
A Simple Case Study for Schema Integration Tools

AutoMed Technical Report 1, Version 1

Peter Mc.Brien

Monday 18 th August 2003

1 Introduction

The purpose of this document is to record a simple small example of database schema inte-
gration, which contains enough complexity to test all key aspects of the AutoMed achitecture
[7] as it is developed. In particular, the example is used to test the representation of mod-
elling languages in the MDR and schemas and transformations in the STR of the AutoMed
repositories [2, 3]. The example is a development of that presented in [6], and is presented
in Figure 1 as three extensional databases (i.e. are actual databases with stored data) s1, s2
and s3 in a variant of the ER modelling langauge.

The version of the ER modelling langauge we shall be using is given in Table 1. It a slight
extention of the ER language used in the well-known survey paper on schema integration
[1], and similar to the well known enhanced-ER (EER) model [4]. The key features of this
ER modelling langauge are that

• only binary relationships are permitted,

• relationships may not have an attribute added,

• attributes may be key, notnull or null, and

• generalisations may be total or partial.

The following sections present a number of integration scenarios, which illustrate common
techniques used in the BAV approach.

2 Integration of Two Instance Equivalent Schemas

Suppose that it can be determined that the staff entity in s1 always contains the same set
of people as the person entity in s2, and that the id key of staff is the same type as the pid
attribute of person. It follows the we have a synonym con¤ict between the schemas, and
should rename staff to person (or visa versa) and rename pid to id (or visa versa).

Also suppose that it can be determined that the instances of the dept entity (and hence its
dname key attribute) in s1 are always the same set as the values of the dname attribute of
person in s2. It follows that we have a structural con¤ict between the schemas, and should
transform the dname attribute in s2 into a new entity dept and key attribute dname con-
nected to person by a relationship called worksin. In this particular example, we could al-
ternatively have transformed the worksin relationship, dept entity and dname key attribute

1

Name Symbol Description

entity set e

Describes a set of entities in the UoD which
share some common properties. We denote the
entity by the scheme 〈〈e〉〉 and can enumerate
the values of the entity in variable x by the
expression x 〈− 〈〈e〉〉.

attribute a

A set of attributes which are of a certain type,
and are associated with members of an entity
set. We denote the attribute by the scheme
〈〈e,a〉〉.
Each instance of the entity must be associ-
ated an instance of the attribute, and we can
emumerate. We can enumerate the values of
the association be entity and attributes by the
expression {x, y} 〈− 〈〈e, a〉〉.

key attribute a An attribute which forms part of the key for the
entity.

null attribute a? An attribute for which not every instance of 〈〈e〉〉
appears as instance of 〈〈a〉〉.

subset

es

6

e

Denotes that any instance of the subset entity
〈〈es〉〉 is also a member of the superset entity
〈〈e〉〉.

generalisation 6

e

g

e1
. . . en

Denotes a series of subset entities 〈〈e1〉〉
. . . 〈〈en〉〉 of superset 〈〈e〉〉, which have the ad-
ditional property that the instances of 〈〈e〉〉
must be also instances of exactly one of 〈〈e1〉〉
. . . 〈〈en〉〉.
If an asterisk is put by the g, then the above
is relaxed such that some instances of e may
exist which are not instances of 〈〈e1〉〉 . . . 〈〈en〉〉.

relationship r

l1:u1

l2:u2

e1

e2

A set of binary relationships between entities,
where the relationships are all of a certain
type. We denote the relationship by 〈〈r, e1, e2〉〉.
The cardinality constraint l1:u1 gives the min-
imum and maximum number of instances of
e2 that may be associated with any one in-
stance e1, and l2:u2 gives the minimum and
maximum number of e1 instances that may be
associated to a particular instance of e2.
We can enumerate the values of the associa-
tion be entity and attributes by the expression
{x, y} 〈− 〈〈r, e1, e2〉〉.

Table 1: Constructs and declarative semantics of an entity-relationship model

2

into a single dname attribute of staff, but this would not be the case if the dept entity had
any other associations (i.e. it had any other attributes, relationships, subset involvements or
generalisation involvements).

Finally, suppose that it can be determined that the instances of the sex attribute of staff in s1
only takes the string values ‘m’ and ‘f’, and that always the set of staff which have the value
‘m’ is the same as the set of male in s2, and the set of staff which have the value ‘f’ is the
same as the set of female. It follows that we have a structural con¤ict between the schemas,
and should transform the sex attribute of staff into a total generalisation hierarchy with two
subset entities male and female. In this particular case, we could alternatively have made
the inverse transformation on male and female in s2 since they have no other associations.

Given these suppositions, we can use the following transformations to transformation s1 and
s2 into a new global schema s4. The queries of the transformations use the AutoMed IQL
language [5]. The semantics of 2 are that the extent of 〈〈male〉〉 is a list of unary tuples, taken
as the projection of the £rst attribute of the tuples of 〈〈person, sex〉〉 where the second attribute
equates to the value ‘m’. The semantics of 5 are that the binary tuples for the 〈〈person, sex〉〉
attribute can be covered by associating the £rst attribute of the tuple an instance of 〈〈male〉〉
and the second to the string constant ‘m’, concatenated (by the ++ operator) with associating
the £rst attribute to an instance of 〈〈female〉〉 and the second to ‘f’. Note that 5 has also
a constraint added to it, stating that this transformation is only valid when the extent of
〈〈person, sex〉〉 is just [‘m’,‘f’].

s1 → s4

1 renameEntity(〈〈staff〉〉, 〈〈person〉〉)
2 addEntity(〈〈male〉〉, [{x} | {x, y} 〈− 〈〈person, sex〉〉; (=) y ‘m’])
3 addEntity(〈〈female〉〉, [{x} | {x, y} 〈− 〈〈person, sex〉〉; (=) y ‘f’])
4 addGeneralisation(sex, total, person,male, female)
5 delAttribute(〈〈person, sex〉〉,

[{x, y} | {x} 〈− 〈〈male〉〉; (=) y ‘m’] ++ [{x, y} | {x} 〈− 〈〈female〉〉; (=) y ‘f’])
([‘m’, ‘f’] = [{x} | {x, y} 〈− 〈〈person, sex〉〉])

s2 → s4

6 addEntity(〈〈dept〉〉, [{y} | {x, y} 〈− 〈〈person, dname〉〉])
7 addAttribute(〈〈dept, dname, key〉〉, [{y, y} | {x, y} 〈− 〈〈person, dname〉〉])
8 addRelationship(〈〈worksin, person, dept, 1:1, 1:N〉〉, [{x, y} | {x, y} 〈− 〈〈person, dname〉〉])
9 delAttribute(〈〈person, dname, notnull〉〉, [{x, y} | {x, y} 〈− 〈〈worksin, person, dept〉〉])

10 renameAttribute(〈〈person, pid, key〉〉, 〈〈person, id, key〉〉)

3 Integration of Overlapping Schemas

Suppose it can be determined that all schema components that appear in both s4 and s3
always share the same sets of values, i.e. the entity person in s4 has the same set of values
as person in s3, the attribute id in s4 has the same set of values as id in s3, etc.

Also suppose that it can be determined that any construct that does not appear in one schema
cannot be derived from the remaining components in that schema, i.e. the extention of the
missing name attribute of person in s3 cannot be derived from any other components in
s3, and the extention of the missing degree entity and associted constructs in s4 cannot be
derived from any other constructs in s4.

Given these suppositions, we can the use extend transformations to build a new global
schema s5 that contains all information available from the three extentional schemas s1,
s2 and s3.

3

staff

sex

name

id

worksin

1:1

1:N

deptdname

s1

person

male female

sex
6

pid

name
dname

s2

person

male female

sex
6

id worksin
1:1

1:N dept dname

runby

1:1

1:N

degree
code

titles3

person

male female

sex
6

id

name
worksin

1:1
1:N dept dname

s4

person

male female

sex
6

id

name
worksin

1:1
1:N dept dname

runby

1:1

1:N

degree
code

titles5

1 .. 5
?

5 .. 1
6

6 .. 10
?

10 .. 6
6

12 .. 15
?

15 .. 12
6

11

?
11
6

Figure 1: Example ER schemas, and the transformations that relate them

4

s3 → s5

11 extendAttribute(〈〈person, name, notnull〉〉)

s4 → s5

12 extendEntity(〈〈degree〉〉)
13 extendAttribute(〈〈degree, code, key〉〉)
14 extendAttribute(〈〈degree, title, notnull〉〉)
15 extendRelationship(〈〈runby, degree, dept〉〉)

Note that these transformations may be composed to form a direct transformation from s3 to
s4 as follows (where white on black text for the transformation number indicates an inverse
of the black on white transformation):

s3 → s4

11 extendAttribute(〈〈person, name, notnull〉〉)
15 contractRelationship(〈〈runby, degree, dept〉〉)
14 contractAttribute(〈〈degree, title, notnull〉〉)
13 contractAttribute(〈〈degree, code, key〉〉)
12 contractEntity(〈〈degree〉〉)

4 Relational Models and Sample Data

Figure 2 illustrates three relational schemas equivalent to the three EDB schemas of Fig-
ure 1, on the basis that the ER modelling language being used identi£es instances of entities
by using the key attribute of the entity.

Given this relational model and data we can derive instances of the ER model. For example,
s2 has the following extent:

〈〈person〉〉 = [{1}, {2}, {3}, {4}, {5}]
〈〈person, pid〉〉 = [{1, 1}, {2, 2}, {3, 3}, {4, 4}, {5, 5}]
〈〈person, name〉〉 = [{1, ‘Alex’}, {2, ‘Dimitri’}, {3, ‘Mike’}, {4, ‘Nerissa’}, {5, ‘Peter’}]
〈〈person, dept〉〉 =

[{1, ‘CS-BBK’}, {2, ‘CS-BBK’}, {3, ‘Comp-IC’}, {4, ‘Comp-IC’}, {5, ‘Comp-IC’}]
〈〈male〉〉 = [{2}, {3}, {5}]
〈〈female〉〉 = [{1}, {4}]

References

[1] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[2] M. Boyd, P.J. McBrien, and N. Tong. The automed schema integration repository. In
Proceedings of BNCOD02, volume 2405 of LNCS, pages 42–45. Springer-Verlag, 2002.

[3] M. Boyd, P.J. McBrien, and N. Tong. The AutoMed repositories and API. Technical Report
AutoMed TR Number 3, Version 3, Dept. of Computing, Imperial College, 2003.

[4] R. Elmasri and S. Navathe. Fundamentals of Database Systems. Addison-Wesley, 3rd
edition, 2000.

[5] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and Migrating
Data in the AutoMed toolkit. Technical report, AutoMed TR Number 20, 2003. Available
fromhttp://www.doc.ic.ac.uk/automed/.

5

staff
id name sex workins
1 Alex F CS-BBK
2 Dimitri M CS-BBK
3 Mike M Comp-IC
4 Nerissa F Comp-IC
5 Peter M Comp-IC

dept
dname
CS-BBK
Comp-IC

(a) s1

person
pid name dname

1 Alex CS-BBK
2 Dimitri CS-BBK
3 Mike Comp-IC
4 Nerissa Comp-IC
5 Peter Comp-IC

male
id
2
3
5

female
id
1
4

(b) s2

person
id worksin
1 CS-BBK
2 CS-BBK
3 Comp-IC
4 Comp-IC
5 Comp-IC

male
id
2
3
5

female
id
1
4

dept
dname
CS-BBK
Comp-IC

degree
dcode title runby
1234 MSc Computing CS-BBK
G500 BEng Computing Comp-IC
G500 MEng Computing Comp-IC

(c) s3

Figure 2: Relational models and data

[6] P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database appli-
cations — a schema transformation approach. In Proceedings of ER99, volume 1728 of
LNCS, pages 96–113. Springer-Verlag, 1999.

[7] P.J. McBrien and A. Poulovassilis. Automatic generation of mediator tools for heteroge-
neous database integration [automed]. Technical report, Birkbeck College and Imperial
College, March 2000.

6

