hashmap contained in a CompositeViewMap
is the AutoMed repository identifier, and since an ident transforma-
tion states that its schema arguments are equivalent, processing of such
a transformation consists of updating the keys in the hashmap of the
CompositeViewMap object to contain new SchemeInfo objects that con-
tain a new repository identifier.

If more than one view definitions are encountered for a particular construct
while constructing the CompositeViewMap, the definitions are merged using the
merge operator, as defined in [4].

3.5.6 Handling Dual Model Data Sources

In general, AutoMed allows for a data source to be represented by two data mod-
els, one termed datasource-oriented and one termed AutoMed-oriented. Some
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data models may be defined using a single data model (e.g. xmldss), whereas
others may use the dual model approach (e.g. sql).

Throughout this section, the term ‘data source schema’ referred in fact to the
AutoMed-oriented schemas. If a data source follows the dual-model approach,
an extra reformulation step is needed between the datasource-oriented and the
AutoMed-oriented schemas. This is performed in the CompositeViewMap com-
ponent and always uses GAV reformulation to reformulate AutoMed-oriented
constructs to datasource-oriented constructs, regardless of the reformulation
technique specified in the instance of QueryProcessorConfiguration supplied
to the AQP.

3.6 Logical optimisation

After the initial query on the virtual schema has been reformulated into a query
containing data source schema constructs, the logical optimiser component per-
forms various logical optimisations on the query. The goal of this component
is twofold: first, to simplify the query by performing algebraic optimisations,
and, second, to build the largest possible subqueries that can be pushed down
to the local data sources for evaluation. The QueryOptimisationProvider
component serves as a ‘policy’ class, coordinating the individual optimisers.
The default configuration for AQP uses the StandardOptimisationProvider,
but an AutoMed developer can create their own optimisation provider and use
it with AQP to suit the needs of their specific integration setting. The rest
of this section describes the functionality of each optimiser as well as of the
StandardOptimisationProvider.

ChooseOptimiser. The choose IQL function returns either of its argu-
ments non-deterministically. It is possible, however, to determine which one of
the two operands of this IQL operator is cheaper to evaluate using some heuris-
tic. In particular, the ChooseOptimiser favours the operand that invokes the
lowest number of IQL built-in functions — note that a comprehension is also
considered a function in this context.

CollectionSimplification. This optimiser eliminates empty collection ar-
guments within the reformulated query and simplifies the reformulated query
based on the semantics of Null, Void and Any with respect to the collection-
valued IQL operators (see Appendix A.4 and A.5).

ComprehensionDistributor. Within a comprehension, generators may
iterate over expressions of the form e1 ++ ... ++ em where the ei may refer to
different data sources, thereby preventing the query processor from sending the
whole comprehension to a single wrapper. Application of this optimiser splits
the original comprehension into a number of simpler comprehensions, some of
which may now refer to a single data source, and therefore can be sent to a single
wrapper. The number of comprehensions created by this optimiser to replace
the original comprehension is

∏n
i=1 mi, where mi is the number of expressions

involved in the ith generator and n is the number of generators. For example,
the following query:

[x|{x, y} ← (::S1:::〈〈student, name〉〉: ++ ::S2:〈〈student, name〉〉:);
{x, z} ← (::S1:::〈〈staff, name〉〉: ++ ::S2:::〈〈staff, name〉〉:); z =′ Fred′]

would be rewritten as follows:
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[x|{x, y} ←::S1:::〈〈student, name〉〉:; {x, z} ←::S1:::〈〈staff, name〉〉:; z =′ Fred′]++
[x|{x, y} ←::S1:::〈〈student, name〉〉:; {x, z} ←::S2:::〈〈staff, name〉〉:; z =′ Fred′]++
[x|{x, y} ←::S2:::〈〈student, name〉〉:; {x, z} ←::S1:::〈〈staff, name〉〉:; z =′ Fred′]++
[x|{x, y} ←::S2:::〈〈student, name〉〉:; {x, z} ←::S2:::〈〈staff, name〉〉:; z =′ Fred′]

and therefore the first and fourth comprehensions could be sent down to the data
sources of S1 and S2 respectively. Note that this optimisation is the equivalent of
distributing selections and projections over the union operation in the relational
algebra.

EmptyJoinOptimiser. This optimiser eliminates comprehensions for which
it can infer that they will return empty results because they are undertaking
a join over non-overlapping attributes. In particular, this optimisation can ap-
plied over attributes that are known to have globally unique values over the
data sources being integrated:

[h|e; p1 ← e1; e′; p2 ← e2; e′′] ⇒ []

Here, the patterns p1 and p2 need to have one or more variables in common, and
the values within e1 and e2 corresponding to these variables need to be known
to be non-overlapping.

Note that the use of the ComprehensionDistributor optimiser can lead to
a significant number of comprehensions and use of the EmptyJoinOptimiser
may be able to eliminate some of these. For example, using the output of
the example above, the output of EmptyJoinOptimiser optimiser would be as
follows, provided that the EmptyJoinOptimiser had knowledge (e.g. from the
Disjoint IDs configuration parameter) that the key values within the virtual
integrated schema arising from S1 and S2 are disjoint:

[x|{x, y} ←::S1:::〈〈student, name〉〉:; {x, z} ←::S1:::〈〈staff, name〉〉:; z =′ Fred′]++
[x|{x, y} ←::S2:::〈〈student, name〉〉:; {x, z} ←::S2:::〈〈staff, name〉〉:; z =′ Fred′]

CollectionOperatorReorganiser. A reformulated query may contain a
number of comprehensions referring to different data sources. These compre-
hensions may be scattered throughout the query, and grouping them together
may enable the query processor to send larger subqueries to the wrappers. This
optimiser therefore reorders comprehensions which are arguments of the ++ and
-- built-in functions. As a simple example, the following query:

[{x, y}|{x, y} ←::S1:::〈〈staff, name〉〉:] + +[{x, y}|{x, y} ←::S2:::〈〈person, name〉〉:]
+ + [{x, y}|{x, y} ←::S1:::〈〈student, name〉〉:]

would be rewritten to:

[{x, y}|{x, y} ←::S1:::〈〈staff, name〉〉:]++[{x, y}|{x, y} ←::S1:::〈〈student, name〉〉:]
+ + [{x, y}|{x, y} ←::S2:::〈〈person, name〉〉:]

NestingOptimiser. Consider the following query over schemas S1 and S2:

[f(p1, p2, p3)|p1 ← e1
S1

; p2 ← e1
S2

; p3 ← e2
p1

; qp1 ; qp2 ; qp1,2 ]
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Here, ei
Sj

is the expression of the ith generator, referring to schema Sj , qpk
is a

filter expression referring to variables from pattern pk, qpk,l
is a filter referring

to variables from patterns pk and pl, and f(p1, p2, p3) is an arbitrary expression
over the variables of the patterns pi.

This optimiser rewrites the above query by grouping where possible qualifiers
with generators, and nesting them into a new comprehension that can be sent as
one subquery to a data source wrapper (this is the analogue of pushing selections
through joins in relational languages):

[f(p1, p2, p3)|{p1, p3} ← [{p1, p3}|p1 ← e1
S1

; p3 ← e2
S1

; qp1 ];
p2 ← [p2|p2 ← e1

S2
; qp2 ]; qp1,2 ]

UnnestOptimiser. This optimiser unnests nested comprehensions. In gen-
eral, a comprehension of the form:

[h1|e1; p1 ← [p2|Q1; . . . ; Qn]; e2]

can be unnested to:

[h1|e1; Q′1; . . . ;Q
′
n; e2]

provided the patterns p1 and p2 match i.e. p1 can be obtained from p2 by
variable renaming. Each Q′

i is obtained from Qi by applying the same renaming.
SQLWrapperSKJOptimiser. As discussed in Section 3.5.6, in AutoMed

relational data sources have two layers of schemas, the datasource-oriented
schema and the AutoMed-oriented schema. In this dual relational model, a
column scheme 〈〈R, a〉〉 representing the ith column of an n-ary table R is re-
formulated into a selection-projection comprehension [{k, ai}|{k, a1, ..., an} ←
〈〈R, n〉〉], where 〈〈R, n〉〉 is the datasource-oriented scheme representing R. This
causes a global query such as:

[{x, y}|{k, x} ← 〈〈R, a1〉〉;
{k, y} ← 〈〈R, a2〉〉].

to be reformulated into a join of nested comprehension:

[{x, y}|{k, x} ← [{k, a1}|{k, a1, ..., an} ← 〈〈R, n〉〉];
{k, y} ← [{k, a2}|{k, a1, ..., an} ← 〈〈R, n〉〉]].

This self-joining over nested comprehensions iterating over the same table is
undesirable as it imposes an unnecessary cost in the evaluation of the query. The
nested comprehensions are first removed using the UnnestOptimiser described
earlier, and so the above query is rewritten as follows:

[{x, y}|{k, x, y, ..., an} ← 〈〈R, n〉〉;
{k, x, y, ..., an} ← 〈〈R, n〉〉]

However, this comprehension still contains a self-join of the table R over its key
attribute(s) (k). The SQLWrapperSKJOptimiser eliminates such self-joins, and
the result for the above query is:

[{x, y}|{k, x, y, ..., an} ← 〈〈R, n〉〉]
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As another example, consider the following query on relations R and S:

[{x, y, a, b, c}|{x, a} ← [{k, a1}|{k, a1, a2, a3} ← 〈〈R, 3〉〉];
{x, b} ← [{k, a2}|{k, a1, a2, a3} ← 〈〈R, 3〉〉];
{y, b} ← [{k, a1}|{k, a1, a2} ← 〈〈S, 2〉〉];
{y, c} ← [{k, a2}|{k, a1, a2} ← 〈〈S, 2〉〉]; a > c]

This query is rewritten by the same two optimisers into:

[{x, y, a, b, c}|{x, a, b, a3} ← 〈〈R, 3〉〉;
{y, b, c} ← 〈〈S, 2〉〉; a > c]

ComprehensionHeadSimplifier. The head of a comprehension may con-
tain an arbitrary IQL expression in general. This may have a number of unde-
sirable effects, such some of the optimisers not being applicable, or wrappers not
being able to accept a comprehension for translation. The ComprehensionHead-
Simplifier rewrites comprehension of the form [h|Q] to queries of the form
map (lambda p h) [p|Q], where p is a tuple of variables comprising all the free
variables appearing in the expression h.

ConstantInPatternOptimiser. Within comprehensions, equality filters
between a variable v and a constant c can be removed, and v is replaced by c
in the rest of the of the comprehension. For example, the following query:

[{x1, y}|{x1, y} ← 〈〈student, name〉〉;x1 = 5; {x2, z} ← 〈〈staff, name〉〉; x1 = x2]
is rewritten as:

[{5, y}|{5, y} ← 〈〈student, name〉〉; {5, z} ← 〈〈staff, name〉〉]
Note that filter x1 = x2 was removed since it was made redundant. Also

note that, if after the optimisation, the head of a set comprehension no longer
contains variables, the body is removed.

StandardOptimisationProvider. This coordinates the application of the
above optimisers to the reformulated query. It first applies the ChooseOptimiser,
followed by CollectionSimplification. Several of the other optimisers are
then applied repeatedly, until no optimiser further modifies the query; this is
because an optimisation performed by one optimiser may enable further opti-
misations by the rest of the optimisers, but which were not possible before. The
order in which the optimisers are applied within this loop is as follows.

First, the EmptyJoinOptimiser is applied, followed by the Comprehension-
Distributor, transforming complex comprehensions involving multiple data
sources into simpler ones, some of which may refer to a single datasource.
The CollectionOperatorReorganiser next reorganises the query, bringing to-
gether comprehensions referring to the same datasource. Then, the Nesting-
Optimiser is applied, nesting the resulting comprehension in a way that enables
larger subqueries to be sent down to the wrappers. Finally, the UnnestOptimiser
and the SQLWrapperSKJOptimiser are applied.

3.7 Query annotation

After the input query has been reformulated and processed by the logical opti-
miser, wrapper functions, which are responsible for evaluating IQL queries on
the data sources, are inserted within the query. Wrappers are implemented in
IQL as a two-argument built-in function; a wrapper subtree is therefore repre-
sented as follows:
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subquery

objectId$wrapper

where objectId is the unique id of the Java Wrapper object, assigned at runtime,
and subquery is the subquery sent to that datasource wrapper.

In AQP v1, this task was performed by the FragmentProcessor, which cre-
ated a wrapper subtree for every scheme within the query. In the current version,
this task is performed by the StandardQueryAnnotationProvider, which de-
tects the largest possible subqueries that datasource wrappers can handle, and
creates the appropriate wrapper subtrees. Section 3.7.1 gives a detailed descrip-
tion of how this is accomplished, while Section 3.7.2 provides details of how a
wrapper can be upgraded to handle larger IQL queries.

3.7.1 The QueryAnnotator component

Each AutoMed wrapper type is capable of translating a subset of the IQL lan-
guage. For example, the SQLWrapper can translate simple comprehensions5 with
simple filters6 and the ++ function; the SAXWrapper can translate only single
schemes; and the BBKSQLWrapper can translate arbitrarily nested comprehen-
sions, aggregation functions and the ++ and distinct functions.

We have defined a number of grammars which correspond to subsets of the
IQL language and have generated a parser corresponding to each grammar; so
if a subquery adheres to a certain grammar, then the corresponding parser will
accept it, otherwise it will raise a syntax error.

Each type of wrapper specifies the IQL grammar it can translate (otherwise,
the default ‘schemes-only’ grammar is assumed); the StandardQueryAnnotation-
Provider invokes the parser associated with each datasource wrapper to de-
termine whether the wrapper can translate a given subquery. Note that if a
wrapper’s translation capabilities do not correspond to an existing grammar, a
new grammar must be defined and its corresponding parser must be generated.

The StandardQueryAnnotationProvider is initialised by creating a map
containing a wrapper wt corresponding to each data source schema St. It then
traverses the query DAG, and for each subquery q it encounters replaces q with
a wrapper subtree containing q as its second argument if the wrapper wt can
translate the query q.

3.7.2 Upgrading the translation capabilities of AutoMed wrappers

To upgrade an AutoMed wrapper to be able to translate more complex IQL
queries than single schemes, the wrapper developer needs to perform the follow-
ing tasks:

5By ‘simple comprehensions’ we mean non-nested (flat) comprehensions whose head is
‘simple’, i.e. is not nested and does not contain any functions.

6By ‘simple filters’ we mean filters comprising a comparison between a variable and a
constant or between two constants.
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1. Modify the wrapper code to accept and be able to evaluate not only single
scheme Cells, but larger ASGs.

2. (Optional) Define and compile a JavaCC grammar defining the subset of
IQL queries that the wrapper can handle.7

3. Override the method public QueryParser getQueryParser(ASG query)
in the wrapper class, so that it returns an instance of the parser created
in the previous step.

Step 2 is optional, in that it is not necessary to define a new grammar if the
IQL subset the wrapper can handle is already defined in an existing JavaCC
grammar. In this case step 2 can be omitted and the parser corresponding
to that grammar can be used when overriding the method specified in step
3. Appendix C contains the JavaCC source files for three parsers currently
contained in the AutoMed distribution: one that allows only simple schemes;
one that allows schemes, simple comprehensions, and the ++ operator; and one
that allows the subset of IQL translatable by the BBKSQLWrapper discussed
earlier.

The following code snippet shows how method getQueryParser(ASG query)
can be overridden to indicate that the wrapper can handle queries defined by
the SimpleCompAppend.jj JavaCC grammar of Appendix C.2.

public QueryParser getQueryParser(ASG query) {
Reader r = new BufferedReader(new StringReader(query.toString()));
return new SimpleCompAppend(r);

}

3.8 Query Evaluation

Evaluation of an annotated query is performed by an instance of the QueryEva-
luationProvider, which can be obtained through the QueryEvaluationFacto-
ry. Currently, there is only one implementation, the Evaluator.

When an Evaluator instance is created, its constructor is passed the same
QueryProcessorConfiguration instance supplied to the AQP. This contains
a FunctionTable instance, which contains the IQL built-in functions that are
to be used with this instance of AQP and its components. In particular, this
object contains mappings between the names of the IQL functions and the
Java classes that actually implement them. Each such class implements the
BuiltInFunction interface, which contains two methods, getArity() return-
ing the arity of the function8, and perform(Cell[] args, Evaluator e) im-
plementing the function itself.

The default configuration of the QueryProcessor component (see Section 4.3)
uses only the StandardFunctionTable, which contains the built-in IQL func-
tions described in Appendix A. An AutoMed developer can create his/her own

7JavaCC (Java Compiler Compiler) is a parser generator for the Java programming lan-
guage. JavaCC is similar to Yacc in that it generates a parser for a grammar provided in
BNF-like notation, except the output is Java source code.

8The Evaluator needs to know the arity of a built-in function — how many arguments it
takes. Although built-in functions may be partially applied within expressions, in order to be
reduced they require a full complement of their arguments.
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IQL functions and define a new function table, referencing these functions. The
new function table can then be added to the function table used in a certain
QueryProcessorConfiguration instance, as illustrated in Section 4.3.

3.8.1 The Evaluator component

Evaluating a query expressed in a functional language consists of performing
reductions on reducible expressions until no more reductions can be performed.
It is then said to be in normal form. There may be more than one reducible
expressions within the query at any one time and thus a choice of reductions,
but the order in which these reductions are performed makes no difference and
the result is the same, provided the evaluation terminates.

The Evaluator component always reduces the leftmost outermost reducible
expression — this is known as normal-order reduction and has the best possible
termination behaviour. It also has the effect that, function arguments are not
evaluated unless they are actually needed for the evaluation of the function.
Also, since an IQL query can be internally represented as an acyclic graph,
several identical sub-expressions of it may in fact be evaluated at the same
time. These two properties provide for “lazy evaluation” in IQL.

The Evaluator contains methods for full evaluation of an expression i.e.
reduction to normal form, and for reduction to the so-called weak head normal
form (information on weak head normal form can be found in [5]).

The reductions performed by the Evaluator component are of two types
— reduction of lambda expressions and reduction of built-in functions. Higher
level constructs, such as let expressions and comprehensions, are evaluated by
first being translated into their equivalent expressions comprising lambda ab-
stractions and built-in functions (as discussed in Section 2.2 above).

The built-in functions of IQL fall into two categories. There are ordinary
built-in functions, such as sort, (+) and the like, which are part of the IQL
language aimed at the user. There are also special built-in functions, such as
Comp, Let and Gen, which are not intended for direct use but exist to represent
internally constructs of IQL such as comprehensions and let expressions. These
special functions provide a view of these constructs that turns them into simple
function applications like the rest of IQL.

3.8.2 Implementation of built-in functions

A number of standard functions have been implemented. The functions of
Appendix A are included in the StandardFunctionTable class, which extends
FunctionTable with a number of standard IQL functions.

To illustrate the evaluation of IQL functions, consider the query 2 + (1 ∗
2). The following figure shows the tree representation of this query that the
Evaluator will simplify:
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In evaluating this query the Evaluator will obtain a BuiltInFunction for
the (+) function from its FunctionTable. It will then call the perform(Cell
args[], Evaluator e) method of this BuiltInFunction passing it references
to the two dashed cells as the args[] argument. However, the method cannot
work out the result because one of the arguments is an expression in need of
evaluation. It therefore uses the reference to the Evaluator object that it has
been passed to evaluate this argument first.

As illustrated with the above example, the perform method will frequently
need to evaluate fully or bring to weak head normal form some of the arguments
it is passed before it can return a result. It must therefore be provided with a
reference to the Evaluator object it should use to accomplish this task. The
decision to evaluate these arguments, bring them to weak head normal form, or
leave them as-is is left to the BuiltInFunction, because the Evaluator doesn’t
know whether it will be necessary to evaluate them or not. For example, consider
a query of the form (False and e); in this case, the IQL function and does not
need to evaluate e at all.

3.8.3 Incremental evaluation

The Evaluator supports streaming for those operators with at least one collec-
tion argument. This means that, when evaluating a collection-valued expression,
and if the user wishes so (see Section 4), the Evaluator can evaluate the expres-
sion incrementally, i.e. a single call to the Evaluator produces only n results of
the final collection, where n is user-defined. This feature is particularly useful
for large or indeed infinite collections.

To enable incremental processing of functions with collection arguments, the
Evaluator.evaluate(Cell) method has been modified so as to stop process-
ing whenever n results of the final collection have been produced. To achieve
this, the Evaluator.weakHeadNF(Cell) method has been modified to count
the number of times that any function that supports streaming is invoked.
The next n results are then produced at the user’s request, with a new call
to Evaluator.evaluate(Cell) (see Section 4).

The functions that currently support incremental query processing are (++),
flatmap and $wrapper.

We now describe the streaming version of function (++). Given collection-
valued arguments arg1 and arg2, instead of processing arg1 and appending the
unprocessed arg2 at the end of arg1 (as is the case with instant evaluation),
the function now processes n items from the collection arg1 and appends the
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expression (arg′1 ++ arg2) to the end of these n processed items, where arg′1 is
the collection remaining after these n items have been removed from arg. For
example, for arg1 = [1, 2] and with n = 1, the first call to (arg1 + + arg2)
would yield:

@

@

@

ª

R
Cons 1

@

ª R

ª

R

ª R

ª

R

(++) @

@

ª R
Cons 2 Nil arg2

Stream processing for function $wrapper is implemented at the wrapper
level, rather than at the IQL function itself, due to the differences of the
implementation details for each wrapper that can support streaming. The
SQLWrapper, currently the only wrapper that supports incremental process-
ing of queries, implements streaming as follows. An IQL query q, with unique
identifier id, received by the SQLWrapper is first sent for evaluation to the data
source and a streaming ResultSet JDBC object is created. This is stored in
a cache in the wrapper, to which the key is id. A single execution call at any
wrapper is similar to that of function (++), i.e. the same intermediate structure
is created. The only difference is that the SQLWrapper needs to store a pointer
to the current row in the query result, in order to be able to continue evaluation
from the right index in subsequent calls.

3.9 Extensibility

The AQP components have been designed with extensibility and adaptability
in mind. This means that low-level components have been designed to be as
generic as possible and higher-level components to be as adaptable as possible.

Function tables ensure that each developer can easily create his/her own
IQL functions, create a new function table and add it to the QueryProcessor
at hand using class QueryProcessorConfiguration (see Section 4).

Query reformulation has been split into three layers, making it easier to
provide BAV, GAV and LAV reformulation by reducing as much as possible
the reformulation-specific code. As a result, adding alternative reformulation
components is straightforward.

The component-based approach followed for the development of the AQP al-
lows for the development of different implementations for each query processing
component. This is especially useful for the optimisation process, where each
different integration setting may require a different optimisation strategy.
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Finally, the QueryProcessorConfiguration component provides a single
point of configuration information for all other query processing components.

3.10 Logging

Logging within the AQP is supported using the Java logging API (see http://
java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html). The
location of the log file is /.automed/logs/AutoMedQProcPackage.log within
the AutoMed user’s home directory.

3.11 Test Units

A number of unit and system tests have been developed to help maintain and
debug AutoMed code. Unit tests validate the functionality of individual classes,
whereas system tests validate the functionality of larger components of the Au-
toMed architecture.

JUnit9 3.8.1 has been used as the unit testing framework in this release, but
it is envisaged that JUnit 4.0 will be used when AutoMed switches to Java 5.

3.12 Memory & Performance Issues

This section discusses memory and performance issues raised during the imple-
mentation of the AQP. Section 3.12.1 discusses a caching mechanism for the
AQP, Section 3.12.2 discusses issues concerning garbage collection, and, finally,
Section 3.12.3 discusses the importance of carefully choosing the Java List im-
plementation to use when developing components for the AQP.

3.12.1 Cache

The CallToWrapper IQL function (not listed in Appendix A as it is only used
internally) implements a basic caching system. Whenever a wrapper call is
made, the cache stores the query sent to the wrapper together with the result
of the wrapper call in a Java HashMap object. If the result of an intermediate
query is larger than a certain threshold, then the result is stored in a file on disk;
otherwise the result is stored in memory. To avoid returning stale data to the
user, the Evaluator component clears the cache after each query is evaluated
and so caching only occurs within a single query, not across queries. This fact
renders the cache discussed here an internal QueryEvaluator mechanism, rather
than a query processing cache.

The usage of a threshold to store a result in memory or on disk implies that
the caching mechanism calculates the size of a result. However, calculating the
exact size would be costly and could degrade performance significantly. The
cache therefore estimates the size of the result, by counting the number of items
in the resulting collection. This is an estimation, because e.g. an item in a
collection can have an arbitrary size or may be another collection.

9See http://www.junit.org
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3.12.2 Garbage collection

Initial tests on the AQP revealed that, even though garbage collection is per-
formed normally by the Java Virtual Machine, explicit calls must be made across
the AQP, to release in-memory ASG objects no longer needed. For example, af-
ter a query is optimised by the QueryOptimiser component, explicit calls make
all optimiser objects null to make them available for garbage collection; this
is necessary, as they may contain data structures such as hashmaps contain-
ing large ASG objects. Other explicit calls include clearing the CallToWrapper
cache and re-initialising all IQL functions.

This initialisation of AQP components occurs once when first creating an
AQP instance and then after a component is used. This happens so that
ASG/Cell objects no longer necessary for the query processing cycle are avail-
able for garbage-collection immediately. The only ASG/Cell objects present in
memory after a query processing cycle are those within the QueryReformulator
component and those used to represent optimisation rules within optimisers.

3.12.3 Java collection types

Within the AQP, which is fully implemented in Java, there are two types of List
implementations widely used: ArrayList and LinkedList. LinkedList objects are
doubly linked lists, whereas ArrayList objects are more similar to arrays, but
can still be augmented. It is therefore crucial for the overall system performance
to carefully select which List implementation is used, as each one has advantages
in different situations.

The ArrayList offers constant time positional access, meaning that it is faster
to retrieve an item. On the other hand, the LinkedList is faster when one adds
elements to the beginning of the List or iterates over the List to delete elements
from its interior, as it requires constant time whereas in ArrayList requires
linear time. However, positional access requires linear time in a LinkedList and
constant time in an ArrayList. Furthermore, the constant factor for LinkedList
is much worse.

4 Using AQP - Examples

4.1 Creating IQL queries

There are two ways in which ASG structures can be created. The first is to
create the textual representation, then parse it. For example, the code needed
to create the expression 1+2 is ASG g = new ASG("1+2");.

The second method is to create each Cell of the ASG individually. We
demonstrate this method by listing the code necessary to create different kinds
of structures.

Constants, constructors, etc. The following illustrate the creation of Cell
objects representing, respectively, a String value, an Integer value, a datetime
value, and a Wrapper function:

Cell c = new Cell("’Computer Science’");

Cell c = new Cell("12345");

Cell c = new Cell("dt ’2005-02-24 23:15:48’");
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Cell c = new Cell("$wrapper");

The Cell constructor determines the type of Cell to create using method
ReservedTokens.returnTag(String).
Functions. The following illustrates the creation of the expression 1+2:

Cell arg1 = new Cell(Cell.TAG_INTEGER,1);

Cell arg2 = new Cell(Cell.TAG_INTEGER,2);

Cell op = new Cell("(+)");

Cell exp = new Cell(new Cell(op,arg1),arg2);

Tuples. The following illustrates the creation of 3-tuple {1,x,’IQL’}:
Cell t1 = new Cell(Cell.TAG_INTEGER,1);

Cell t2 = new Cell(Cell.TAG_VARIABLE, "x");

Cell t3 = new Cell(Cell.TAG_STRING,"IQL");

Cell tCons = new Cell("Tuple3");

Cell tuple = new Cell(new Cell(new Cell(tCons,t1),t2),t3);

Collections. Collections are created similarly:

Cell nil = new Cell("Nil");

Cell i1 = new Cell(Cell.TAG_INTEGER,1);

Cell i2 = new Cell(Cell.TAG_INTEGER,2);

Cell i3 = new Cell(Cell.TAG_INTEGER,3);

Cell ci3 = new Cell(new Cell(new Cell("Cons"),i3),nil);

Cell ci2 = new Cell(new Cell(new Cell("Cons"),i2),ci3);

Cell ci1 = new Cell(new Cell(new Cell("Cons"),i1),ci2);

Cell list = ci1;

Alternatively, one could use method ASG.toASGCollection(List l, int t),
where t is one of the constants ASG.COLLECTION LIST, ASG.COLLECTION SET or
ASG.COLLECTION BAG:

List l = new ArrayList();

l.add(i1); l.add(i2); l.add(i3);

Cell list = ASG.toASGCollection(l, ASG.COLLECTION_LIST).root();

Comprehensions. The following code creates comprehension [x|{x} ← 〈〈A〉〉]:
Cell gen = new Cell(new Cell(new Cell("Gen"),

new Cell("x"),

new Cell(Cell.TAG_SCHEME,new SchemeInfo("<<A>>")));

Cell comp = new Cell(new Cell(new Cell("Comp"),

gen),

new Cell(new Cell("Tuple1"),

new Cell("x")));

4.2 Creating an AQP instance

QueryProcessor qp = new QueryProcessor();

A client program is free to create as many AQP instances as desired, so as
to parallelise query processing. No two instances of AQP interact or interfere
with each other in any way.
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4.3 Using QueryProcessorConfiguration

Default Configuration:

QueryProcessorConfiguration qpc = new QueryProcessorConfiguration();

Specifying a custom implementation for an AQP component:

qpc.setEvaluator("mypackage.myEvaluator");

Using the FragmentProcessor as the annotation provider:

qpc.setAnnotator("uk.ac.bbk.dcs.automed.qproc.annotate.FragmentProcessor");

Changing the default reformulation semantics:

qpc.setReformulationSemantics(QueryProcessorConfiguration.REFORMULATION_GAV);

Changing the default Range semantics:

qpc.setRangeSemantics(QueryProcessorConfiguration.RANGE_LOWER);

Adding a custom Function Table:

FunctionTable[] ft = {new XMLFunctionTable()};

qpc.addFunctionTable(ft);

Setting SQL as the input query language for AQP:

qpc.setQueryLanguage(QueryProcessorConfiguration.QUERY_LANGUAGE_SQL);

Setting XQuery as the input query language for AQP:

qpc.setQueryLanguage(QueryProcessorConfiguration.QUERY_LANGUAGE_XQUERY);

Switching off optimisation:

qpc.setOptimisationState(false); // true is default

Switching off the cache of the evaluator:

qpc.setEvaluationProviderCacheStatus(false); // true is default

4.4 Retrieving data

For a query to be evaluated, the wrapper subtrees within an ASG have to be
replaced with actual data. An AutoMed wrapper is able to retrieve data from
its corresponding data source by using the executeIQL method. This method
translates an IQL query into the data source’s query language, submits it for
evaluation to the data source, and returns the result in the form of an ASG
collection — list, set or bag.

The following code shows the ‘top to bottom’ processing of an IQL query
with respect to a given target schema and a set of data source schemas:
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Schema target = Schema.getSchema("GLOBAL");

Schema[] sources = new Schema[2];

sources[0] = Schema.getSchema("LOCAL1");

sources[1] = Schema.getSchema("LOCAL2");

String query = "<<person,pname>>";

String integrationSemantics = "(++)";

try {

ASG g = new ASG(query);

QueryProcessor qp = new QueryProcessor();

QueryProcessorConfiguration qpc = new QueryProcessorConfiguration();

qp.process(q, target, sources, integrationSemantics, qpc);

System.out.print("Result: ");

g.println();

} catch (QProcException e) {

if ((e.getCause() instanceof LAVQueryReformulationException) &&

(qpc.getReformulationSemantics() ==

QueryProcessorConfiguration.REFORMULATION_LAV_INV_RULES)){

// LAV query reformulation may not succeed always.

// This is a valid limitation of LAV reformulation

System.out.println("###LAV Issue:");

} else {

// This error should not occur.

System.out.println("###Other Issue:");

}

qpc.printConfiguration();

e.printStackTrace();

}

5 Example Integration Settings

A number of example integration settings have been developed to help demon-
strate and test query processing in AutoMed. Currently, there are three such
examples:

• University Database Integration example located in the examples direc-
tory of the CVS. The following classes need to be run in the given order:
UniversityDatabaseWrapping, UniversityDatabseIntegration, University-
DatabaseQuerying. Schema information and instructions on installing
the participating databases can be found on http://www.doc.ic.ac.uk/

~pjm/databases/index.html.

• Student Database Integration example (adapted from [4]). This is lo-
cated in the /query processing/ student package in the examples di-
rectory of the CVS. The following classes need to be run in the given
order: StudentDatabaseWrapping, StudentDatabaseIntegration, Student-
DatabaseQuerying. The schemas of the databases participating in this
integration are listed in StudentSchema.txt.

• Hospital Database Integration example (adapted from [3]). This is lo-
cated in the /query processing/ hospital package in the examples di-
rectory of the CVS. The following classes need to be run in the given order:
HospitalDBWrapping, HospitalDBIntegration, HospitalDBQuerying. The
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schemas of the databases participating in this integration are listed in file
HospitalSchema.txt.

6 Changes

The latest version of the query processor contains a number of improvements
and new features:

New features:

• Support for LAV and BAV query reformulations (earlier only GAV refor-
mulation was available).

• Modular Query Reformulator architecture

• Customisable Query Processor configuration

• Support for incremental query processing

Changes from the earlier version:

• Support for logging

• Added test units for a range of the AQP components

• Datatypes instead of constants; functions have type signatures.

• LogicalOptimiser component.

• QueryAnnotator component (replacing the FragmentProcessor).

• AQP component (coordinating query processing components).

• Cache system for the CallToWrapper IQL function.

• Evaluator can handle multiple function tables.

• ident transformations now come in four flavours.

• Support for sets and bags.

• New constructor: Null.

• SQL and XQuery support.

• Comprehension translation is now correct.

• Variable unification is now correct.

• Infix versions of all binary IQL built-in functions.

• Optimised implementations for the built-in functions (reduction of argu-
ments to weak-head normal form where appropriate instead of always
evaluating arguments).

• Set of built-in functions augmented (see Appendix A).

• IQL functions now have a consistent way of handling Void, Any and Null.

31



7 Future Work

It is envisaged that the next version of the query processor will contain the
following features:

• Type checker. The type system infrastructure is one of the new features
of version 1.2 of the query processor of the AutoMed toolkit; the next step
is to provide a TypeChecker component.

• Parallel evaluation. Currently, all IQL queries are evaluated in a serial
fashion. The parallelisation of the query processor would give a significant
performance boost.

• Translation. Increase high-level query language support.

• Streaming. Support for more IQL functions.
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A Built-In Functions

Note that below ‘occurs(x,xs)’ denotes the number of occurrences of a value ‘x’
in a collection ‘xs’. Note also the following polymorphic type signatures for the
Void, Any and Null constructors:

Void::List a
::Bag a
::Set a

Any ::List a
::Bag a
::Set a

Null::a

Generally, Null has semantics ‘unknown’ (and hence the same semantics as Any
if used in place of a collection (list, set or bag)). Void has the semantics of an
empty collection. Any has the semantics of ‘unknown collection’.

A.1 Arithmetic Operators

name type behaviour

+ Integer → Integer → Integer add
Float → Float → Float
F loat → Integer → Float
Integer → Float → Float

- Integer → Integer → Integer subtract
Float → Float → Float
F loat → Integer → Float
Integer → Float → Float

* Integer → Integer → Integer multiply
Float → Float → Float
F loat → Integer → Float
Integer → Float → Float

/ Integer → Integer → Integer divide
Float → Float → Float
F loat → Integer → Float
Integer → Float → Float

div Integer → Integer → Integer integer division

mod Integer → Integer → Integer modulo

Each of the arithmetic functions returns Null if either of its arguments is
Null; also / and div return Null if their second argument is 0.
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A.2 Comparison operators

name type behaviour

= a → a → Boolean returns whether its two arguments
are identical

<> a → a → Boolean returns whether its two arguments
are not identical

> a → a → Boolean returns whether its first argument is
alphanumerically greater than its
second argument

< a → a → Boolean returns whether its first argument is
alphanumerically less than its second
argument

>= a → a → Boolean returns whether its first argument is
alphanumerically greater than or equal
to its second argument

<= a → a → Boolean returns whether its first argument is
alphanumerically less than or equal to
its second argument

like String → String → Boolean returns whether its first argument matches
the regular expression that is given as the
second argument (implementation is
equivalent to the ANSI SQL operator)

Note that these operators implement syntactic equality and alphanumeric order-
ing for constructors such as Void, Any, Null. These operators always return
either True or False except in the case when one or both of their arguments is
one of the Const-i constructors discussed in [4].

A.3 Boolean Operators

name type behaviour

and Boolean → Boolean (e1 and e2) returns the conjunction
→ Boolean of e1 and e2; here is its definition:

True False Null

True True False Null

False False False False

Null Null False Null

or Boolean → Boolean (e1 or e2) returns the disjunction
→ Boolean of e1 and e2; here is its definition:

True False Null

True True True True

False True False Null

Null True Null Null

not Boolean → Boolean (not e) returns the negation of e;
returns Null if e is Null

if Boolean → a → a → a (if e e1 e2) returns e1 if e is True,
e2 if e is False and Null if e is Null
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A.4 Collection Functions

name type(s) behaviour

++ (Set a) → (Set a) → (Set a) returns the set-union of two sets

(Bag a) → (Bag a) → (Bag a) returns the bag-union of two bags
i.e. xs ++ ys returns a bag zs
such that for any value t:
occurs(t,zs) = occurs(t,xs)+occurs(t,ys)

(List a) → (List a) → (List a) appends two lists

The table below defines its behaviour:

++ e2 Void Null Any

e1 e1++e2 e1 Null Any

Void e2 [] Null Any

Null Null Null Null Null

Any Any Any Null Any

−− (Set a) → (Set a) → (Set a) returns the set-difference of two sets

(Bag a) → (Bag a) → (Bag a) returns the bag-difference of
two bags i.e. xs – ys returns
a bag zs such that for any value t:
occurs(t,zs) = max(0,occurs(t,xs)-occurs(t,ys))

(List a) → (List a) → (List a) returns the difference of its two
list arguments, treating them as
bags and producing the output
in sorted order

The table below defines its behaviour:

-- e2 Void Null Any

e1 e1 -- e2 e1 Null Any

Void [] [] Null Any

Null Null Null Null Null

Any Any Any Null Any

intersect (Set a) → (Set a) → (Set a) returns the intersection of two sets

(Bag a) → (Bag a) → (Bag a) returns the intersection of two bags
i.e. intersect xs ys returns a bag zs
such that for any value t:
occurs(t,zs) = min(occurs(t,xs),occurs(t,ys))

(List a) → (List a) → (List a) returns the intersection of two lists,
treating them as bags, and returning
a sorted list as output

The table below defines its behaviour:

intersect e2 Void Null Any

e1 e1 intersect e2 [] Null Any

Void [] [] Null Any

Null Null Null Null Null

Any Any Any Null Any
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name type(s) behaviour

union (Set a) → (Set a) → (Set a) returns the set-union of two sets

(Bag a) → (Bag a) → (Bag a) union xs ys returns a bag zs
such that for any value t:
occurs(t,zs) = max(occurs(t,xs),occurs(t,ys))

(List a) → (List a) → (List a) returns the ‘union’ of its two list
arguments, treating them as bags and
producing the output in sorted order

The table below defines its behaviour:

union e2 Void Null Any

e1 e1 union e2 e1 Null Any

Void e2 [] Null Any

Null Null Null Null Null

Any Any Any Null Any

flatmap (a → List b) → (List a) → (List b) applies a collection-valued function
(a → Bag b) → (Bag a) → (Bag b) to each element of a collection and
(a → Set b) → (Set a) → (Set b) combines the results using ++;

returns Void/Any/Null if its argument
is Void/Any/Null respectively

foldl (a → b) → (b → b → c) foldl f op e xs applies f to each
→ (List c) → (List a) → (List c) element of the collection xs and

(a → b) → (b → b → c) combines the result using op; e is
→ (Bag c) → (Bag a) → (Bag c) returned if xs is empty;

(a → b) → (b → b → c) returns Void/Any/Null if its fourth argument
→ (Set c) → (Set a) → (Set c) is Void/Any/Null respectively

foldr same as foldl except that foldl processes the collection starting from its first
element (left-recursion) and foldr starting from its last element (right-recursion)

map (a → b) → (List a) → (List b) applies a function to each element of a collection;
(a → b) → (Bag a) → (Bag b) returns Void/Any/Null if its argument is
(a → b) → (Set a) → (Set b) Void/Any/Null respectively

member (List a) → a → Boolean returns whether its second argument is a member
(Bag a) → a → Boolean of its first argument; returns Null if its first
(Set a) → a → Boolean argument is Any/Null; returns False if its

first argument is Void

single a → (List a) creates a singleton list

singleBag a → (Bag a) creates a singleton bag

singleSet a → (Set a) creates a singleton set

sub (Set a) → (Set a) → Boolean returns whether its first argument is
a subset of its second argument

(Bag a) → (Bag a) → Boolean returns whether its first argument is
a sub-bag of its second argument

(List a) → (List a) → Boolean treats its two arguments as bags and
returns whether its first argument is
a sub-bag of its second argument

returns Null if either argument
is Void/Any/Null

choose a → a → a non-deterministically returns
one of its two arguments
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A.5 Aggregation Functions

name type behaviour

avg (List Integer) → Float returns the average of a collection
(List F loat) → Float of numbers; returns Null if its
(Bag Integer) → Float argument is an empty collection or Void/Any/Null

(Bag F loat) → Float
(Set Integer) → Float
(Set F loat) → Float

count (List a) → Integer returns the cardinality of any collection;
(Bag a) → Integer returns Null if its argument is Any/Null;
(Set a) → Integer returns 0 if its argument is Void or empty

max (List a) → a, (Bag a) → a, returns the maximum element of any first-order
(Set a) → a collection, according to >; returns Void/Any/Null

if its argument is Void/Any/Null respectively

min (List a) → a, (Bag a) → a, returns the minimum element of any first-order
(Set a) → a collection, according to <; returns Void/Any/Null

if its argument is Void/Any/Null respectively

sum (ListInteger) → Integer returns the sum of any numeric collection;
(ListF loat) → Float returns Null if its argument is Any/Null;
(BagInteger) → Integer returns 0 if its argument is Void or empty
(BagF loat) → Float
(SetInteger) → Integer
(SetF loat) → Float

group (List (Product2 a b)) → groups a collection of pairs according to
(List (Product2 a (List b))) their first component and returns a collection

(Bag (Product2 a b)) → of pairs whose second component is a collection;
(Bag (Product2 a (Bag b))) returns Void/Any/Null if its argument

(Set (Product2 a b)) → is Void/Any/Null respectively
(Set (Product2 a (Set b)))

gc ((List b) → c) → (List (Product2 a b)) groups a collection of pairs (its second
→ (List (Product2 a c)) argument) according to their first component,

((Bag b) → c) → (Bag (Product2 a b)) and applies an aggregation function (its
→ (Bag (Product2 a c)) first argument) to the second component

((Set b) → c) → (Set (Product2 a b)) of each group; returns Void/Any/Null

→ (Set (Product2 a c)) if its argument is Void/Any/Null respectively

sort (List a) → (List a) sorts a list of values; returns Void/Any/Null

if its argument is Void/Any/Null respectively

distinct (List a) → (List a), removes duplicates from a list or
(Bag a) → (Bag a) bag, outputting a sorted collection;

returns Void/Any/Null if its argument
is Void/Any/Null respectively
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A.6 Type Conversion Functions

There are two types of conversion functions, those used for converting between
primitive data types, and those used for converting between collections.

name type(s) behaviour

toString Integer → String converts an input Integer/Float/DateTime
Float → String into a String
DateT ime → String

toInteger String → Integer converts an input String/Float into an Integer
Float → Integer (float conversion uses only the integer part)

toFloat Integer → Float converts an input String/Integer into a Float
String → Float

toDateTime String → DateT ime converts an input String into a DateTime
(does NOT check whether the format is correct)

Each of the conversion functions for primitive data types returns Null if its
argument is Null.

name type behaviour

list2bag (List a) → (Bag a) converts a list to a bag

bag2list (Bag a) → (List a) converts a bag to a list, producing the output
in sorted order according to >

list2set (List a) → (Set a) converts a list to a set, removing duplicates

set2list (Set a) → (List a) converts a set to a list, producing the output
in sorted order according to >

bag2set (Bag a) → (Set a) converts a bag to a set, removing duplicates

set2bag (Set a) → (Bag a) converts a set to a bag

Each of the conversion functions for collections returns Null/Void/Any if its
argument is Null/Void/Any.

A.7 Projection over Tuples

name type(s) behaviour

get1 (Product1 a)− > a returns the first element of a singleton
get1 (Product2 a b)− > a returns the first element of a pair
get1 (Product3 a b c)− > a returns the first element of a triple
. . . . . . . . .

get2 (Product2 a b)− > b returns the second element of a pair
get2 (Product3 a b c)− > b returns the second element of a triple
get2 (Product4 a b c d)− > b returns the second element of a 4-tuple
. . . . . . . . .

These functions return Null if their argument is Null. geti has been imple-
mented up to i = 5, but is easily extendable to the tuple size limit, which is
currently 40.

38



A.8 String Functions

name type(s) behaviour

concat (List String) → String returns the concatenation of the strings of
the input list

split String → String splits the first string argument around matches of
→ (List String) the regular expression defined by the second

string argument and returns a list containing the
e.g. (split ’boo:and:foo’ ’:’) returns [’boo’,’and’,’foo’]

indexOf String → Integer returns the index within the first string argument
of the first occurrence of the second string
argument; e.g. (indexOf ’AutoMed’ ’M’) returns 5

lastIndexOf String → Integer returns the index within the first string argument
of the rightmost occurrence of the second string
argument; e.g. (indexOf ’Birkbeck’ ’k’) returns 8

length String → Integer returns the length of the input string argument

lowerCase String → String converts all of the characters of the input string
argument to lower case

upperCase String → String converts all of the characters of the input string
argument to upper case

substring String → Integer → returns a substring of the input string, based
Integer → String on the input indexes;

e.g. (substring ’AutoMed’ 5 7) returns ’Me’

Each of the string functions returns Null if any of its arguments is Null.
Also, concat returns Null if its first argument is Void.

A.9 Date Functions

name type(s) behaviour

getMonth String → Integer Provides a mapping between number and
Integer → String word representation for months. Possible

integer inputs are 1..12 and 01..12.
Possible string inputs are ’January’..’December’
and ’Jan’..’Dec’ (case-insensitive, include
single quotes). String output is
January..December. Integer output is 01..12.

now → DateT ime returns the current date and time as an IQL dateTime value

Each of the date functions returns Null if any of its arguments is Null, or
if given an invalid input, e.g. 15 or ’Janary’.

A.10 Other Functions

name type(s) behaviour

id a → a the identity function - returns its argument
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B IQL Syntax

B.1 IQL Lexer

package uk.ac.bbk.dcs.automed.qproc;
import java_cup.runtime.*;
%%
%class QLexer
%cup
%eofval{
return (new Symbol(QSym.EOF,""));
%eofval}

BANNEDTOKEN = "BCons"|"SCons"
BLSB = "B["
SLSB = "S["
LLSB = "L["
UNDERSCORE = "_"
INTTOKEN = [-]?[0-9]*
FLOATTOKEN = [-]?([0-9]+)(".")([0-9]+)
STRTOKEN = \’([^\’]|"’’")*\’
INFIXOP = "<>"|"<="|">="|"++"|"--"|"+"|"-"|"*"|"/"|"="|"<"|">"|

"div"|"mod"
SPECIAL = "Comp"
DATETIMETOKEN = ("dt ’")([1-9])([0-9])([0-9])([0-9])("-")

([0-1])([0-9])("-")([0-3])([0-9])(" ")
([0-2])([0-9])(":")([0-5])([0-9])(":")
([0-5])([0-9])("’")

VARTOKEN = [a-z][A-Za-z0-9_$.]*
CONSTOKEN = [A-Z][A-Za-z0-9_$.]*
SYSVARTOKEN = ("$")([A-Za-z0-9_$.]*)
NN_WHITESPACE = [\ \t\b\012]+

"let" { return (new Symbol(QSym.Let)); }
"in" { return (new Symbol(QSym.In)); }
"equal" { return (new Symbol(QSym.Equal)); }
";" { return (new Symbol(QSym.SemiColon)); }
"<-" { return (new Symbol(QSym.LArrow)); }
"->" { return (new Symbol(QSym.RArrow)); }
"," { return (new Symbol(QSym.Comma)); }
"|" { return (new Symbol(QSym.Bar)); }
"<<" { return (new Symbol(QSym.LDAB)); }
">>" { return (new Symbol(QSym.RDAB)); }
"[" { return (new Symbol(QSym.LSB)); }
"]" { return (new Symbol(QSym.RSB)); }
"(" { return (new Symbol(QSym.LRB)); }
")" { return (new Symbol(QSym.RRB)); }
"lambda" { return (new Symbol(QSym.Lambda)); }
"{" { return (new Symbol(QSym.LCB)); }
"}" { return (new Symbol(QSym.RCB)); }
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":" { return (new Symbol(QSym.Colon)); }

{BANNEDTOKEN} { throw new RuntimeException("Lexical error:
token BCons/SCons not allowed."); }

{BLSB} { return (new Symbol(QSym.BLSB, yytext() ) ); }
{SLSB} { return (new Symbol(QSym.SLSB, yytext() ) ); }
{LLSB} { return (new Symbol(QSym.LLSB, yytext() ) ); }
{UNDERSCORE} {return (new Symbol(QSym.UnderScore,yytext()));}
{SPECIAL} { return (new Symbol(QSym.Special, yytext() ) ); }
{INFIXOP} { return (new Symbol(QSym.OpToken, yytext() ) ); }
{DATETIMETOKEN}

{return (new Symbol(QSym.DateTimeToken,yytext()));}
{VARTOKEN} { return (new Symbol(QSym.VarToken , yytext())); }
{CONSTOKEN} { return (new Symbol(QSym.ConsToken,yytext())); }
{STRTOKEN} { return (new Symbol(QSym.StrToken , yytext())); }
{INTTOKEN} { return (new Symbol(QSym.IntToken , yytext())); }
{FLOATTOKEN} {return (new Symbol(QSym.FloatToken , yytext()));}
{SYSVARTOKEN} {return (new Symbol(QSym.SysVarToken, yytext()));}
{NN_WHITESPACE} { }
. { throw new

RuntimeException("Lexical error in column " + yy_buffer_index +
": character " + yytext() + " is not allowed."); }

\n { }
\r { }

B.2 IQL Parser

package uk.ac.bbk.dcs.automed.qproc;
import java.util.*;

terminal VarToken, Special, ConsToken, StrToken, SysVarToken,
OpToken, DateTimeToken, IntToken, FloatToken, Let, Equal, In,
SemiColon, LArrow, RArrow, Comma, Bar, LLSB,BLSB,SLSB,LSB, RSB,
LRB, RRB, LCB, RCB, Lambda, LDAB, RDAB, Colon, UnderScore;

non terminal query, expr, seq, quals, qual, prefix_op, scheme,
scheme_seq, scheme_element, schemePrefix, schemeSuffix,
schemaName, modelName, consName, VarOrCons;

precedence left IntToken, Let, Equal, In, LArrow, RArrow,
SemiColon, Comma, Bar, LLSB,BLSB,SLSB,LSB, RSB, LRB, RRB,
LCB, RCB, Lambda, VarToken, StrToken;

precedence left OpToken;

query ::= expr:e1
{: RESULT = e1; :}

| Let VarToken:e1 Equal query:e2 In query:e3
{: RESULT = new Cell( new Cell( new Cell(

new Cell(Cell.TAG_SPECIAL, "Let"),
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new Cell(Cell.TAG_VARIABLE, (String)(e1)) ),
e2), e3);

:}
| query:e1 OpToken:e2 query:e3
{:

String op = "("+(String)(e2)+")";
RESULT = new Cell( new Cell(

new Cell(Cell.TAG_FUNCTION,op), e1), e3);
:}

| query:e1 expr:e2
{: RESULT = new Cell(e1, e2);
:}

| query:e1 RArrow query:e2
{:

RESULT = new Cell( new Cell(
new Cell(Cell.TAG_CONSTRUCTOR,"->"), e1), e2);

:}
;

expr ::= Special:e1
{: RESULT = new Cell(Cell.TAG_SPECIAL,(String)e1); :}

| DateTimeToken:e1
{: RESULT = new Cell(Cell.TAG_DATETIME,(String)e1); :}

| IntToken:e1
{: RESULT = new Cell(Cell.TAG_INTEGER,

new Integer(((String)e1)).intValue() ); :}
| FloatToken:e1

{: RESULT = new Cell(Cell.TAG_FLOAT,
new Float(((String)e1+’f’)).floatValue() ); :}

| StrToken:e1
{: RESULT = new Cell(Cell.TAG_STRING, (String)e1); :}

| ConsToken:e1
{: RESULT=new Cell(Cell.TAG_CONSTRUCTOR,(String)e1);:}

| VarToken:e1
{: RESULT = new Cell((String)e1); :}

| SysVarToken:e1
{: RESULT=new Cell(Cell.TAG_SYSVARIABLE,(String)e1);:}

| scheme:e1
{: RESULT = new Cell(Cell.TAG_SCHEME,

new SchemeInfo((String)e1)); :}
| schemePrefix:e1 scheme:e2 schemeSuffix:e3

{:
String prefix = (String)e1;
String schemaName =

prefix.substring(prefix.indexOf(":")+1,
prefix.indexOf(":",prefix.indexOf(":")+1));

String modelName =
prefix.substring(prefix.indexOf(":",1)+1,
prefix.indexOf(":",prefix.indexOf(":",1)+1));

String consName =
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prefix.substring(prefix.indexOf(":",
prefix.indexOf(":",prefix.indexOf(":",1)+1))+1,

prefix.lastIndexOf(":"));
String type = (String)e3; //syntax is (’type’)
SchemeInfo si = new SchemeInfo((String)e2);
if(!schemaName.equals(""))

si.setSchema(schemaName);
if(!modelName.equals(""))

si.setModelName(modelName);
if(!consName.equals(""))

si.setConstructName(consName);
if(!type.equals(""))

si.setType(type);
RESULT = new Cell(Cell.TAG_SCHEME, si);

:}
| LSB query:e1 Bar quals:e2 RSB

{:
Cell n = (Cell)(e1);
ArrayList list = (ArrayList)(e2);
for(int i=list.size()-1; i>=0; i--) {

n = new Cell( new Cell(
new Cell(Cell.TAG_SPECIAL,"LComp"),
list.get(i) ), n );

}
RESULT = n;
// RESULT = new Cell( new Cell( new Cell("LComp"),

// e1), (ASG.toASGList((ArrayList)(e2))).root());
:}

| LLSB query:e1 Bar quals:e2 RSB
{:

Cell n = (Cell)(e1);
ArrayList list = (ArrayList)(e2);
for(int i=list.size()-1; i>=0; i--) {

n = new Cell( new Cell(
new Cell(Cell.TAG_SPECIAL,"LComp"),
list.get(i) ), n );

}
RESULT = n;
// RESULT = new Cell( new Cell( new Cell("LComp"),

// e1),(ASG.toASGList((ArrayList)(e2))).root());
:}

| SLSB query:e1 Bar quals:e2 RSB
{:

Cell n = (Cell)(e1);
ArrayList list = (ArrayList)(e2);
for(int i=list.size()-1; i>=0; i--) {

n = new Cell( new Cell(
new Cell(Cell.TAG_SPECIAL,"SComp"),
list.get(i) ), n );

}
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RESULT = n;
// RESULT = new Cell( new Cell( new Cell("SComp"),

// e1), (ASG.toASGList((ArrayList)(e2))).root() );
:}

| BLSB query:e1 Bar quals:e2 RSB
{:

Cell n = (Cell)(e1);
ArrayList list = (ArrayList)(e2);
for(int i=list.size()-1; i>=0; i--)
{

n = new Cell( new Cell(
new Cell(Cell.TAG_SPECIAL,"BComp"),
list.get(i) ), n );

}
RESULT = n;
// RESULT = new Cell( new Cell( new Cell("BComp"),

// e1), (ASG.toASGList((ArrayList)(e2))).root() );
:}

| LSB RSB {: RESULT = ASG.emptyList().root(); :}
| LLSB RSB {: RESULT = ASG.emptyList().root(); :}
| SLSB RSB {: RESULT = ASG.emptySet().root(); :}
| BLSB RSB {: RESULT = ASG.emptyBag().root(); :}
| LSB seq:e1 RSB

{:
RESULT = (ASG.toASGList((ArrayList)(e1))).root();

:}
| LCB seq:e1 RCB

{:
RESULT = (ASG.toASGTuple((ArrayList)(e1))).root();

:}
| LRB query:e1 RRB {: RESULT = e1; :}
| Lambda expr:e1 expr:e2

{: RESULT = new Cell(Cell.TAG_LAMBDA,e1,e2);
:}

| prefix_op:e1
{: RESULT = new Cell(Cell.TAG_FUNCTION,(String)e1); :}

;

seq ::= seq:e1 Comma query:e2
{:

((ArrayList)(e1)).add(e2);
RESULT = e1;

:}
| query:e1
{:

ArrayList alist = new ArrayList();
alist.add(e1);
RESULT = alist;

:}
;
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quals ::= qual:e1 SemiColon quals:e2
{:

((ArrayList)(e2)).add(0,e1);
RESULT = e2;

:}
| qual:e1
{:

ArrayList alist = new ArrayList();
alist.add(e1);
RESULT = alist;

:}
;

qual ::= query:e1
{: RESULT = e1; :}

| query:e1 LArrow query:e2
{: RESULT = new Cell( new Cell(

new Cell(Cell.TAG_CONSTRUCTOR, "Gen"),
e1), e2); :}

;

scheme ::= LDAB scheme_seq:e1 RDAB
{: RESULT = "<<"+e1+">>"; :}
;

scheme_seq ::= scheme_element:e1
{: RESULT = e1; :}

| scheme_seq:e1 Comma scheme_element:e2
{:

RESULT = e1+","+e2;
:}
;

scheme_element ::= UnderScore:e1 {: RESULT = e1; :}
| VarToken:e1 {: RESULT = e1; :}
| StrToken:e1 {: RESULT = e1; :}
| IntToken:e1 {: RESULT = e1; :}
| ConsToken:e1 {: RESULT = e1; :}
| SysVarToken:e1 {: RESULT = e1; :}
| scheme:e1 {: RESULT = e1; :}
;

schemePrefix ::= Colon schemaName:e1 Colon modelName:e2
Colon consName:e3 Colon

{: RESULT = ":"+(String)e1+":"+(String)e2
+":"+(String)e3+":"; :}

| Colon schemaName:e1 Colon modelName:e2 Colon
Colon
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{: RESULT = ":"+(String)e1+":"+(String)e2
+":"+":"; :}

| Colon schemaName:e1 Colon Colon consName:e2
Colon

{: RESULT = ":"+(String)e1+":"+":"
+(String)e2+":"; :}

| Colon Colon modelName:e1 Colon consName:e2
Colon

{: RESULT = ":"+":"+(String)e1+":"
+(String)e2+":"; :}

| Colon schemaName:e1 Colon Colon Colon
{:
RESULT = ":"+(String)e1+":"+":"+":";

:}
| Colon Colon modelName:e1 Colon Colon

{:
RESULT = ":"+":"+(String)e1+":"+":";

:}
| Colon Colon Colon consName:e1 Colon

{:
RESULT = ":"+":"+":"+(String)e1+":";

:}
| Colon Colon Colon Colon

{:
RESULT = "::::";

:}
;

schemeSuffix ::= Colon {: RESULT = ""; :}
| Colon StrToken:e1 {: RESULT = e1; :}
;

schemaName ::= VarOrCons:e1 {: RESULT = e1; :} ;

modelName ::= VarOrCons:e1 {: RESULT = e1; :} ;

consName ::= VarOrCons:e1 {: RESULT = e1; :} ;

VarOrCons ::= VarToken:e1 {: RESULT = e1; :}
| ConsToken:e1 {: RESULT = e1; :}
;

prefix_op ::= LRB OpToken:e1 RRB
{:

StringBuffer sb = new StringBuffer();
String s = "("+((String)(e1))+")";
RESULT =s;

:}
;
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C Wrapper JavaCC grammars

C.1 Schemes.jj

/* JavaCC grammar defining schemes. */

options { STATIC = false; }

PARSER_BEGIN(Schemes)

package uk.ac.bbk.dcs.automed.qproc.annotate.grammars.schemes;

import uk.ac.bbk.dcs.automed.qproc.annotate.grammars.QueryParser;

public class Schemes extends QueryParser { }

PARSER_END(Schemes)

SKIP : { " " | "\t" | "\n" | "\r" }

TOKEN : {

< VARTOKEN: ["a"-"z"] ( ["a"-"z","A"-"Z","0"-"9","_","$","."] )* > |

< CONSTOKEN: ["A"-"Z"] ( ["a"-"z","A"-"Z","0"-"9","_","$","."] )* > |

< STRTOKEN: ["’"] (~["’"])* ["’"] > |

< NUMTOKEN: (["0"-"9"])+ | (["0"-"9"])+ ["."] (["0"-"9"])+ > |

< COMMA: "," >

}

void parse() : { } {

simpleScheme()

}

void simpleScheme() : { } {

pureScheme() | (":" [schemaName()] ":" [modelName()] ":"

[consName()] ":" pureScheme() ":" [type()])

}

void pureScheme() : { } {

"<<" schemeSeq() ">>"

}

void schemaName() : { } {

varOrCons()

}

void modelName() : { } {

varOrCons()

}

void consName() : { } {

varOrCons()

}

void type() : { } {
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<STRTOKEN>

}

void varOrCons() : { } {

<VARTOKEN> | <CONSTOKEN>

}

void schemeSeq() : { } {

schemeElement() [ <COMMA> schemeSeq() ]

}

void schemeElement() : { } {

<VARTOKEN> [ ":" <VARTOKEN> ] | <STRTOKEN> | <NUMTOKEN>

}

C.2 SimpleCompAppend.jj

/* JavaCC grammar defining simple comprehensions,

* also supporting simple/nested append operator. */

options { STATIC = false; }

PARSER_BEGIN(SimpleCompAppend)

package uk.ac.bbk.dcs.automed.qproc.annotate.grammars.simpleCompAppend;

import uk.ac.bbk.dcs.automed.qproc.annotate.grammars.QueryParser;

public class SimpleCompAppend extends QueryParser { }

PARSER_END(SimpleCompAppend)

SKIP : { " " | "\t" | "\n" | "\r" }

TOKEN : {

< COMP: "[" > |

< LCOMP: "L[" > |

< SCOMP: "S[" > |

< BCOMP: "B[" > |

< VARTOKEN: ["a"-"z"] ( ["a"-"z","A"-"Z","0"-"9","_","$","."] )* > |

< CONSTOKEN: ["A"-"Z"] (["a"-"z","A"-"Z","0"-"9","_","$",".","%"])* > |

< WRAPPERTOKEN: "$wrapper" > |

< SYSVARTOKEN: "$" ( ["a"-"z","A"-"Z","0"-"9","_","$"] )* > |

< STRTOKEN: ["’"] (~["’"])* ["’"] > |

< NUMTOKEN: (["0"-"9"])+ | (["0"-"9"])+ ["."] (["0"-"9"])+ > |

< COMPARISONTOKEN: "(=)"|"(<>)"|"(>)"|"(<)"|"(>=)"|"(<=)"|

"(div)"|"(mod)" > |

< BOOLTOKEN: "True" | "False"> |

< COMMA: "," > |

< APPEND: "(++)">

}

void parse() : { } {

simpleSchemeOrSimpleComp() | append()
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}

void append() : { } {

"(" <APPEND> ( simpleSchemeOrSimpleComp() | append())

( simpleSchemeOrSimpleComp() | append()) ")"

}

void simpleSchemeOrSimpleComp() : { } {

simpleScheme() | simpleComprehension()

}

void simpleComprehension() : { } {

(<COMP>|<LCOMP>|<BCOMP>|<SCOMP>) simpleTuple() "|" simpleQuals() "]"

}

void constant() : { } {

<STRTOKEN> | <NUMTOKEN> | <BOOLTOKEN>

}

void simpleTuple() : { } {

["{"] seqOfVars() ["}"]

}

void variable() : {} {

<VARTOKEN> | <SYSVARTOKEN>

}

void seqOfVars() : { } {

variable() ( <COMMA> variable() )*

}

void simpleQuals() : { } {

( simpleFilter()";" )? simpleGenerator()

( ";" ( simpleGenerator() | simpleFilter() ) )*

}

void simpleGenerator() : { } {

simpleTuple() "<-" ( simpleScheme() | simpleList() )

}

void simpleFilter() : { } {

"(" <COMPARISONTOKEN> ( constant() | variable())

( constant() | variable()) ")"

}

void simpleList() : { } {

"[" simpleListTokens() "]"

}

void simpleListTokens() : { } {

( ( constant() ( <COMMA> constant() )* ) |

( listTuple() ( <COMMA> listTuple() )* ) ) ?

}
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void listTuple() : { } {

["{"] constant() ( <COMMA> constant() )* ["}"]

}

void simpleScheme() : { } {

pureScheme() | (":" [schemaName()] ":" [modelName()] ":"

[consName()] ":" pureScheme() ":" [type()])

}

void pureScheme() : { } {

"<<" schemeSeq() ">>"

}

void schemaName() : { } {

varOrCons()

}

void modelName() : { } {

varOrCons()

}

void consName() : { } {

varOrCons()

}

void type() : { } {

<STRTOKEN>

}

void varOrCons() : { } {

<VARTOKEN> | <CONSTOKEN>

}

void schemeSeq() : { } {

schemeElement() [ <COMMA> schemeSeq() ]

}

void schemeElement() : { } {

( <VARTOKEN> | <CONSTOKEN> )

[ ":" ( <VARTOKEN> | <CONSTOKEN> ) ] | <STRTOKEN> | <NUMTOKEN>

}

C.3 IQLforSQL.jj

/* JavaCC grammar for BBKSQLWrapper */

options {

STATIC = false;

DEBUG_PARSER = false;

DEBUG_TOKEN_MANAGER = false;

}

PARSER_BEGIN(IQLForSQLQueryParser)
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package uk.ac.bbk.dcs.automed.qproc.annotate.grammars.sql;

import uk.ac.bbk.dcs.automed.qproc.annotate.grammars.QueryParser;

public class IQLForSQLQueryParser extends QueryParser {

}

PARSER_END(IQLForSQLQueryParser)

SKIP : { " " | "\t" | "\n" | "\r" }

TOKEN : {

< LSB: "[" > |

< LCOMP: "L[" > |

< SCOMP: "S[" > |

< BCOMP: "B[" > |

< DISTINCT: "distinct" > |

< AGGREGATETOKEN: "count" | "sum" | "avg" | "max" | "min" > |

< COLLECTION: "(++)" | "union" >|

< CONCATTOKEN: "concat" > |

< BOOLTOKEN: "True" | "False">|

< TOSTRINGTOKEN: "toString" > |

< COMPARISONTOKEN: "(=)" | "(<>)" | "(>)" | "(<)" | "(>=)" | "(<=)" > |

< MEMBERTOKEN: "member" > |

< LIKETOKEN: "like" > |

< WRAPPERTOKEN: "$wrapper" > |

< STRTOKEN: ["’"] (~["’"])* ["’"] >|

< NUMTOKEN: (["0"-"9"])+ | (["0"-"9"])+ ["."] (["0"-"9"])+ > |

< LRB: "(">|

< RRB: ")">|

< COMMA: "," > |

< VARTOKEN: ["a"-"z"] ( ["a"-"z","A"-"Z","0"-"9","_","$","."] )* > |

< NULLTOKEN: "Null" > |

< CONSTOKEN: ["A"-"Z"] (["a"-"z","A"-"Z","0"-"9","_","$",".","%"])* > |

< SYSVARTOKEN: "$" ( ["a"-"z","A"-"Z","0"-"9","_","$"] )* >

}

void parse() : { } {

query()

|

( <LRB> query() <RRB> )

}

void query() : { } {

simpleSchemeOrComp() | collectionOrAggregate()

}

void simpleSchemeOrComp() : { } {

simpleScheme() | comprehension()

}

void collectionOrAggregate() : { } {

(collection() | aggregate())

}
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void aggregate() : { } {

<AGGREGATETOKEN>

( LOOKAHEAD(2)

( <LRB> comprehension() <RRB> )

|

comprehension()

|

( <LRB> collection() <RRB> )

|

collection()

)

}

void collection() : { } {

<COLLECTION> ( collection() |

( simpleSchemeOrComp() simpleSchemeOrComp() ) )

}

void comprehension() : { } {

( (<LSB> | <LCOMP> | <BCOMP> | <SCOMP>)

( nestedTuple() | varOrSysVar() | concat() ) "|" quals() "]" )

|

( <DISTINCT> (<LSB> | <LCOMP> | <BCOMP> | <SCOMP>)

( nestedTuple() | varOrSysVar() | concat() ) "|" quals() "]" )

}

void subComp() : { } {

comprehension()

|

( <LRB> comprehension() <RRB> )

}

////////////////////

// Filters syntax //

////////////////////

void filter() : { } {

<LRB> ( comparisonFilter() | likeFilter() | concatFilter() ) <RRB>

}

void comparisonFilter() : { } {

<COMPARISONTOKEN>

(

(

(constant() | varOrSysVar() | filter())

(constant() | varOrSysVar() | filter() | <NULLTOKEN>)

) |

(

(simpleTuple()) (simpleTuple() | <NULLTOKEN>)

)

)

}
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void memberFilter() : { } {

<MEMBERTOKEN> ( LOOKAHEAD(40) simpleSchemeOrComp() | nestedList() )

( varOrSysVarOrCons() | simpleTuple())

}

void likeFilter() : { } {

<LIKETOKEN> varOrSysVar() <STRTOKEN>

}

void concatFilter() : { } {

( <CONCATTOKEN> <LSB> ( varOrSysVarOrCons() | toStringMethod() )

( <COMMA> ( varOrSysVarOrCons() | toStringMethod() ) )* "]" )

}

///////////////////////

// Qualifiers syntax //

///////////////////////

void quals() : { } {

( filter()";" )? generator() ( ";" ( generator() | filter() ) )*

}

void generator() : { } {

( varOrSysVar() | nestedTuple() ) "<-"

( simpleScheme() | ( LOOKAHEAD(60) subComp() | nestedList() ) )

}

///////////////////

// Tuples syntax //

///////////////////

void nestedTuple() : { } {

"{" nestedTupleSeq() "}"

}

void nestedTupleSeq() : { } {

seqOfVarsAndTuples()

}

void seqOfVarsAndTuples() : { } {

patternTupleItem() ( <COMMA> patternTupleItem() )*

}

void patternTupleItem() : { } {

constant() | varOrSysVar() | nestedTuple() | concat()

}

void simpleTuple() : { } {

"{" simpleTupleSeq() "}"

}

void simpleTupleSeq() : { } {

(varOrSysVar() | constant())

( <COMMA> (varOrSysVar() | constant()) )*
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}

void concat() : { } {

( <LRB> )?

<CONCATTOKEN> <LSB> ( varOrSysVarOrCons() | toStringMethod() )

( <COMMA> ( varOrSysVarOrCons() | toStringMethod() ) )* "]"

( <RRB> )?

}

void toStringMethod() : { } {

( <LRB> )? <TOSTRINGTOKEN> varOrSysVar() ( <RRB> )?

}

////////////////////////

// Nested List syntax //

////////////////////////

void nestedList() : { } {

"[" nestedListTokens() "]"

}

void nestedListTokens() : { } {

( ( constant() ( <COMMA> constant() )* ) | ( nestedListTuple()

( <COMMA> nestedListTuple() )* ) ) ?

}

void nestedListTuple() : { } {

"{" nestedListTupleItem() ( <COMMA> nestedListTupleItem() )* "}"

}

void nestedListTupleItem() : { } {

constant() | nestedTuple()

}

//////////////////////////

// Simple scheme syntax //

//////////////////////////

void simpleScheme() : { } {

pureScheme() | (":" [peerName()] ":" [schemaName()] ":" [modelName()]

":" [consName()] ":" pureScheme() ":" [type()])

}

void pureScheme() : { } {

"<<" schemeSeq() ">>"

}

void peerName() : { } {

varOrCons()

}

void schemaName() : { } {

varOrCons()

}
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void modelName() : { } {

varOrCons()

}

void consName() : { } {

varOrCons()

}

void type() : { } {

<STRTOKEN>

}

void varOrCons() : { } {

<VARTOKEN> | <CONSTOKEN>

}

void schemeSeq() : { } {

schemeElement() [ <COMMA> schemeSeq() ]

}

void schemeElement() : { } {

pureScheme()|"_"|<VARTOKEN>|<CONSTOKEN>|<STRTOKEN>|<NUMTOKEN>

}

///////////

// Other //

///////////

void varOrSysVarOrCons() : {} {

<VARTOKEN> | <SYSVARTOKEN> | constant()

}

void varOrSysVar() : {} {

<VARTOKEN> | <SYSVARTOKEN>

}

void constant() : { } {

<STRTOKEN> | <NUMTOKEN> | <BOOLTOKEN>

}
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