Representing RDF and RDF Schema in the
HDM

Dean Williams, Alexandra Poulovassilis
{dean,ap}@dcs.bbk.ac.uk

School of Computer Science and Information Systems, Birkbeck College, University
of London

Abstract. The AutoMed project uses a hypergraph common data model
(the HDM) to integrate heterogeneous data sources. Previous work has
shown how data models including the relational, ER and XML mod-
els, can be mapped on to HDM to facilitate schema integration. RDF
is a general-purpose language for representing information on the World
Wide Web. It provides a data model for describing properties of re-
sources in the web and their interrelationships. RDF Schema provides
a basic type system for RDF models which is implemented in terms of
classes and properties. These technologies are increasingly used in the
semantic web effort in particular for defining ontologies. This technical
report shows how RDF and RDF Schema can be modeled in the HDM
thereby allowing data in these formats to be treated as an AutoMed
datasource.

1 RDF

The Resource Description Framework (RDF) [6] is a language for representing
information on the World Wide Web. RDF allows properties of Web resources
to be stated in the form of Subject, Predicate and Object triples.

A statement such as ”Dean Williams is the author of the webpage
http://www.xyz.com/index.html” can be represented by a triple where the sub-
ject is the webpage URL, the predicate is ‘author’ and the object is ‘Dean
Williams’.

Resources are identified using the Uniform Resource Identifier (URI) [8] web
standard. URI’s are a more general identifier than the Uniform Resource Locator
(URL) used in the Web. While URIs cover defined, centralised schemes (such
as the http part of a URL) they also allow for anyone to create their own URI
naming schemes.

In the example statement, the concept of ‘author’ could be used in different
ways by different systems. A web site maintenance system might use it in a
different way from a book publishing house system. Referring to the concept
using a URI with an explicit namespace would allow the concept to be identified
uniquely e.g. http://www.xyz.com/rdf/1.0/author .

Triples are often written using the N-Triples [2] notation where the subject,
predicate and object are written beneath each other in that order with a period
marking the end of the triple e.g.:

http://www.xyz.com/\~“dean/index.html
http://www.xyz.com/rdf/1.0/author
’Dean Williams’

Values in RDF can be URIs, literals or unlabelled nodes, known as ‘blank’
nodes. Blank nodes can be used to structure property values e.g. by linking each
line of an address. More generally, they represent concepts to which properties
apply. Arbitrary identifiers are assigned to these blank nodes and so they are
analogous to object IDs in Object Oriented systems.

There are also restrictions in the RDF data model [7] concerning the type of
value each part of the triple can have, namely that the:

— The subject can be a URI or a blank node.
— The predicate must be a URI.
— The object can be a URI, blank or literal.

Nodes and edges in a graph can be used to represent RDF statements. By
convention nodes are drawn as ovals and will be either labeled or blank, literals
are drawn as rectangles, and edges as single-headed arrows linking nodes or
literals.

Figure 1 shows the webpage author example above extended to allow for
various properties of the person identified as the author to be related to that
person. The graph in Figure 1 represents the following four triples, where _1

http://www.dcs.bbk.ac.uk/~dean/index.html

http://www.dcs.bbk.ac.uk/rdf/1.0/author

http://www.dcs.bbk.ac.uk/

rdf/1.0/name http://www.dcs.bbk.ac.uk/
rdf/1.0/employmentDate
http://www.dcs.bbk.ac.uk/

y rdf/1.0/employeelD

Dean Williams 22945 1/4/102

Fig. 1. Example RDF statement

denotes the one blank node.

http://www.xyz.com/\~“dean/index.html

http://www.xyz.

1.

1

http://www.xyz.

Dean Williams.

1

http://www.xyz.

22945 .

1

http://www.xyz.

1/4/02 .

2 Representing RDF in the HDM

The HDM data model [3-5] models data in terms of nodes, edges and constraints.
The RDF constructs URI, Literal and Blank are each represented by an HDM
node and are all nodal constructs. The RDF construct Triple is represented
by a combination of three HDM nodes, and edge, and three constraints; this
construct is thus nodal, linking and constraint (see [3] for an explanation of the
terms ‘nodal’, ‘linking’ and ‘constraint’). This specification of RDF in the HDM
is illustrated in Table 1. For any given RDF description, the HDM nodes (URI)),
((Literal)) and ((Blank)) have as their extents the set of URISs, literals and blank
nodes appearing in the description, respectively, while the HDM node {(Triple))

com/rdf/1.0/author

com/rdf/1.0/name

com/rdf/1.0/employeelD

com/rdf/1.0/employmentDate

has as its extent the set of triples.

RDF Construct

HDM Representation

construct:RDFNode
nodal
scheme: ((URI))

node: (URI))

construct:RDFNode
scheme: ((Literal))

node: ((Literal))

construct:RDFNode
scheme: ((Blank}))

node: ((Blank))

construct:RDFEdge
class: nodal, linking
and constraint
scheme: ((Triple))

nodes: ((subject)), {(predicate)), (object))
edge: {(Triple,subject,predicate,object))

three constraints:

((subject)) € ((URI) U ((Blank))

{(predicate)) C (URI)

{object)) C ((URIY) U (Blank)) U {Literal})

Table 1. Definition of RDF model constructs

3 RDF Containers and Reification

The use of blank nodes to group together related properties in RDF was discussed
above. RDF also provides for containers to refer to collections of resources. There
are three types of container in RDF:

Bag: Unordered list with duplicates allowed.

Sequence: Ordered list, duplicates allowed.

Alternative: List of resources that represent alternatives for the single value
of a property.

The ‘rdf:type‘ property is used to specify the container and its type. Extend-
ing the employee example to show the use of the different container types:

A bag could be used to represent any relevant work related qualifications e.g.
‘first aider’, ‘minibus driver’.

A sequence could be used to record of the job titles of posts an employee had
held - in this case the order in which they had been held is significant and
S0 a sequence is more suitable than a bag.

An alternative might be used if there could be more than one telephone in an
employee’s office and several numbers could be used to contact the employee.

Figure 2 shows these three containers appended to the original example. It
is important to note that apart from the type names assigned, the schemas of
these three container types are identical - the application program making use
of the data will need to be able to interpret their semantic differences.

It is also important in RDF to be able to make statements about statements
e.g. "Personnel says that Dean Williams’ employee number is 22945”. This is a
fact about something the personnel department has said, not about Dean’s em-
ployee number. In order to make a statement about this statement it is necessary
to first remodel the original statement - this process of remodeling this the state-
ment is known as reification. RDF has a method of modeling such statements
that makes use of a specific value of the property ’rdf:type’. The statement has
four properties:

type of the statement is ‘rdf:statement’

subject is the resource described by the modelled statement i.e. Dean in the
example.

predicate is the original property i.e. employee number.

— object is the object of the original property i.e. ‘22945’.

It is now possible to attach a property ‘informant’ to the reified statement
as can be seen in Figure 3.

The HDM specification for containers and statements is shown in Table 2.
The members of containers may be any kind of resource, and resources rep-
resented by an additional HDM node ((Resource)). There is one HDM edge
((bag,Blank,Resource)y whose extent is all the container/member associations for
bag containers, one HDM edge ((sequence,Blank,Resource)) whose extent is all

http://www.dcs.bbk.ac.uk/~dean/index.html

http://www.dcs.bbk.ac.uk/rdf/

http://ww.dcs.bbk.ac.uk/

http://www.dcs.bbk.ac.uk/
rdf/1.0/employmentDate rdf/L.0fjobTitle
Student
http://www.dcs.bbk.ac.uk/
Dean Williams rdf/1.0/name \J
Research
Assistant
http://www.dcs.bbk.ac.uk/
rdf/1.0/employeel D http://www.dcs.bbk.ac.uk/

rdf/1.0/qualification

- =

http://www.dcs.bbk.ac.uk/

rdf/1.0/tel ephoneNumber rdf:type
First Aider
MiniBus Driver
rdf:type
Y

df-Alternat
raAltemative X3456 X3457

Fig. 2. Extended employee details example showing collections.

http://www.dcs.bbk.ac.uk/
~dean/index.html

rdf:property

http://www.dcs.bbk.ac.uk/)
rdf/1.0/employeel D
rdf:type

http://www.dcs bbk.ac.uk/ 22945 -
L ofempleyesD raf-object Rittp://www.dcs bbk.ac, uk/
22945 http://www.dcs.bbk.ac.uk/

~dean/index.html

rdf/1.0/informant
b) Statement remodelled toreified form

rdf:subject
http://www.dcs.bbk.ac.uk/
rdf/1.0/Departments/Personnel
a) Original Statement and property attached to the statement

Fig. 3. Statement and its reified form with ’statement about a statement’ added.

the container/member associations for sequence containers, and one HDM edge
((alternative,Blank,Resource)) whose extent is all the container/member associa-
tions for alternative containers. For bag and sequence containers, an extra HDM
node {(Number)) is used to model members’ cardinality and ordering, respectively
(similarly to the way that order was represented for XML in [4]). In particular,
we use an additional HDM edge from ((bag,Blank,Resource)) to (Number)), and
an additional HDM edge from ((sequence,Blank,Resource)) to {(Number)). For all
instances of the edge {(bag,Blank,Resource)), there is an edge to an instance of
((Number)) indicating the cardinality of that member in that bag. Similarly, for
all istances of the edge ((sequence,Blank,Resource)), there are one or more edges
to an instance of {(Number)) indicating the position(s) of that member within
that sequence. We have not shown in Table 2 the cardinality constraints implied
by these semantics but they are as follows, expressed in IQL (the AutoMed query
language), for ((bag,Blank,Resource)):

fold (lambda (b,m).
makeCard ([((b’,m’),n)|((b’,m’),n)<-
<<_,<<bag,Blank,Resource>>,<<Number>>>>;
b’=b],(1,1),(0,N)))
(and) True <<bag,Blank,Resource>>

and for {(sequence,Blank,Resource)):

fold (lambda (s,m).
makeCard (([((s’,m’),n)|((s’,m’),n)<-
<<_,<<sequence,Blank,Resource>>,<<Number>>>>;
s’=s],(1,N),(0,1)))
(and) True <<sequence,Blank,Resource>>

RDF Construct HDM Representation

construct:RDFEdge nodes: -
class: nodal, linking edge: ((Statement,Blank,subject,predicate,object}))
and constraint constraints: -

scheme: ((Statement))
construct:RDFContainer |nodes: ((Resource)), (Number))

class:nodal, linking edge: ((t,Blank,Resource))
and constraint constraint: ((Resource)) = ((URI) U (Blank)) U ((Literal})
scheme: ((t)) if t = bag or t = sequence then

edge: (-, ((t.Blank,Resource)), {(Number))))
Table 2. Definition of RDF model constructs - containers and statements

www.dcs.bbk.ac.uk/ dean/eg/RDF java contains a Java program which cre-
ates a Model for RDF and a schema for storing RDF. This is slightly unusual
code for AutoMed as the schema will be the same for all RDF data sources,
unlike say the relational model where many different tables may be present in a
schema.

4 Primitive Transformations on RDF

After a modelling language M has been specified in terms of the HDM (via the
APT of AutoMed’s Models Definition Repository), a set of primitive transfor-
mations for M is then automatically available for transforming schemas of the
model. One ‘family’ of primitive transformations is available for each different
modelling construct.

In the RDF specifications of Tables 1 and 2 there are three different mod-
elling constructs: RDFNode, RDFEdge and RDFContainer, with, respectively, 3,
2, and 3 instances. The set of primitive schema transformations generated for
the RDFNode construct from the specification in Table 1 is

addRDFNode(scheme,query)

— deleteRDFNode(scheme,query)

— extendRDFNode(scheme,query)
contractRDFNode(scheme,query)

— renameRDFNode(scheme,new-name)

where the ‘scheme’ parameter is one of ((Blank)), ((URI)) or ((Literal)), the ‘query’
parameter is an IQL query, and 'new-name’ can be any name currently not in use
(e.g. renameRDFNode({(URI),MyURI) is valid but renameRDF({URI}),Literal) is
not).

The set of primitive schema transformations generated for the RDFEdge con-
struct from the specifications in Tables 1 and 2 are

— addRDFEdge(scheme,query)
— deleteRDFEdge(scheme,query)

— extendRDFEdge(scheme,query)
— contractRDFEdge(scheme,query)
— renameRDFEdge(scheme,new-name)

where the ‘scheme’ parameter may be ((Triple)) or ((Statement)).
Finally, the set of primitive schema transformations generated for the RDF-
Container construct from the specification in Table 2 are:

— addRDFContainer(scheme,query)

— deleteRDFContainer(scheme,query)
extendRDFContainer(scheme,query)
contractRDFContainer(scheme,query)

— renameRDFContainer(scheme,new-name)

where the ‘scheme’ parameter may be ((Bag)), ((Sequence)) or ((Alternative)).

5 RDF Schema

RDF Schema provides a type system for RDF, which is implemented in terms of
classes and properties. These are very similar to the classes and properties of OO
languages, with one exception. Everything in RDF is described as a resource.
A resource has a type, which can define it as a either a class or a property.
Properties are therefore defined independently of classes, which is not the case
in OO languages.

A summary of the components of RDF Schema is as follows, and is illustrated
in Figure 4:

5.1 Resources

rdfs:Resource This is the base class for RDF Schema; everything that is being
described by RDF is a resource and is an instance of the class rdfs:Resource.

rdfs:Class A predefined resource for defining classes, this is used by the rdf:type
property to specify that a resource is a class.

rdfs:Property A predefined resource for defining properties, this is used by the
rdf:type property to specify that a resource is a property.

5.2 Properties

rdf:type A property of a resource which if it has value ‘rdfs:Class’ means that
the resource defines a class, or if it has value ‘rdfs:Property’ means that the
resource defines a property.

rdfs:subClassOf Specifies that the class is a subclass of another class. Each
class can have many parent classes.

rdfs:range This property specifies a class whose instances contain the possible
values that the property may have.

rdfs:domain This defines the classes which the property belongs to. Zero, one
or more of these definitions may be given for a property. If no definitions are
given then the property is assumed to apply to all classes.

rdfs:subPropertyOf Specifies that the property is a subproperty of another
property. Each property can have many parent properties.

rdfs:seeAlso Additional information about the resource which refers to another
resource.

rdfs:isDefinedBy Sub-property of rdfs:seeAlso which is analogous to the idea
of namespaces.

isDefinedBy seeAlso

type

class\

domain

property

subClass

range subProperty

Fig. 4. Components of RDF Schema

6 Representing RDF Schema in the HDM

Table 3 specifies RDF Schema in the HDM. We see that there are two different
modelling constructs: RDFSNode and RDFSEdge with, respectively, 3 and 7 in-
stances (as with RDF, this schema will be the same for all RDFS data sources).
The set of primitive schema transformations generated for these two constructs
are

— addRDFSNode(scheme,query)

— deleteRDFSNode(scheme,query)

— extendRDFSNode(scheme,query)

— contractRDFSNode(scheme,query)

— renameRDFSNode(scheme,new-name)

where the ‘scheme’ parameter can be one of the 3 RDFSNode schemes listed in
Table 3, and

addRDFSEdge(scheme,query)

— deleteRDFSEdge(scheme,query)

— extendRDFSEdge(scheme,query)
contractRDFSEdge(scheme,query)

— renameRDFSEdge(scheme,new-name)

where the ‘scheme’ parameter can be one of the 7 RDFSEdge schemes listed in

Table 3.

RDFS Constructs

HDM Representation

construct:RDFSNode
class: nodal
scheme: {(rdfs:Resource))

node: ((rdfs:Resource})

construct:RDFSNode
scheme: ((rdfs:Property))

node: ((rdfs:Property))

construct:RDFSNode
scheme: ((rdfs:Class))

node: ((rdfs:Class))

construct:RDFSEdge

class: linking

and constraint

scheme: ((rdfs:type,rdfs:Resource,type))

edge: ((rdfs:type,rdfs:Resource,type))
constraint:

[r] (r,t) < {(rdfs : type, rdfs : Resource, type));
t =7rdfs: Property”]) = (rdfs: Property))
constraint:

[r] (r,t) < {(rdfs : type, rdfs : Resource, type));
t ="rdfs:Class’]) = (rdfs: Class))

construct:RDFSEdge
scheme: ((rdfs:domain,rdfs:Property,rdfs:Class))

edge: ((rdfs:domain,rdfs:Property,rdfs:Class))
constraint: -

construct:RDFSEdge
scheme: ((rdfs:range,rdfs:Property,rdfs:Class))

edge: ((rdfs:range,rdfs:Property,rdfs:Class))
constraint: -

construct:RDFSEdge
scheme: ((rdfs:subClass,rdfs:Class,rdfs:Class))

edge: ((rdfs:subClass,rdfs:Class,rdfs:Class}))
constraint: -

construct:RDFSEdge
scheme: ((rdfs:subProperty,rdfs:Property,rdfs:Property))

edge: {(rdfs:subProperty,rdfs:Property,rdfs:Property))

constraint: -

construct:RDFSEdge
scheme: ((rdfs:seeAlso,rdfs:Resource,rdfs:Resource))

edge: ((rdfs:seeAlso,rdfs:Resource,rdfs:Resource))
constraint: -

construct:RDFSEdge
scheme: ((rdfs:isDefinedBy,rdfs:Resource,rdfs:Resource))

edge: {(rdfs:isDefinedBy,rdfs:Resource,rdfs:Resource))

constraint: -

Table 3. Definition of RDFS model constructs

7 An Example

An example of an RDF Schema and an instance of data complying to this schema
is now given, together with the graphs the XML documents represent and the
HDM instances required to store the data. This example is based on the Wordnet
[1] English language database. An RDF version of the database is available as

10

is an RDF Schema definition of the database. In Wordnet ‘concepts’ are defined
and ‘word forms’ are linked to a concept e.g. the word forms ”bike” and ”bicycle”
can both be used to refer to the same concept.

A cut down version of the schema is given in Appendix A, which includes
the class ‘lexical concept’ and its subclass ‘noun’. The following properties are
defined: ‘word form’ assigns a string to a concept; ‘hyponym of’ creates an ’isa’
hierarchy of lexical concepts; ‘glossary entry’ gives a textual description of a
concept. Figure 5 shows a graph representation of this RDF Schema model.

range

subclass hyponymOf

Iexical\‘% domain \\
concept /\
r'—/
type
type
type
class
property

domain gomain

glossaryEntry

range /

type

Fig. 5. Graph representation of RDF Schema contained in Appendix A

This RDF Schema model would be represented by following instances of the
HDM nodes and edges specified on the right-hand column of Table 3:

<<rdfs:Class>> = {lexicalConcept,noun,literal}
<<rdfs:Property>> = {hyponym0f, glossaryEntry, wordForm}
<<rdfs:Resource>> = {lexicalConcept, noun,
hyponymOf, glossaryEntry, wordForm}
<<rdfs:type,rdfs:Resource,type>> =
{(lexicalConcept,class), (noun,class),

11

(literal,class), (hyponymOf,property),

(glossaryEntry,property), (wordForm,property)}
<<rdfs:domain,rdfs:Property,rdfs:Class>> =

{(hyponymOf, lexicalConcept),
(glossaryEntry, lexicalConcept),
(wordForm, lexicalConcept)}

<<rdfs:range,rdfs:Property,rdfs:Class>> =

{(hyponymOf, lexicalConcept),
(glossaryEntry, literal) ,
(wordForm, literal)}

<<rdfs:subClass,rdfs:Class,rdfs:Class>> =

{(noun, lexicalConcept)}

<<rdfs:subProperty,rdfs:Property,rdfs:Property>> = {}
<<rdfs:seelAlso,rdfs:Resource,rdfs:Resource>> = {}
<<rdfs:isDefinedBy,rdfs:Resource,rdfs:Resource>> = {}

Appendix B shows a fragment of the Wordnet database for two concepts,
”wheeled vehicle” and a hyponym of it, ”locomotive”. Several alternative word
forms for the concept ”locomotive” are given e.g. ”engine” and ”railway locomo-
tive”. Glossary entries for the two concepts are also listed. Figure 6 shows this

data in graph form.

Wheeled vehicle

http://www.bbk.ac.uk/concept#/103610313
http://www.bbk.ac.uk/

avehicle that moves on
wheels and usualy hasa
container for transporting
things or people

http://www.bbk.ac.uk/ 1‘ schemalglossaryEntry
schemalwordForm

http://www.bbk .ac.uk/schemalhyponymOf

http://www.bbk.ac.uk/

engine

schemalwordForm

http://www.bbk .ac.uk/concept#/102937872

http://www.bbk.ac.uk/

schemalglossaryEntry

self-propelled engine used to
draw trains along railway
tracks

http://www.bbk.ac.uk/
schema/wordForm

http://www.bbk.ac.uk/
schema/wordForm

http://www.bbk.ac.uk/
schema/wordForm

railway locomotive

locomotive locomotive engine

This RDF model would be represented by following instances of the HDM

Fig. 6. Graph Based Representation of Appendix B

nodes and edges specified on the right-hand column of Table 1:

<<Blank>>
<<URI>>

{3
{http://www.bbk.ac.uk/concept/103610313 ,

12

http://www.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/wordForm ,
http://www.bbk.ac.uk/schema/glossaryEntry ,
http://www.bbk.ac.uk/schema/hyponym0f }

<<Literal>> = {"Wheeled Vehicle", "engine", "railway locomotive",
"locomotive", "locomotive engine",
"self-propelled engine used to draw trains along railway tracks",
"a vehicle that moves on wheels and usually has a container for
transporting things or people"}

<<subject>> = {http://www.bbk.ac.uk/concept/103610313 ,

http://www.bbk.ac.uk/concept/102937872 }
<<predicate>>={http://www.bbk.ac.uk/schema/wordForm ,

http://www.bbk.ac.uk/schema/glossaryEntry ,

http://www.bbk.ac.uk/schema/hyponym0f }
<<object>> = {http://www.bbk.ac.uk/concept/103610313,

"Wheeled Vehicle", "engine", "railway locomotive",
"locomotive", "locomotive engine",
"self-propelled engine....tracks", "a vehicle...or people"}

<<Triple,subject,predicate,object>> = {
(http://www.bbk.ac.uk/concept/103610313,
http://www.bbk.ac.uk/schema/wordForm,
"Wheeled Vehicle"),
(http://wuw.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/wordForm,
"engine"),
(http://www.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/hyponym0f,
http://www.bbk.ac.uk/concept/103610313),
(http://wuw.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/wordForm,
"railway locomotive"),
(http://www.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/wordForm,
"locomotive"),
(http://wuw.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/wordForm,
"locomotive engine"),
(http://wuw.bbk.ac.uk/concept/102937872,
http://www.bbk.ac.uk/schema/ glossaryEntry,
"self-propelled engine....tracks"),
(http://www.bbk.ac.uk/concept/103610313,
http://www.bbk.ac.uk/schema/glossaryEntry,
"a vehicle...or people")}

A Java program to create a model for RDFS and build the schema above can
be seen at www.dcs.bbk.ac.uk/ dean/eg/RDFS java

13

8 Conclusions and Future Work

This technical report shows how RDF and RDF Schema can be represented in
AutoMed’s HDM common data model, so that such data can be exploited as
AutoMed data sources.

A question being examined by ongoing work is to see how text data combined
with structured data can be better used [10]. The ability to treat ontologies, both
natural language such as WordNet and domain specific ones, as data sources able
to be integrated with database schema information using the tools provided by
AutoMed will be beneficial to this effort.

The RDF data model is a natural candidate for being stored in a graph-
based database and an HDM store has been developed which will allow RDF
and RDFS data to be stored, as well as ‘native’ HDM data. Together with
AutoMed’s functional query language, IQL, this may form a useful RDF data
store in its own right.

The approach discussed in this paper assumes that RDF Schema and RDF
descriptions are independent - a validating parser would be required to ensure
that an RDF description conforms to an RDF Schema description e.g. [9]. An
alternative approach that we are investigating is to extend the RDF model for a
given data source with additional constraints (expressed in IQL) implied by the
RDF Schema description it satisfies.

RDF Schema provides a basic typing schema but richer facilities are often
required by designers of Ontologies e.g. cardinality constraints. A number of lan-
guages have been proposed in the Semantic Web effort, for example DAML+OIL.
Treating DAML+OIL as an AutoMed data source would be a useful addition
and is also part of planned work.

References

1. G.A.Miller, R.Beckwith, C.Fellbaum, D. Gross, and K. Miller. Introduction to
wordnet: An on-line lexical database. International Journal of Lezicography,
3(4):235-244, 1990.

2. Dave Beckett Jan Grant. RDF test cases. W3C Working Draft, 2002.
http://www.w3.org/TR/2002/WD-rdf-testcases-20020429/ #ntriples.

3. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transfor-
mations. In Proc. CAiSE’99, LNCS 1626, pages 333-348, 1999.

4. P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML and
structured data sources. In Proc. CAiSE’01, LNCS 2068, pages 330-345, 2001.

5. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database
architectures, a schema transformation approach. In Proc. CAiSE’02, LNCS 2348,
pages 484-499, 2002.

6. Ralph R.Swick Ora Lassila. Resource description framework (RDF) model and
syntax specification. W8C Recommendation, 1999. http://www.w3.org/TR/REC-
rdf-syntax/.

7. Brian McBride Patrick Hayes. RDF semantics. W3C Working Draft, 2002.
http://www.w3.org/TR/2002/WD-rdf-mt-20021112/.

14

8. L. Masinter T. Berners-Lee, R. Fielding. Uniform resource identifiers
(URI): Generic syntax. The Internet Engineering Task Force, 1998.
http://www.ietf.org/rfc/rfc2396.txt.

9. Karsten Tolle. The validating RDF parser (VRP). ICS-FORTH Institute of
Computer Science - Foundation of Research Technology Hellas - Greece, 2003.
http://139.91.183.30:9090/RDF/VRP /index.html.

10. D. Williams. Database driven discovery of structure from partially structured data.
Technical report, Sheffield University, 2002. BNCOD PhD Summer School.

A RDFS Schema for Wordnet

<?7xml version="1.0"7>
<t--

This is a cutdown version of the unofficial RDF Schema for WordNet data.

written by Sergey Melnik and available at
http://www.semanticweb.org/library/wordnet/wordnet-20000620.rdfs
Dean Williams. dean@dcs.bbk.ac.uk

-—>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY s ’http://www.w3.org/TR/1999/PR-rdf-schema-19990303#’>
<!ENTITY wn ’http://www.cogsci.princeton.edu/ wn/schema/’>
1>

<rdf :RDF
xmlns="&rdf;"
xmlns:rdf="&rdf;"
xmlns:s="&s;"
xmlns:wn="&wn;"

<s:Class rdf:about="&wn;LexicalConcept"

The original was

s:comment=’A lexical concept identifies a sense or a meaning, captured by a set of
synonyms that serves as an unambiguous designator. The synonym set does not explain

what the concept is; it merely signifies that the concept exists.’ />

<s:Class rdf:about="&wn;Noun"

s:comment="A noun.">

<s:subClass0f rdf:resource="&wn;LexicalConcept"/>
</s:Class>

<rdf :Property rdf:about="&wn;wordForm"

s:comment=’A word form is used to refer to the physical utterance or inscription
and "word meaning" to refer to the lexicalized concept that a form can be used to

15

express.’>
<s:domain rdf:resource="&wn;LexicalConcept" />
<s:range rdf:resource="&s;Literal" />

</rdf :Property>

<rdf:Property rdf:about="&wn;hyponym0Of"
s:comment="This is a lexical relation that specifies that the first concept is a
hyponym of the second concept. This relation holds for nouns and verbs. The reflexive
operator, hypernym, implies that the second concept is a hypernym of the first one.’>
<s:domain rdf:resource="&wn;LexicalConcept"/>
<s:range rdf:resource="&wn;LexicalConcept"/>

</rdf :Property>

<rdf :Property rdf:about="&wn;glossaryEntry"
s:comment="The glossary entry (a gloss) helps to resolve the polysemy. The gloss is
not intended for use in constructing a new lexical concept by someone not already
familiar with it, and it differs from a synonym in that it is not used to gain access
to information stored in the mental lexicon.
It fulfills its purpose if it enables the user of WordNet, who is assumed to know
English, to differentiate this sense from others with which it could be confused.">
<s:domain rdf:resource="&wn;LexicalConcept" />
<s:range rdf:resource="&s;Literal" />

</rdf :Property>

</rdf :RDF>

B Sample Wordnet RDFS Word Descriptions

<!-- This is a cut down sample of the data —-—>

<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY a ’http://www.cogsci.princeton.edu/ wn/concept#’>
<!ENTITY b ’http://www.cogsci.princeton.edu/ wn/schema/’>]>

<rdf:RDF xmlns:rdf="&rdf;"
xmlns:a="&a;"
xmlns:b="&b;">

<b:Noun rdf:about="&a;103610313"
b:wordForm="wheeled vehicle"/>

</b:Noun>

<b:Noun rdf:about="&a;102937872">
<b:wordForm>engine</b:wordForm>
<b:wordForm>locomotive</b:wordForm>
<b:wordForm>locomotive engine</b:wordForm>

16

<b:wordForm>railway locomotive</b:wordForm>
</b:Noun>

<rdf:Description rdf:about="&a;102937872">
<b:hyponym0f rdf:resource="&a;103610313"/>
</rdf:Description>

<rdf:Description rdf:about="&a;103610313">

<b:glossaryEntry>a vehicle that moves on wheels and usually has a container
for transporting things or people</b:glossaryEntry>

</rdf:Description>

<rdf:Description rdf:about="&a;102937872">

<b:glossaryEntry>self-propelled engine used to draw trains along railway
tracks</b:glossaryEntry>

</rdf:Description>

17

