Template Transformations in AutoMed

AutoMed Technica Report 25, Version 2

Charalambos L azanitis
cl201@doc.ic.ac.uk

Minor Additions and Changes by
Nikolaos Rizopoulos
nré00@doc.ic.ac.uk

Table Of Contents

1. Introduction.......cciciimieimimnerinre s s s na 3
Overview Of the Documentcccircimiiirin s s e 4
2. Using the Template GUI ToOlcorermrmmmarmnasnassssassassssasnns 5
3. Guide to the Template API.......c..coicimireimrmnemsresnessasasnans, 11
3.1 The first APIcciciiimimireinarmsrere e s s sa s nasnssassasnnsasnnns 11
3.1.1 OVeIVIEW . euieuireirnnrnasnnsrnasnassnsssassnssnsssassnsssnssnssnnssnssnnssnssnnsnnsnnns 11
3.1.2 An Example Template Definition........ccccssmmemssmnesssnnessnmsassnnanas 12
3.2 The Second API: The First Level Of Abstraction................. 20
3.2.1 OVEIVIEW . icuteuiresrnasnasmasmsssmassnsssassnssnsssnssnssnnssnsssnssnssnnssnssnnsnnssnns 20
32,2 TY P S uutuurrasrnasnasnnssnssnassnssnassnssnsssnssnsssnssnsssnssnsssnssnssnnssnssnnsnnssnns 21
3.2.3 An Example Template......coccirimmmmsmmmmimemmsmemsmsssnenss 22
3.3 A Template Programming Languageccureurmssmsmnasrassnssnnsss 24
3.3.1 The TDL Programming Languageccuressssmsssmsssnsssnsssnnsnnnns 24
Lesson 0: A QUICK SYntax INGEXcceveueeeeerssissirssssseisssissssssssssssssnisnens 25
Lesson 1 GELEING SEArtedcouvueeeeeeueeeiiriiississisissirssissssssssssssssnissens 27
LESSON 27 TYPBS ceeeeeeeessessesssassessssnsssnsssssssnsssnsssnsssnsssnsssssnssnsssnnsnes 30
LEeSSON 3: ADD SEGEEMENLceeeeeeeeeeseteeteaeiaessasssassisssssssissssssnnsnns 31
LeSSON 4. TeMPIGLE INPULS........ccevreeeesresessisssiississsssssisssssssssssssssssssissens 36
R0 g ST B = B = I S 40
LESSON 67 RENAME ...ttt ateatsaasaaasasssansssssssssssssnnnsnes 41
Lesson 7: String manipul@tion i TDL..............eeieeeuueeeerssssssssssssssssnsnnens 42
Lesson 8: Looping in TDL, the FOREACH statement............cccccevvuvevenunns 46
Lesson 9: Manipulating the Scheme Of ODJECES.........cvveveeveeereiersiinsnnns 50

3.3.2 Runtime Template Transformationsccccssrreessnnnssnnnnssnnanas 54

1. Introduction

During the Database Schema Integration process, it is known that in practice the
sequence of transformations that have to take place in order to go from the initial Schema
to the target Schemais not completely random. Transformations are being performed to
resolve conflicts, and of course each conflict requires a sequence of transformations. It
becomes apparent therefore, that if we could define the sequence of transformations that
are required to resolve each particular conflict in a generic manner, we could reach our
target schema aconflict at atime rather than a primitive transformation at atime.

Thisis partly what the tool devel oped by Nikolaos Rizopoulos attempts to achieve. A
sequence of transformationsis called atemplate. It is defined in a schema independent
way, and defines as variables what is dependent on the schema, which haveto be filled in
by the user to form an instance of the template. As soon as the user defines the required
variables, the sequence of transformations can be executed on the source schema. The
tool is model independent, but each template is dependent on a particular model. A basic
understanding of the functionality of thistool isrequired in order to follow this
document. A summary of the minimum required things you need to know will be given
here, but if you want more information on thistool you can find it at:
http://www.doc.ic.ac.uk/automed/publications/Riz01.ps.gz

An attempt has been made to create an API that will wrap the NR tool, both in the way
that the templates are defined and the way they are used.

Although this API does not add any extra functionality to the existing toal, it offersa
much simpler way of performing what up to now were hard and tedious tasks. Taking a
familiar analogy, it islike using a high level programming language to wrap an assembly
set. So although the high level language does not add extra functionality to the assembly
set, it facilitates writing complex programs and arguing about their correctness.
Furhtermore, languages often try to guarantee the correctness of a program up to some
level, by introducing types, variable scoping and other features that check part of the
logic of the program in compile time.

In fact the above analogy was the guideline to the devel opment of the API. Previously,
defining atemplate seemed more or less like filling up a number of tablesin arelationa
database, through alow level API. Now, in thefirst level abstraction, atemplate
definition is seen as a sequence of statementsinside, each having arguments and return
values. For this AP, types have been introduced for each argument and each return
value. Thisfirst level API, has been further wrapped by a second level AP, that
simulates the definition of atemplate as writing a program in asimple procedural
language. The notion of scopes, and checking of the logical order of variables have been
introduced here. Thisiswhat we called TemplateCompilerSimulator, and it will be
explained quite thoroughly in this document.

Overview Of the Document

Section 2 describes how to use a Graphical Tool devel oped to implement template
transformations on schemas that are defined using the templates API.

Section 3 describes how the API for defining templates has been created and how it was
evolved

Section 3.1 describes the tool developed by Nikos Rizopoulos and it is the lowest
and basic level of the entire AP

Section 3.2 describes the first level of abstraction on top of the basic API
Section 3.3 describes the syntax and semantics of a pseudo-programming

language devel oped on top of thefirst level of abstraction API, which triesto
simulate area programming language that is used to define templates.

2. Using the Template GUI Tool

This section explains how to use the GUI developed to perform template (composite)
transformation on schemas. We are assuming that you have the Automed API aready
installed on your machine aong with the necessary resources.

First of al to define the demonstration templates go the examples directory and smply
type:

j avaenv. sh nake tenpl ates

There is a demonstration GUI that displays schemas and is able to pop-up the dialogue
that implements the templates that have already been defined. This can be run from the
examples directory, by typing:

j avaenv. sh make tenpl at esgui

Thiswill pop-up awindow and a dialog that will prompt you to select a schemato load.
After doing that you will see something very similar to what is shown bellow:

}{'Eurrentlr displayed schema: er_s1
Menu |)

Load Schema..

Execute Transformation ...

exit

From there, there is only a handful of options you can do, like loading an other schema,
or moving the objectsin the display around. By far though, the most ‘exciting’ option
you have is to chose a composite transfor mation to execute. To emphasize the
excitement of performing this action we have offered two aternative ways of performing
it. That is choosing it from the menu, or clicking on the lighting image on the menu bar.

After doing that, adialog box that looks like the following will pop-up:

}{'Select Transformation to execute x|

Implements an attribute to generalisation
equivalence

Altribute to entity equivalence
Attribute to Generalisation equivalence

Execute || Cancel

Thisgives you alist of al the transformations you can execute, and on selecting any of
them you get its description displayed at the header. If you are not satisfied with what
you see, you can aways ‘Cancel’, but | am sure you will be eager to click on ‘Execute'.
Thiswill cause yet an other Dialog Box to pop-up (the most interesting one so far) that
will let you implement the Transformation you chose. So, let’s say that we chose
‘Attribute to Generalisation Equivalence'. Then we'll get adialog that will let us
implement the Attribute to Generalisation Equivalence transformation (no surprises
there).

Let’s go step by step, filling up the dialog box, and demonstrate the features that it
provides.

Almost always the first argument of the dialogue will be the initial schema. (In fact if you
use the TemplateCompiler Simulator (Section 3.3) to define your templates, this will
always be the case.) The window will look like the following:

DU =

1Y Imitial Schema

SchEma er_sl @d 1) AP

il — E—@——@—— —giname

gRame

Cancel | News

The things to notice:
* Thetop panel that gives the description of the current argument
» Thedisplay of the schemathat the transformation is done upon,
* Aninput panel on theright that gets the inputs for the arguments.
* The“SINGLE” sign that denotes that the argument is a single argument (in
contrast with aL I ST argument).

An argument of type SCHEMA, is by default set as the currently displayed schema. If for
any reason you think that the value should be something else, you can edit the box and
type anything you want. If you click NEXT, it will try to SET the argument (The
argument will be set only if the valueisvalid). If you want to check if it isvalid before
moving on, you can click on the SINGLE icon, and if it is successfully set, you will get a
tick as an indication:

So now we are ready to click next, and go on to the next argument, which happens to be
the existing parent entity:)

2) Existing parent entity

Schemaersl gd 1y Sinals

\ bl s

Since, while defining the template, we specified that this argument should be an entity,
all the entities are highlighted, and are accepting mouse events. Clicking on staff will
pass its value to the box to the next. Note that since we are looking for an OBJECT, the
input box has been disabled, and thus we can only enter values by clicking on the
appropriate objects in the schemadisplay (Y ou cannot edit values from the keyboard)

click NEXT:

x|

3) Attribute to be deleted

Schemaer_sl (d 1) Sikal e

Similar story as above, just this time the attributes are highlighted instead. We chose
SEX, (we are implementing the sex to Male-Femal e transformation), and click NEXT.

> X
4) Mames of the Subentities

Schema er_sl Gd 1) [LIsm]
S rra—
o N [Femate |

EF

=

12

This asks for the names of sub-entities. Unlike the previous cases, now the argument is
of typelist, and you can enter as many elements as you like. We chose to enter the three
genders found in nature, and click NEXT.

> x|
5) Values of the attribute that correspond to subentities

Schema er_s1 qd 1) JusT BE1 @

E
2 %[]
a X[]

This asks for the values that correspond to the sub-entities defined previously. Apparently
when the template was being defined, thislist had areference to the previouslist , which

means that the two lists should be of the same size. This had asaresult thelist to be set,
fixed to 3 elements, and was mad rigid, i.e. not expandable. To demonstrate some of the
features provided think of the following scenario:

The user forgets in which order the subentities where layed out for the previous argument
(i.e. male before female or female before male?). After afew moments of panic, she
wanders what the yellow button above does, and decides to click on it. (of course she
could just have clicked BACK and see what the input was but this would ruin our story).
Anyway, she clicks the yellow button, and to her amazement, the following window
POPS-up:

Mames of the Subentities

1) hMale

% Female

3 Hermaphrodite

This window describes the way all the referenced lists have been layed down. So she
realises that Male comes before Female (as aways J), and she can now go on filling up
thelist asrequired: M for Male, F for Female, H for Hermaphrodite.

2

5) ¥alues of the attribute that correspond to subentities

schemaer st Ga e EEoR
) TR—
) —
B

But now she suddenly realised that the last Tapeworm has |eft the college 10 years ago,
and there is a new non-Hermaphrodite-hiring policy. It therefore becomes apparent that
the Hermaphrodite subentity has become obsolete. She triesto click on the “X” button
next to the 3 element but the element is not removed. (What is written there is del eted
but the input item remains). She clicks on the “X” button 35 more times, turns the screen
on and off a couple of times, but the input item is still there. She then realises that the list
size has been FIXED. How can | *break’ it, she asks her self? Thisiswhen the word
‘break’ has given her a hint of the use of the icon showing a hammer breaking a glass.
Clicking that, makes the list expandable again. She can thus remove the third item, and
clicks back to fix the previous list as well.

Note that since an input item has been removed, clicking back, the previous list will be
fixed to two elements. The API has been structured such that if we have a set of

referenced lists, all the lists are fixed to the number of e ements that the last list in the set
has been set to.

Clicking NEXT, will ask for the generalisation name, and since thisis the last argument,
the FINISH button will become enabl ed.

If al arguments are set correctly the template will be executed, otherwise you will get an

error message and directed to the argument that gave the error. In the former case,
window will close and the new schemawill be loaded to the displaying frame.

10

3. Guide to the Template API

In the introduction we said that al you have to know about the NR tool can be found on
the technical report for the tool. Well, thisis not completely true. Although that
documented the tool at that time thoroughly, some extra features have been added to
increase the functionality. What was added, is basically the ability to dynamically define
strings with the DEFINE_DYNAMIC_STRING_STATEMENT, the use of the
RENAME_STATEMENT, a statement that accesses the scheme of an object and one for
accessing a particular element in alist. Furthermore, it has been upgraded such that it
uses the REPS API instead of the STR API to perform the transformations. (If the words
REPS and STR sound Greek to you, now it’s agood time to visit thislink:
http://www.doc.ic.ac.uk/automed/techreports/index.html where you can find all the
technical reports you need about AutoMed project. The AutoMed websiteis at:
http://www.doc.ic.ac.uk/automed).

So, after these adjustments to theinitial state of the NR tool, it now looks as described
bel ow:

3.1 The first API

3.1.1 Overview

It consists of 7 statements:

1) NEW_OBJECT
2) PRIMITIVE_TRANSFORMATION
3) FOREACH
4) INVOCATION
5) DEFINE_DYNAMIC_STRING
6) SCHEME_LIST
7) INDEX_LIST_STATEMENT
(Thelast 3 were added later)
The Primitive transformation statement can be parameterized, such that it performsthe
following statements:
ADD, DELETE, RENAME, CONTRACT, EXTEND

Each statement contains several arguments. Some of them store variables that are used
to define the statement, and some are defined after the statement has been executed to

define the results of the statement. A template consists of a number of arguments that
define the following:

1. Thetemplate sinputs (that will eventually be defined by the user)

11

2. Thetemplate' s outputs
3. A sequence of statements

Onthelowest level, atemplate is redly a set of interconnected tablesin arelational
database. At thistime, defining atemplate is not far from filling up these tables. Although
thereis some API that somewhat abstracts away from the actual tables, in order to define
atemplate you will have to be very familiar with the way the statements are defined in
the table level, and even so, defining a complex template can be extremely complicated.

3.1.2 An Example Template Definition

In order to get aview of how atemplate is defined, | will try to summarize the required
stepsin order to define a standard but fairly complex transformation in the sense that it
uses most of the features of the tool. The transformation is the Attribute to
Generalization Equivalence. (If you are not sure what this transformation is then you
probably shouldn’t be reading this document). Note that we won't bother to define
functions and constraints, as this will add too much complexity.

If we define this transformation in a generic level, then we define it as:

e Startsonaninitial schema S

* Addsanumber of subentities (el...en)

* Addsagenerdization G from a parent entity E to the set of subentities
* Deéetesthe general attribute A

So the first thing to be doneisto ask the user for the variables in the above list:
Aninitial schemalD (Si),

A List of subentity names (el...en)

A generadlization name (G)

The ID of the existing parent entity

The ID of the genera attribute

grwdpE

These five input arguments have to be defined as records in atable, with atrans_id and
an arg_pos which are the primary keys of each argument. The trans id is taken care by
the existing API, but the argument position for each argument has to be defined explicity.
A description has to be provided for each argument and a Boolean whether the argument
isareturn argument or not (input arguments are not return arguments). The type of each
argument (whether it isalist or an id or aname etc) is only revealed to the user by the
argument description and there is nothing to enforceit.

A possible instance of the above would be the table that follows. (Assume that the
trans_id happens to be number 18)

12

Trans id | Arg_pos | Description isSReturn
18 1 Initial Schema Id 0
18 2 Subentity names 0
18 3 Generalization name 0
18 4 Id of existing parent entity 0
18 5 Id of existing general attribute 0

(If you read the documentation of thistool you might realize the existence of two more
rows that define atable and afield, but they are neglected here)

Omitting severa details, the next step isto define the first statement in the template. The
first statement is the one that creates all the subentities. Their number is not fixed, and is
defined by the number of names given for the second input by the user. The subentitties
are created inside aloop, which is aforeach statement. Unfortunately the foreach
statement is the most complex one. Basically it works similar to aforeach statementin a
real programming language (if you are familiar with shell scripting the similarity is
greater). It itterating alist and executes a particular block, once for each element in the
list. The special feature in this case isthat the foreach block is a single template. It can
be any template, perhaps a complex one that can be defined in a different file and could
have a function by itself. In our case however, the template isfairly smple. It just adds a
single entity. Even so however, will treat this template as a separate entity, since inspite
its simplicity, it demonstrates the main features of any template.

Theforeach block template:

Again, we should first define the inputs of the template, which is the name of the entity
and the initial schema. Something that | haven't explicitly mentioned (but implied) is that
in atemplate we can also define output arguments. That is arguments that are unknown
before the execution of the template, and are set by the template execution. This feature
might seem not so useful for amain template, but it is particularly useful for aforeach
template (since the purpose of the loop is to produce a number of items that are going to
be used later). In this case our output should be the ID of the created entity. So, by
defining the template inputs as described in the case of the external template, we get
something like:

Trans id | Arg_pos | Description isReturn
19 1 Initial Schema Id 0
19 2 Entity name 0
19 3 Created entity 1d 1

All the template does, isto add a single entity to the given schema. So, you would think
that it only requires a single statement, but you would be wrong. It actually requires two.
A statement to create the new object and oneto add it to the schema.

13

The presence of two statements rather than one was necessary since when the tool was
initially developed, the underlying API (STR) required an object to be first explicitly
created and then added to the schema. When the tool was upgraded to the REPS AP, it
appeared that it was possible to merge the two statements to one. However, for reasons of
backwards compatibility and simplicity of the upgrade, it was decided to keep both
statements as before. (At thispoint | could tell you that after the upgrade, the new_object
statement only stores some values temporarily and does not really change anything in the
database, but | won'’t, since this should not concern you as a user of the tool).

o, let’ s start with the new_object statement. The statement fingerprints are as follows:

Arg pos | Description

Construct ID

Schema D

Created object ID

Vaue (name of object)

IsTemp

olg|nY N~

Scheme ID (arg_id of object scheme)

The arguments that take an (*) are passed by reference and not by vaue. In simple terms,
at those positions, the arguments are not known before the execution of the statement, but
and are set by the statement. Their value can therefore be obtained after the statement is
executed, by referring to their position in the statement arguments.

In order to define this statement, we must first define a new TemplateArgumentSequence.
(call to the constructor of the Tenpl at eAr gunent Sequence class). Thiswill
dynamically create anew arg_id, in thetable, that will identify the arguments of this
statement. The arguments that are passed by reference (output) should not be defined.
The arguments that are passed by value (input), can either be:

* entered directly OR

e point to an other statement argument OR

* point to one of the arguments of the enclosing template

Here' s the code that creates a new entity:

//Create a new argument sequence
TemplateArgumentSequence newEntityArgs = new TemplateArgumentSequence();

//CID is the ID of entity
newEntityArgs.createArgument(CompositeTransformation.ARG_CID_IN_NEWOBJECT,
String.valueOf(erEntity.getCID()));

//Enitity name is the second input argument
newEntityArgs.createArgument(CompositeTransformation.ARG_VALUE_IN_NEWOBJECT, 2);

//is temp is O (not a temporary)
newEntityArgs.createArgument(CompositeTransformation.ARG_ISTEMP_IN_NEWOBJECT, "0");

14

/ /DEFINE THE SCHEME ARGUMENTS (list that consists of the entity name)
TemplateArgumentSequence newEntityScheme = new TemplateArgumentSequence();

//The first and only element in the scheme consists of the object id of the created entity
//that will be set after the statement is executed. It will be stored in the 3 argument position
newEntityScheme.createArgument(1, newEntityArgs, CompositeTransformation.ARG_OBID_IN_NEWOBJECT);

//The scheme points to the above template argument sequence that defines the scheme
newEntityArgs.createArgument(CompositeTransformation.ARG_SCHEME_IN_NEWOBJECT,
String.valueOf(newEntityScheme.getSequenceld()));

As you might or might not have noticed, you define an argument by invoking a
cr eat eAr gunent method onaTenpl at eSequenceAr gunent object. Extracting
lines of code we demonstrate how we can define the three types of arguments stated
above:

e Direct:

newEntityArgs.createArgument(CompositeTransformation.ARG_ISTEMP_IN_NEWOBJECT, "0");

» Point to an other statement argument:
newEntityArgs.createArgument(CompositeTransformation.ARG_SCHEME_IN_NEWOBJECT,
String.valueOf(newEntityScheme.getSequenceld()));

* point to one of the arguments of the enclosing template
newEntityArgs.createArgument(CompositeTransformation.ARG_VALUE_IN_NEWOBJECT, 2);

Note that the scheme of an entity only consists of the entity name. Thisis not generally
the case. If we had an attribute for example the scheme would consist of the attribute
name and a pointer of where the parent attribute sits on the database.

The next thing to do isto add the created entity to the schema. Thisisaprimitive
transformation statement, which has to be parameterized to be an add statement:

TemplateArgumentSequence addNewAttributeArgs = new TemplateArgumentSequence();
addNewAttributeArgs.createArgument(CompositeTransformation.ARG_ACTION_IN_PRIMITIVE, "add");
addNewAttributeArgs.createArgument(CompositeTransformation.ARG_FROMOBJ_IN_PRIMITIVE, "-1");

addNewAttributeArgs.createArgument(CompositeTransformation.ARG_TOOBJ_IN_PRIMITIVE, newAttributeArgs,
CompositeTransformation.ARG_OBID_IN_NEWOBJECT);

addNewAttributeArgs.createArgument(CompositeTransformation.ARG_FROMSCHEMA_IN_PRIMITIVE, 1);

15

addNewAttributeArgs.createArgument(CompositeTransformation.ARG_TOSCHEMA_IN_PRIMITIVE,
newAttributeArgs, CompositeTransformation.ARG_SID_IN_NEWOBJECT);

addNewAttributeArgs.createArgument(CompositeTransformation.ARG_FUNCTION_IN_PRIMITIVE, "");

addNewAttributeArgs.createArgument(CompositeTransformation. ARG_CONSTRAINTS_IN_PRIMITIVE, "");

So now that al the statements of the template have been defined, it istime to define the
output arguments of the template. Here' s the code that does that:

TemplateArgumentSequence returnedArgs = new TemplateArgumentSequence();
returnedArgs.createArgument(4, newAttributeArgs, CompositeTransformation.ARG_OBID_IN_NEWOBJECT);
returnedArgs.createArgument(5, addNewAttributeArgs,
CompositeTransformation.ARG_TOSCHEMA_IN_PRIMITIVE);
addAttribute.createReturnedArgumentsDefinition(returnedArgs);

This says that the template has two return arguments, one defined as the 4™ argument of
the template and is the id of the created object, and the second one is the 5™ argument of
the template and is the final schema.

Now that we created the template, we need to create the execution for it. Although this
might seem quite unintuitive at first, it is actually arather crucial aspect. What we have
done up to now is created some “methods’ that can be called. Actually we didn’t even do
that. We created the arguments for some methods that can be called. We now need to say
what methods each of those sets of arguments correspond to, and the order by which they
will be called.

Here' sthe code:

addAttribute.createStatementExecution(1,
Statement.getStatement(CompositeTransformation.NEW_OBJECT_STATEMENT),
newAttributeArgs);

addAttribute.createStatementExecution(2,
Statement.getStatement(CompositeTransformation.PRIMITIVE_TRANSFORMATION_STATEMENT),
addNewAttributeArgs);

A Small Discussion

Now asmall discussion that will be an appetizer of what will follow in the next sections.
Y ou have witnessed how areally simple template can be defined. Actualy itisa
simplified version of areally simple template.

Y ou should have noted two things (at |east)

16

1) Firstly that there is some equivaence of al of this code to a program written to
some (procedural) language. All it doesit stores some arguments in some
database, and provides some sort of guidance of how these arguments will be used
to execute a program that does something. It also has the notion of input and
output.

2) The second thing to noticeis how difficult it isto realize the first point.

If you select at random a computer science undergraduate, the chances is that he or she
has been told the following rule:
“Any problem in computing can be solved by adding an extralayer of abstraction.”

Using this rule combined with some common sense and observing points 1 and 2 will
probably make you realize that an abstraction of this code might very well lead us into
creating a programming language.

Other things you might have noticed is that there is nothing that prevents you from(or at
least helps you avoid) writing code that makes no logical or even implementational sense.
Thereis aso nothing that can prevent the user from inputting invalid input, or help the
program realize that the input that was entered was invalid.

One might thing that introducing some sort of typing (perhaps at a higher level) might
solve the problem.

This concluded the brief discussion and | hope you understood the need of providing a
wrapper to this APl and might have got a hint of how to go about devel oping one.

OK, back to the code.

Now that we defined the foreach template, we can define the foreach statement as well,
and link the template to it. There are severa details here that mainly have
implementational importance and | will avoid stating them. If you wish to learn exactly
how this statement works you should refer to Nikos Rizopoulos thesis. | will try instead
to give you asimplified version of the truth, hiding much of the implementational details.

The foreach statement is defined to have the following paramenters:

Arg pos | Description

1 Intital schema

2 seguences

3 singletons

4 template to be executed

5* Return value #1

6* Return value #2

* Return value #3 (and so on)

| have already given you ataste of how atemplate and a statement is defined, so from
now on | will try to be more descriptive rather than code-dumping.

17

Before | try to explain what each argument means, let’s recall what this statement is
supposed to do.

It should go through alist of names given as input to the (external) template (at position
2) and for each of those names it should add an entity with the particular name.

We aready defined the template that adds the entity. A high level definition of this
template we defined is:

New entity ID = addEntityTenpl ate(Entity_nanme, Initial_Schems);

So the foreach statement should do something like:

foreach[nanme I N input_nane_list]

addEntityTenpl at e(name, current_schens);

}

It would be useful to be able to accumul ate the entity ids created so that we could
accumulate them later. ie do something like this.

foreach[name I N i nput_name_|list]

{
I D = addEntityTenpl at e(name. current Schem) ;

resul tList.add(ID);
}foreach_return = result_list;

A more genera definition of the statement would be:

foreach[argl INIlistl, arg2 INIlist2, .,argNINIlistN]

{
(resl, res2, .,resM = perfornilenpl ate(tenplate args);

resul tListl. add(resl);
resul tList2. add(res2);

resultListM add(resM;

resul tListl
resul tList2

}foreach_returnl
foreach_return2

foreach_retrunM = resultListM

Note that al iterated list should have the same number of e ements (K) and the loop will
beiterated K times as well.

So here' swhat each of the arguments state:
1. initial schema: The schema on which the foreach statement starts on. Thisis
updated every time the loop isiterated. So you can get the final schema of the
statement from the same position.

18

2. sequences. A list of liststhat define the iterated listst inside the template. Taking
the abstraction above, it would be a pointer to alist containinng the lists: list1,
list2 ... listN.

3. Singletons: inside the loop there might be some loop invariant variables. So
singletons pointsto alist of loop invariants.

4. Templateto be executed should somehow point to the template to be executed
inside the loop. We are ommitting the technique used to pass parameters to the
template. You can find this technique on the NR thesis.

5. Thereturn values (returnListl .. returnListN are pointed at by arguments 5
onwards. So resultList K can be found at position 4+K.

For our case there are no singletons, and only 1 return argument.

The next statement isto add a generalization. The techniques used are the same as when
we added an entity (but quite more complex), so the ideais the same. The complexity of
this statement comes from the fact that the scheme of the generalization is quite more
complex than the scheme of the entity.
It should contain:
1. the name of the generaization, which can be taken from the third input argument
of the template.
2. the parent entity id, which can be taken from the 4™ input argument.
3. alist with the subentities. Thislist is the return argument of the foreach statement
we just created. so we can get it from there.

This means that the format of this statement will be similar to the one for adding an
entity. Thistime however the scheme arguments should contain areference to the first
input argument at position 1, areferce to the 4™ input argument at position 2 and a
pointer to the 5 (first return) argument at position 3.

If you look at NR thesis you will realise that adding the subentities to the scheme
required a new statement called EXTEND_GENERALISATION_SCHEME. During the
upgrade of thetool, it became apparent that this statement could be avoided.

Hopefully by now you have realized the purpose of generic transformation called
templates and the way they are defined using the initial API. Furthermore we
demonstrated that this API is functional but sometimes tedious and unintuitive which
brings the need of ahigher level API that will abstract the current one.

19

3.2 The Second API: The First Level Of Abstraction

3.2.1 Overview

Thefirst layer over the existing APl aims to abstract the following things:

1. Prevent either the programmer (who defines the template) or the user (who
implements the template) from using invalid input. For example you prevent the
user of inserting a string input where a number is expected.

2. Hide arguments from statements. Looks at the arguments of a statement as input
arguments and output arguments in which case you only define the input
arguments when you define the statement and only see its output arguments when
you want to useit.

3. Giveagraph abstraction to the program.

4. Avoid alot of theinitialization and finalization code which is standard for al the

templates
Template
[oput o ostpat
Arpuments External Template Arguments

Staternent

Input/Cutpuot
arguments

Abstraction Of Template Definition As Graph

In this API, templates and statements are treated as objects. All statements are derived
fromthe TSt at ement object, (examplesare AddSt at enent , Del et eSt at enent
Cr eat eLi st St at enent etc). Each template is an instance of the TTenpl at e
object. Each statement has TSt at errent Ar gunent s and each template has

TTenpl at eAr gunrent s. Both types of arguments are derived from the TAr gunent

20

class. Statement input arguments only have setter methods while output arguments only
have getter methods.

For example an AddStatement has settersfor:

set Fronchema // initial schema

set Function // sets the function

set Constraints

set Construct // sets the construct of the object to be added
setValue // sets the value of the new object (ie name)

and gettersfor:
resultingSchema // The argunent for the resulting schema after
// execution of statenent
resultingject //The argunent of the object id of the created object

Notethat all gettersreturn TSt at enent arguments. Setters for arguments which can be
passed by reference can be set by a TAr gunent ..

3.2.2 Types

Now arguments have types. This guarantees that you do not pass arguments around that
do not make sense. For example, you are not alow to refer to an argument that defines a
construct in order to define aschema. Here' s aview of the type treein the language.

o classuk.ac.ic.doc.automed.templates.wrapper. TType

class uk.ac.ic.doc.automed.templates.wrapper. T Type.L ist

class uk.ac.ic.doc.automed.templates.wrapper. T Type.Object

class uk.ac.ic.doc.automed.templates.wrapper.T Type.Schema

class uk.ac.ic.doc.automed.templates.wrapper.T Type.Secr et

class uk.ac.ic.doc.automed.templates.wrapper.T Type.String
o classuk.ac.ic.doc.automed.templates.wrapper. T Type.Constraints
o classuk.ac.ic.doc.automed.templates.wrapper.T Type.Function
o classuk.ac.ic.doc.automed.templates.wrapper. TType.Name

o classuk.ac.ic.doc.automed.templates.wrapper.TType.Supertype

O O O O ©o

Notethat TType. Secr et isfor argumentsthat are not passed around (for example
thereis an argument that defines whether a particular object istemporary or not).
TType. Super Type wasintroduced later when we needed a super type for lists whose
type whose element type was unknown (see section 3.3).

21

3.2.3 An Example Template

Here's an exampl e code using this APl which performs the same template transformation
as the example given previoudly, that is attribute to generalization equivalence.

public static void defineTenpl ate8()
throws Exception

/1 Define the constructs and nodel s//

Systemout.println("Mandatory Attribute to Generalisation");
Model er = Model . get Model ("erd d");

Construct entity = er.getConstruct("entitydd");

Construct attribute = er.getConstruct("attributedQd");

Construct relationship = er.getConstruct("rel ationshipdd");
Construct generalisation = er.getConstruct("generalisationdd");

/1 Define the tenplate inputs with types//

TTenpl ate tenpl = new TTenpl ate("TEST 8: Mandatory Attribute to
Equi val ence");

tenpl.setlnput("initSchema", "lInitial Schema", TConstants.SCHEM) ;
/1 The above sets input argument called “initSchena” to be of type SCHEMA, and
/luser is pronpted to add it, by the string: “Initial Schema”.

tenpl . setlnput ("GenNane", "Ceneralisation Nanme", TConstants. NAVE);

tenpl .setlnput("entity", "Entity ID', entity);

//tenpl.setlnput("Attr", "Attribute ID', attribute);

tenpl.setlnput("entityNames", "Entity Names", TConstants. NAVE,
TConst ants. LI ST) ;

For eachSt at enent foreach = new ForeachStat enent ();

foreach. set Schena(tenpl . get ! nput ("initSchem"));
foreach.setlterator("nane", tenpl.getlnput("entityNanmes"));
foreach. set Vari abl e("schema", foreach.resultingSchema());

AddSt at ement addEntity = new AddStatement ();
addEntity. set Construct(entity);
addEntity. set Val ue(foreach. get Current ("name"));
addEntity. set FronSchena(f oreach. get Current ("schema"));
addEntity. set Schene(new Object[]{addEntity.self});
foreach. set Bl ock(new TStatenment [] {addEntity});
foreach. set Qut put Li st ("subentities", addEntity.resultingObject());

AddSt at ement addGen = new AddSt at enent ();
addGen. set FronSchema(f oreach. resul ti ngSchema());
addGen. set Val ue(tenpl . get | nput (" GenNane"));
addCen. set Construct (general i sation);
addGen. set Schene(new oj ect [] {addGen. sel f,
"total ",
tenpl . getlnput("entity"),
f oreach. get Qut put ("subentities")
}

tenpl . set Qut put ("final Schema", "final schema", addGen.resultingSchenma());

/1 The following is very inmportant//
t enpl . set St at enent Sequence(new TStatenent []{foreach, addGen});

22

tenpl . execute();

}

Some things to notice:

» set Schenun isasetter for al statements.

* Notice how thef or each argument is constructed. A f or each statement
iteratesthrough alist. f or each. setl terat or (“nanme”, aListArg),
says that the statement iterates through the list pointed at by aLi st Ar g, and at
each iteration the iterated element wll be refered to by:
foreach. getCurrent (“name”); Theset Vari abl e function sets
variables that can be used within the loop (not the iterated ones).

* Notethelast two arguments of the template. Thefirst one actually links the
statements to produce a program. The last one is the statement that actually
updates the database.

Y ou might have redlized that this APl does not add any extra functionality to the
previous one. It just sits above the existing API and provides the abstractions we have
described. Remember that our main goal isto make something that looks like a
programming language. Thisis not quite yet a programming language yet but you might
be able to see how it can be used to create one.

The following section will describe a pseudo-programming language and its pseudo-

compiler that was created on top of this API. Again thiswill not add any extra
functionality only extra usability.

23

3.3 A Template Programming Language

Question: In which language is this program written?

START() ;

FOREACH(); NAME subNanme =I N (subEntityNanes);
NAME popNane =I N (popul ati onOf Entities);
OBJECT att =VARI ES_W TH(exi stingAttribute);
OBJECT parent =VARIES_W TH(parent Entity);

DA() ;

FUNCTI ON f1 = DEFI NE_FUNCTI ON(" @ubnane(X) : - @t t ?scheme(X, @aneG ven)");

OBJECT newkntity = ADD(CONSTRUCT. | S(entity),
SCHEME. | S(new (bj ect [] {ny(subNane)}),
FUNCTI ON. | S(f 1)

)
OBJECTLI ST createdEntities =COLLECTS(newEntity);
ENDFOREACH() ;

ADD (generalisation,
new Obj ect [] {my(genNane),
"total ",
parentEntity,
createdEntities

}
)
exi stingAttribute. DELETE();
END() ;

Answer: Java.

If you failed to answer this question correctly then the design of the language was
successful. Theideaisto create a programming environment where the programmer
writes ajava program in such away that it gives theillusion that he iswriting some
procedural language.

3.3.1 The TDL Programming Language

| have to admit this language is not yet to the state where it would deserve a name given

to it. However for this document (and for this document only) we have to give it a name

for convenience. After serious considerations (that lasted 5 seconds) | decided to name it
TDL, which stands for Template Definition Language.

In this section you will learn how to write templates using this “language’, which has

been built using the API described in the previous section. We will describe the language
in several lessons each describing a different aspect of it.

24

Lesson 0: A Quick Syntax Index

If you aready know much of the syntax of the language and only need to recall some of
the statements and what they do you will probably appreciate this lesson. The following
table prompts you to which lesson you should read for each of the language statements
and keywords

Statement/K eyword Explained at lesson

ADD

ALI AS

askFor Constrai nts

askFor Constrai nt sLi st

askFor Constrai nt sLi st

askFor Functi on

askFor Functi onLi st

askFor Functi onLi st

askFor Name

askFor NaneLi st

askFor Qbj ect

askFor Qbj ect Li st

COLLECTS

CONSTRAINTS. | S

CONSTRUCT. I S

CONTRACT

CREATE_LI ST

def aul t Model ()

DEFI NE_CONSTRAI NTS

DEFI NE_FUNCTI ON

DEFI NE_NAVE

DEFI NE_STRI NG

defi neTenpl at e()

DELETE

DO

ELEVENT AT

END

ENDFOREACH

EXTEND

FOREACH

FUNCTION. | S

I N

I NPUTS

my

SCHEME. | S

O WWA O WROWO|IFPO X JRNINNNPFRPOOWW | AR PR PR PANW

SCHEME_LI ST

25

S| ZEOF

START

t enpl at eDescri ption

t enpl at eNane

TypeConstraints

TypeConstrai nt sLi st

TypeFuncti on

TypeFuncti onlLi st

TypeNanme

VAR ES W TH

D OOOOO|IRrIFIFI>

26

Lesson 1: Getting Started

This lesson describes how you can use the provided API to write TDL programs before
we start describing the syntax of the language. We assume you have the AUTOMED API
(http://www.doc.ic.ac.uk/automed/rel eases/index.html) already installed on you computer
as well as the necessary resources required to run AUTOMED programs (see
http://www.doc.ic.ac.uk/automed/ for details).

Tenpl at eConpi | er Si mul at or isan abstract class found in the AUTOMED API.
Any TDL program should extend this class.

Template CompilerSimularor

£%

TemplateDetinitionProgram

Template compiler simulator provides (amongst other things) a generic structure for a
TDL program. The subclass should specify its details by defining certain abstract
methods, which are summarized below:

Abstract method Purpose
String tenplateName() The name of the template that will be stored in the
repository.

String tenplateDescription() | A descriptionfor thetemplate, which will be
stored in the repository

String defaul t Model () The name of adefault model that the template is
concerned with. Defining the model here gives a
good syntactic shortcut when the program will be
written.

voi d defineTenpl ate() Here's where the TDL program is written

Here's an extremely simple program, which describes a template that doesn’t do
anything. It illustrates the minimum requirements that a program needs in order to work.

i mport uk.ac.ic.doc.autoned.tenpl at es. w apper. *;

public class EnptyTenpl at eProgram
ext ends Tenpl at eConpi | er Si mul at or

/* The constructor should have the follow ng fornt/
publ i c EnptyTenpl at eProgrant)
t hrows Exception

27

super () ;

/*Define the abstract nethods*/

protected String tenplateNanme()

{
return "Enpty Tenpl ate”;
}
protected String tenplateDescription()
{
return "This is an test tenplate that basically doesn’t do
anyt hi ng";
}
protected String defaul t Model ()
{
return "er";
}

/*Define the tenpl ate*/
protected void defineTenpl ate()
throws Exception

{
START() ;
END() ;
/* Don’t worry about what these nean */
}
public static void main(String [] args)
{
try
{
new Enpt yTenpl at eProgrant)
}
cat ch(Exception e)
e.printStackTrace();
}
}

28

When does the program compile?

This question can be quite confusing since we are dealing with two different languages at
the same time. We are writing a TDL program inside a java program. Since the TDL
program is written in java, it should conform to the java constraints, but also to the TDL
constraints. So compiling the program (using javac) will check whether the programisa
correct java program. After doing that, running the java program will check whether it is
acorrect TDL program. So compiling it and running it, intuitively means that you are
compiling it, which will in fact define the template in the repository. From now on when
we say compile the TDL program we mean compile and run the java program.

29

Lesson 2: Types

TDL isatyped language. There is afinite number of types which are static in the sense
no user defined types are supported.

The following diagram illustrates the type hierarchy of TDL, and it will be a good
reference for the lessons to follow.

ITEM
LIST OBJECT STRING
CONSTRAINTS | | FUNCTION | | HAME
OBJECTLIST | | STRINGLIST
FUNCTIONLIST | | CONSTRAINTSLIST | | HAMELIST

Note that although you could play with casting (java allows that) the TDL program will
not do what you think it would in such acase. ITEM is considered an ABSTRACT type
in the sense that it cannot be instantiated in TDL.

30

Lesson 3: ADD statement

As you should know by now, the TDL program is written inside the

defi neTenpl at e() function. Theideaisthat the keywords of TDL are java
functions.

Any TDL program should have the START() ; and END() ; keywords.

START() ;
END() ;

isavalid program that does nothing.

The statements of the program should be written inside the START() ; END() ;
keywords. This lesson explores the ADD statement, which adds an object in the schema.
We will start describing this statement by writing a simple program.

Note that the EXTEND statement works exactly in the same way as the ADD statement
but performs an extend instead of an add transformation.

It is customary for the first program demonstrated in any programming language to be the
Hello World program and we are not planning to be an exception. TDL does not have
the notion of output, so instead we shall write a program which adds an entity called
Hello_World. We will write the entire class for the last time, after that we are only
focusingonthedef i neTenpl at e() part. Here’show it goes:

31

/I Define the tenplate//

protected void defineTenpl ate()
t hrows Exception
{

START() ;

NAME entityNanme = DEFI NE_NAME("Hell o_World");
OBJECT newEntity = ADD(CONSTRUCT. | S("entity"),

SCHEME. | S(new Obj ect []
{ny(entityNane)})
)

END() ;

DEFI NE_NAME creates a NAME. (For now just know that, as we will describe this
statement later.) Here it creates the NAME with value “Hello_World”;

An ADD statement takes minimum 2 arguments:
1. Theconstruct of the SchenmaQbj ect that is added
2. the scheme of the object.

It returns an OBJECT: the object created after the statement is executed.

32

Now let’s take alook at the first two arguments, and how you could fill themiin.

Construct

This defines the construct of the created object. In this example we said

CONSTRUCT. | S(“entity”); Thisisbecause we have already said that our default
model wasthe “er” model and in the repository “entity” is defined as a Construct of this
model. Thisis actually one of the syntactic shortcuts of the language.

An dternative way of giving the construct is to say (at the beginning of the function):

Model er = Model . get Mbdel (“er”);
Construct entity = er.getConstruct(“entity”);

and then, instead of writing CONSTRUCT. | S(“entity”), youjustwriteentity,or
CONSTRUCT. | S(entity);

Note that when you CONSTRUCT. | S isapolymorphic function. When you giveit a
St ri ng asan argument it triesto return the Const r uct given as

def aul t Model . get Construct (“string”); WhenyougiveitaConstruct
as an argument it just echos the argument. The only reason you want to use
CONSTRUCT. | S(entity) instead of justent i ty isfor readability.

Scheme
This defines the scheme of the object that is added (for more on how schemeisused in
automed consult the automed website and the API documentation).

The scheme is defined as an array of Qbj ect s (java Objects). The construct of the
OBJECT that is added dictates the structure of the scheme. Each member of the array
can be of the following forms:

a) An OBJECT: When an other Scherma(bj ect isreferred to at the particular
position of the scheme

b) A STRI NG(aTDL STRI NGnot ajavaSt ri ng): When at this position in the
schemeis St ri ng type (for example: “1:1”, “total” etc)

c) AjavaStri ng: Used as above.

d) A LI ST: When this position of the scheme has an unbounded upper limit. For
example when this position holds the subentitites of the generalization. Since the
number of subentities varies, you create an OBJECTLI ST that holds al
subentities, and use this list at the particular position.

e) ny(NAME): Thisisaspecia case of where you use a name. When you use a
NAME that is the name of the object that is added you need to point it explicitly by
sayingny(ent it yNanme) for example. If you just say ent i t yName you will
get an invalid scheme exception. All schemes should contain one of these.

In the example above the object added wasan ent i t y. Entity scheme only holds the

name of the entity. So we could define the scheme as:
new Object[]{my(entityNane)}

33

which is completdy valid. However for readability purposes you might want to say:
SCHEME. | S(new Obj ect[]{my(entityNane)})

SCHEME and CONSTRUCT are mandatory parameters and should be used in whenever
ADD is used. Besides these however, you could define a FUNCTI ON and
CONSTRAI NTS of the transformation. Y ou could use a function by:
a) UsingaFUNCTI ONdirectly
b) UsingaFUNCTI ONf and saying FUNCTI ON. | S(f)
c) Usingajava String and saying FUNCTI ON. | S(“function definition
o)
the same goes for CONSTRAI NTS.

The overloading of the ADD function is shown in the following table (extracted from the
API documentation)

protected OBJECT | ADD(Construct con, Object[] scheme)

protected OBJECT | ADD(Construct con, Object[] scheme, CONSTRAINTS c)

protected OBJECT | ADD(Construct con, Object[] scheme, EUNCTION f)

protected OBJECT | ADD(Construct con, Object[] scheme, FUNCTION f, CONSTRAINTS c)

protected OBJECT | ADD(Construct con, Object[] scheme, CONSTRAINTS ¢, FUNCTION f)

Here are some examples of how add is used:

OBJECT newkntity = ADD(entity,
SCHEME. | S(new hject [] {my(subNane)}),
FUNCTI ON. | S(f 1)

);

ADD(CONSTRUCT. | S(“entity”),
SCHEME. | S(new hject [] {my(subNane)}),
FUNCTI ON. | S(f1),

CONSTRAI NTS. | S(c1),

);

34

ADD (CONSTRUCT. | S(“general i sation”,
new Cbject [] {my(genNane),
“total ",
parentEntity,
createdEntities

)

OBJECT newRel = ADD(CONSTRUCT. | S("rel ationship"),

SCHEME. | S(new Obj ect [] {my(newRel ati onshi pNane),
exi stingEntity,
newentity,

"1:1n,
"1:N'})

An OBJECT that is added enters the current scope and can be used by other OBJECTs
later.

When an ADD transformation is implemented, the new object is added to a new Schema.
Thisistruefor all tranformations:. they take you from a source schemato atarget schema.
For the lower layers of the template definition API, linking from one schema to the next

should bee done explicitly. Here thisis done on the background and hidden from the user.

35

Lesson 4: Template Inputs

We have already explained that the statements of a TDL program are inside the
START() ; / END() ; keywords. Optionally, before START() ; You could define the
inputs of the template. Inputs are defined after the | NPUTS() ; keyword. So the
structure of the programis:

| NPUTS() ;

/'l define the inputs here
START() ;

/'l the program

ENDX() ;

The default input for each template istheinitial schema. Thisis hidden from the
programmer, but when the templ ate is executed the first input that it asks for isthe initia
schemaid. However the programmer can ask for more inputs.

Each input has a type and you can have arguments of any of the leaf types. The following
diagram highlights the types that an input can have:

LIST I OBIECT I STRING

| covstramrs | [Fowemion | [wame

| omecrisr | Lsmamcst |

7%

§ FUNCTIONLIST g § CONSTRAINTSLIST § § NAMELIST o
L 11 11 1

Y ou define inputs using ask For statements. There is a different statement for each type.
for example:

askFor Qbj ect

askFor Constraints
askFor Qbj ect Li st
askFor Constrai nt sLi st
etc

Thefirst argument of askFor statementsis always the String that will prompt the user
to insert the particular input argument. For example:

36

askFor Nane(“Pl ease insert the name of the entity that will be added”);

Before we start describing these statements, here’ s the definitions of the askFor functions
taken from the APl documentation:

T ERRRRRRRrRrR_ssw2B3685685LE655886868886B6885068688B8580633838T83BBBL::=::::?36:B:=BCBBbBbBbBbBbBLlZmpIszS
protected CONSTRAINTS |askFor Constraints(String description)

protected FUNCTION |askFor Function(String description)

protected NAME | askFor Name(String description)

protected OBJECT |askFor Object(String description)

protected OBJECT |askFor Object(String description, Construct constr)

S —————————————————————
protected CONSTRAINTSLIST |askFor ConstraintsL ist(String description)

protected FUNCTIONLIST |askForFunctionL ist(String description)

protected NAMELIST |askForNamel ist(String description)

protected OBJECTLIST |askFor ObjectList(String description)

protected OBJECTLIST |askForObjectList(String description, Construct constr)

S —————————————————————
protected CONSTRAINTSLIST |askFor ConstraintsL ist(String description, LIST ref)

protected FUNCTIONLIST | askFor FunctionList(String description, LIST ref)

protected NAMELIST |askForNameL ist(String description, LIST ref)

protected OBJECTLIST |askForObjectList(String description, LIST ref)

protected OBJECTLIST |askForObjectList(String description, Construct constr, LIST ref)

37

Ask for Constraints, Function, Name

Thisisthe simplest case. The description is the only required argument. For example:

NAME entityName = askFor Nane(“lnsert name of entity to be added”);

FUNCTI ON func = askFor Function(“Insert the function for the
transformation”);

CONSTRAI NTS cons = askForConstrai nts(“lnsert the constraints of the
transformation”);

Note that the created | TEMS can be used later in the program.

Ask for Object

OBJECT obj = askForOhject(“Insert an object”);

The will ask for an object of any construct. If you wish to specify a construct you will
have to use a second parameter.

OBJECT obj = askForObject(“Insert an entity”, CONSTRUCT.IS(“entity”));

(The way Constructs are used is explained in previous lesson (ADD statement))

Ask for Lists

In asimilar way to how you ask for single ITEMSs, you can ask for lists of ITEMs. For
example:

NAMELI ST subentities = askFor NarmeLi st(“lnsert the nanes of
subentities”);
OBJECTLI ST attributes = askFor(bjectList(“Insert some attributes”,
CONSTRUCT. | S(“attribute”));

Sometimes several lists should be of the same size. For example you might want alist of
entities and alist of names, one for each entity. So you would want the two liststo be of
the same size. One way to do it isto trust the common sense of the user and pray that he
will understand from the description that the two lists should be of the same size. On the
other hand you might want to enforce this constraint at compile time. In this case you
should add an extraargument at the end of the second ask for statement to say that it
should be of the same size as thefirst. For example:

OBJECTLI ST obj ects = askFor Cbj ects(“Insert sone objects”);

38

NAMELI ST nanes = askFor Nanmes(“G ve the nanmes of the objects”, objects);

the second statement says ask for alist of the same size asthe objects list.

For readability you could instead say:
NAMELI ST nanmes = askFor Names(“ G ve the nanmes of the objects”,
SI ZEOF(obj ects)) ;

We could have mor e than two lists having the same size. To understand what happensin

this case, think of the lists as nodes, and think of referencing one list from an other as
adding an arc from one node to the next. For exampl e the above created the following

graph.

Theruleis: A list hasthe same size as dl the lists that are reachable from it. For example
in the following diagram, the lists with the same color have the same size.

O

39

Lesson 5: DELETE

Y ou can delete objects that are in the current scope. After you deletethe object it is
removed from the current scope. So for example you cannot delete it and then rename
it or useit in the scheme of an other object. Note that the CONTRACT statement works
exactly like the DELETE statement

The following program asks for an object and then deletesiit.

I NPUTS() ;

OBJECT obj = askForbject(“Object to be deleted”);
START() ;

DELETE(obj) ;

END() ;

If you try to use obj after the DELETE statement, it will complain for trying to access an
| TEMthat is not in the current scope.

A more readable way of saying DELETE(obj) ; is:
obj . DELETE() ;
Which does the same thing.

Y ou could add two more arguments to the DELETE statement, namely the FUNCTI ON
and CONSTRAI NTS, used in asimilar way as the ADD statement (see lesson 3 for more).

Examples:

obj . DELETE(FUNCTI ON. I S(f 1), CONTRAINTS.IS(cl));
DELETE(obj, FUNCTION.IS(f1l), CONSTRAINTS.1S(cl));
obj . DELETE(CONSTRAI NTS. | S(c1));

The overloading of the DELETE function is shown below:

protected void | DELETE(OBJECT obj)

protected void | DELETE(OBJECT obj, CONSTRAINTS c)

protected void | DEL ETE(OBJECT obj, CONSTRAINTS ¢, FUNCTION f)

protected void | DEL ETE(OBJECT obj, FUNCTION f)

protected void | DEL ETE(OBJECT obj, FUNCTION f, CONSTRAINTS c)

40

Lesson 6: RENAME

This statement to rename SchemaCbj ect s and it is quite straight forward. It takes the
OBJECT to be renamed and the new name as arguments. The following example
renames an object with a name given as a paremeter.

I NPUTS() ;
OBJECT obj = askForObject(“COhject to be renaned”);
NAME newNane = askFor Name(“New nane given”);

START() ;

RENAME(obj , newNane) ;
END() ;

Similar to DELETE, you could rename the object by saying:
obj . RENAVE(newNan®) ;

If you knew the new name at compile time you could use ajava String instead of a NAVE.
For example:

RENAME(obj , “john”);
obj . RENAME(“j ohn”) ;

41

Lesson 7: String manipulation in TDL

Strings and string manipulation in TDL is often confusing partly because there is often
theissue of what isajava St ri ng and what isaTDL STRI NG But before | frighten
you even more, recall on which items are considered aTDL STRI NGs by looking at the

type tree below.

COMSTEAINTS FUNCTION NAME

There are 4 main statements that have similar structure, one for each type:

DEFI NE_STRI NG
DEFI NE_CONSTRAI NTS
DEFI NE_FUNCTI ON
DEFI NE_NAVE

The difference between them is merely to the type of STRI NGthey produce, from then
on if you know one of them you know all of them, that’s why we shall not comment on
each one of these independently but instead use them interchangeably.

There are two ways to use these functions: Using Obj ect arrays, andusing St ri ngs.
They both have the same expressive power, however the second one is much more
elegant. We will however explain the first way first asit is simpler and we will later
explain how the second way is derived form the first.

Define STRINGS Using Arrays

The main idea hereisthat you create a STRI NG by concatenating other STRI NGs. For
example, let’s say that we somehow managed to define two Strings:

STRING hello; //has the value “hello_”
STRI NG worl d; //has the value “world”

We can concatenate these two into a new string by saying:

NAME hw = DEFI NE_NAME (new Cbject [] {hello, world};//”hello_world”

42

The Qbj ect [] could have any STRING asits elements. Furthermoreit could also have
anyjava String. Sofor example:

FUNCTI ON hw = DEFI NE_FUNCTI ON(new Cbj ect [] {“hello_",
wor | d,
“ how are you”,

EADEY

hw now has the value “hello_world how are you?

Note that the STRI NGwor | d could have come froman | nput soitsvalue can be
dynamic.

Define String Using Java String

If we want to define string hel | o_wor | d we could just say:
STRING hw = “hell o_wor | d”;
But we would like to do the concatenation stuff we did in the previous approach. Saying:

STRING hw = “hell o_"+wor| d+“how are you” +*?” ;

is not appropriate, asit will just take the string representation (t oSt ri ng()) of the
wor | d variable and form a new static St r i ng (remember that the TDL program
compiles when the java program runs).

Now consider the following program. What it does, is asks the user for her name and
define a STRI NGthat could for instance say: “User’snameis Julie”

I NPUTS() ;

STRI NG name = askFor Nane(“Wat is your nanme?”);
START() ;

ALl AS(nane, “nane”);

STRI NG sentence = DEFINE_STRINE “User’s nane is @ane”);
END() ;

What ALI AS does, isassign an dliasjavaSt ri ng toan| TEM For example here the
String“nanme” isandiasfor the STRI NGnamne. Here we decided to call it “ nane”
but we could call it anything of the correct format:

Aliases for mat:
* Made up only of aphanumeric characters
* Havealength of at least 1.

An | TEMcan have any number of aliases, but an alias can only be assigned to asingle
| TEM You can only define aliases for | TEMVS that are in the current scope.

STRI NG sentence = DEFINE_STRING “User’s nane is @ane”);

is equivalent to:

STRI NG sentence = DEFI NE_STRI N new Cbject[] {“User’s nanme is”, nane});
and in fact when the string above is parsed thisis what it returns.

If you want to clearly define the name of the dias, you can includeit in brackets, e.g.

STRING sentence = DEFI NE_STRI NG “User’s name is @nane)”);
Is equivalent to the previous example. Thisis useful when the rest of the sentence after
the alias contains al phanumerical characters, e.g.

NAME pri mar ykeyName = DEFI NE_NAME(" @ speci al i zati onTabl eNane) _pk");

Having defined the dlias you can useitina St r i ng such that @l i as refersto theitem
that the aliasis aliasing. For now, just assume that you can only use aliases of OBJECTs
and STRI NGs inthe St r i ng.

Using an OBJECT in the String will actually place the ID of the SchermaObj ect inthe
repository. Eg.

STRING s = DEFINE_STRING(“entity is @yEntity”);

will return something like: “entity is 1427;

| can’t think of any real application where this could be of any use. However there are a
coulple of tricks we can do that makes the use of object reallyuseful :

?name extention and

?schene extension

For example:

STRING s1 =DEFI NE_STRING “attribute name is @yAtt ?nane”);
STRING s2 = DEFINE_STRING “attribute schene is @ryAtt ?schene”);

sl will give something like“attri bute name is p_code”
s2 will give somethinglike“attri bute schene is <<person, p_code>>"
depending of how the scheme of the attribute is defined in the repository.

Concatenating Stringlists

An other | TEMinstance we can usein aDEFI NE_STRI NG statement isa
STRI NGLI ST. What it does is concatenate al the elements of the STRINGLIST. For
example:

I NPUTS() ;
STRINGLI ST fruits = askFor StringList(“Wich fruits do you
like?");
START() ;

ALI AS(fruits, “fruits”);
STRING f = DEFI NE_STRI NG(“User likes: @ruits”);

END() ;

If the user entered the list:
Apples
Pears
Figs

f would havethevaue: “ User 1i kes: Appl esPearsFi gs”

| am sure you can think of numerous tasks where the above example can be applied to a
real Database Schema Integration process (ok, stop laughing), however when we explain
how looping works you will really realize the use of this feature.

There is aso the option to define the substring that will appear in between the strings that
are concatenated. All the DEFINE_STRING methods are overwritten with an extra
artument (String) which defines the concatenation string to be used. For example, the
following STRING f

STRING f = DEFINE_STRING(fruits, “++");

would have the value “ Appl es++Pear s++Fi gs”. This can be very useful when
concatenating 1QL queries.

45

Lesson 8: Looping in TDL, the FOREACH statement

Looping in TDL is done using a FOREACH statement. A FOREACH iterates through alist
and can use the current element of the list at each iteration.
The general structure of the statement is the following:

FOREACH() ;
/| For each Header
DA() ;
/| Loop Bl ock
ENDFOREACH() ;

VERY IMPORTANT

The scope of the Loop Block contains ONLY the variables declared at the Foreach
Header. If you want to use a variable that was on the scope before the loop, you have to
explicitly re-declare it (using VARI ES_W TH see later) on the Foreach Header. Variables
declared inside the loop body are not on the scope outside the loop (except COLLECT
lists see later).

The following program asks the user for alist of names, and adds entities with those
names, one for each name

I NPUTS() ;
NAMELI ST entityNanes = askFor NameLi st ("Names of entities to
add") ;

START() ;
FOREACH(); NAME currentName =IN (entityNanes);
DAX() ;
OBJECT newkntity = ADD(CONSTRUCT. | S(entity),
SCHEME. | S(new Obj ect []
{ny(current Nane)}),
)

ENDFOREACH() ;

ENDX() ;

The main header statement isthe = N statement.
Seeing | Nasajavamethod, it takesa Ll ST and returns an | TEMof the same type as the
elements of the list. Here' s the overloading of the function

46

protected CONSTRAINTS [IN(CONSTRAINTSLIST conlList)

protected FUNCTION |IN(FUNCTIONLIST funList)

protected NAME |IN(NAMELIST nmList)

protected OBJECT |IN(OBJECTLIST oblList)

In the example above, it takesa NAMELI ST and returns a NAVE.
NAME current Name =IN (entityNamnes);

thissaysthat cur r ent Nane iterates through the list ent i t yNanes, and takes the
current value of thelist at each iteration of the loop. The loop isiterated as many times as
the number of elementsinthelistent i t yNanes.

Y ou can iterate through more than onelist at any time. Y ou could say:

FOREACH(); NAME current Name =l N(entityNanes)
OBJECT currentAttr =IN(attributes)

Thelistsent i t yNanes andat t ri but es should have the same size, otherwise the
program might misbehave. If these lists come from the inputs, you could enforce this by
using the SI ZEOF option (see lesson for inputs).

VARIES WITH

Aswe said above, if you want to use an item that comes from outside the loop inside the
loop, you will haveto re-declareit on the loop header. Thisis done using the
VARI ES W TH statement.

For example:

OBJECT parentEntity = ..

FOREACH(); NAME current Name =l N(subentities);
OBJECT parent =VARI ES_W TH(parentEntity);

DA() ;
ENDFOREACH() ;-

So par ent isbasicaly the same object aspar ent Ent i t y asfar asthe programmer is
concerned.

a7

Collecting Insidethe loop

We have already mentioned that what is created inside the loop is not accessible outside
the loop. Thiswould mean that you cannot use things that are created by the loop outside
of it.

Thisistrue. However you can use the COLLECT S statement, to create lists that collect
objects that are produced inside the loop.

FOREACH(); NAME currentName =IN (entityNanes);

DAX() ;
OBJECT newEntity = ADD(CONSTRUCT. | S(entity),
SCHEME. | S(new Obj ect []
{ny(current Nane)}),

)
OBJECTLI ST createdEnts =COLLECTS(newEntity);
ENDFOREACH() ;

Each time the loop isiterated an entity is created, and added to the cr eat edEnt s
OBJECTLI ST. Caollecting lists are accessible outside the loop. COLLECTS statements
should be the last statements of the loop block but you can have more than one
COLLECTS statements.

Nested L oops

Nested loops are supported in TDL. There is nothing specia with nested loops. Just
remember that if you want to use avariable that is outside the loop in the internal loop,
you will have to re-declare it on the header of the outer loop and re-re-declare it on the
header of the internal one.

From what we learned up to now you should be able to understand and reproduce the
following TDL code that implements an Attribute to Generalisation equivalence template
transformation (not complete as it needs some more functions).

I NPUTS() ;
OBJECT parentEntity = askForObject ("Exi sting parent entity",
entity);
OBJECT existingAttribute = askForCbhject("Attribute to be
del et ed”,
attribute);

NAMELI ST subEntityNanes = askFor NarmeLi st (" Names of the
Subentities");

48

NAMELI ST popul ati onOf Entities = askFor NameLi st (" Val ues of the
attribute that correspond to
subentities"”,

Sl ZEOF(subEnt i t yNames)) ;

NAMVE genName = askFor Nane(" General i sation Nane");

START() ;

FOREACH(); NAME subName =I N (subEntityNames);
NAMVE popNane =IN (popul ationOfEntities);
OBJECT att =VARIES_W TH(exi stingAttribute);
OBJECT parent =VARIES W TH(parentEntity);

DA) ;
ALI AS (popNanme, "nanmeG ven");
ALl AS (subNanme, "subnanme");
ALI AS (att, "att");
ALl AS (parent, "parent");

FUNCTION f1 =
DEFI NE_FUNCTI ON(" @ubnane(X) : -
@tt ?schenme(X, @aneG ven)");

OBJECT newEntity = ADD(CONSTRUCT. | S(entity),
SCHEME. | S(new Ohj ect []
{my(subName)}),
FUNCTI ON. | S(f 1)

)
OBJECTLI ST createdEntiti es =COLLECTS(newEntity);

ENDFOREACH() ;

ADD (generalisation,
new hject [] {my(genNane),
“total ",
parentEntity,
createdEntities

exi stingAttribute. DELETE();
END() ;

49

Lesson 9: Manipulating the Scheme of Objects

Up to thispoint, TDL is (relatively) strongly typed. The programmer is not allowed to
play with types and therefore we are guaranteed (to some extend) that once the TDL
program compiles then the program will run well (remember that TDL program compiles
means the java program runs).

Thislesson introduces the statements:

e SCHEME LI ST : Createsalist containing the scheme items of an object.

e ELEMENT_AT : Accessesanitem of thelist at a particular position. The type of
the object has to be explicitly stated when the statement is used.

 CREATE_LI ST : Createsan arbitrary list of | TEMabjects. Its main useisthe
definition of an object’s scheme.

Someone should use these statements only if she is sure how the scheme of each object is
defined inside the repository.

| could spend quite some time talking about these statements but | think | would save
quite someink and paper if | described what is going on using an example.

Assume we would like to write a template that resolves Generalization Attribute
equivalence by replacing the generalization with an attribute with the same name as the
generalization. An instance of this transformation isillustrated below.

animal

class

animmal —@

maiminal fizh bard

In order to perform this transformation we will have to know:
e The parent entity (animal)
* The generalization (class)
e The subentities (mammal, fish, bird)

With the statements we have explained up to now, in order to perform this transformation

we will have to ask the user to enter the parent entity, the generalization and alist with
the subentities.

50

However, the parent entity and the subentities, are all part of the scheme of the
generalization. So if we could access the scheme of objects, then in fact all we would
only require from the user isto give is the generalization.

Here's an example of the scheme of an SchenaObj ect (generalization) as defined in
the Automed repository (for more on schemes see the Automed website).

Index | Scheme Object at this position Type Example

0 name of generalization string/single “class’

1 type of generaization string/single “total”

2 parent entity object id/single animal:1D

3 subentities object ids/ list list: (mammal:1D,
fish:ID, bird:ID)

This can be seen as alist with adifferent element at each position. As you can see
different positions have different types. Abstracting the types in the table above to TDL
types, then indices 0 to 4 would have the following types:

Index | TDL type

0 STRING

1 STRING

2 OBJECT

3 OBJECTLIST

I will tell you now that you can obtain the Scheme List using the SCHEVE_LI ST
statement. The main problem now iswhat type should this list be? | remind you that the
list types are the following:

7N

OBJECTLIST | [stRsLsT |

FUNCTIONLIST | | CONSTRAINTSLIST | | NAMELIST

51

None of the leaf types can suit the type of the scheme list. The schemellist is therefore of
type LI ST and we give freedom to the programmer to specify what type each element
has.

To make things even worse, The LI ST given by the SCHEME_LI ST contains lists of
one element instead of singleitems. The table below summarizes what you will really get
when you get the scheme list:

Type at scheme What you get

OBJECT An OBJECTLIST of one element that contains the object at
index zero

STRING A STRINGLIST of one element that contains the string at
index zero

OBJECTLIST OBJECTLIST

In other words, in order to get the parent entity, you should get the OBJECTLI ST at
position 2, and from that take the OBJECT at position 0.

Getting the scheme list can be done quite simply:

LI ST schenelLi st SCHEME LI ST(nyGeneral i sation);

Or

LI ST schenelLi st myCGener al i sati on. SCHEME LI ST() ;
Note that you cannot usethe scheneLi st created intheforeach statement as
you are only allowed to iterate a LIST but only the leaf types of LIST.

The only way you can useit is using the ELEMENT _AT statement. Since we don’t know
what the element at each position is, we trust that the programmer will explicitly say what
the type of the element is and that this type will be correct.

So, ELEMENT _AT isused in the following way:

CONSTRAI NTS ¢ = (CONSTRAI NTS) alLi st. ELEMENT_AT(O, TypeConstraints);
FUNCTI ON ¢ = (FUCNTI ON) aLi st. ELEMENT_AT(3, TypeFuncti on);

OBJECT ¢ = (OBJECT)aList. ELEMENT_AT(5, Type(hject);

STRING ¢ (STRING) aLi st. ELEMENT_AT(2, TypeString);

STRINGLI ST ¢ = (STRINGLI ST) aLi st. ELEMENT_AT(2, TypeStri nglLi st);

And so on, for al types (except | TEMand LI ST). Note the how casting is used, and how
the elements are indexed from position zero.

52

When the Construct of the OBJECT in thelist, it is better to specify it by:

OBJECT entity = (OBJECT)alList. ELEMENT_AT(5, CONSTRUCT. | S(“entity”));

So far, we' ve seen how to get LI STsfrom existing methods, e.g. SCHEME_LI ST() . In
order to create your own LI STs, you need to usethe CREATE_LI| ST statement. It has a
single argument which is an array of | TEMs that constitute the list.

This statement is useful for defining the scheme of an object and especially when you've
got nested lists. For example, to create the scheme of a primary key construct you need a
list of al the columns of the table that are part of the primary key:

OBJECTLI ST pri maryKeyCol utms =
(OBJECTLI ST) CREATE_LI ST(new | TEM] { newCol um}) ;
ADD(CONSTRUCT. | S(pri mar ykey),
SCHEME. | S(new hj ect[]{my(pri marykeyNane), newSpeci al i zati on,
pri mar yKeyCol ums})
)

Now take alook at the Generalization to Attribute Equivalence we promised you. All
the syntax has been described already. Note how we first take the OBJECTLI ST that
contains the parent entity and use that to take the first element, ie the parent entity itself

I NPUTS() ;
OBJECT generalisation = askFor Obj ect ("Existing parent entity",
CONSTRUCT. | S("generalisation"));

START() ;

LI ST genSchene = generalisation. SCHEME_LI ST();

OBJECTLI ST parentList = (OBJECTLI ST)genSchene. ELEMENT_AT(2,
TypeObj ectList);

OBJECT parent = parentList. ELEMENT_AT(0, CONSTRUCT.IS("entity"));

OBJECTLI ST subEntities = (OBJECTLI ST)genSchene. ELEMENT_AT(3,
TypeObj ect Li st);

general i sati on. DELETE() ;

FOREACH(); OBJECT subEntity =IN(subEntities);

DAX() ;
subEntity. DELETE();

ENDFOREACH() ;

ADD(CONSTRUCT. | S("attri bute"),
SCHEME. | S(new Obj ect [] {parent, ny(attNane), "key"})

END() ;

53

3.3.2 Runtime Template Transformations

The discussion in the previous section was focused on static template transformations.
They are static because a specia Java program needs to be written for each one of them,
with specific methods that should override methods of the

Tenpl at eConpi | er Si mul at or . (see Lesson 1).

The AutoMed API enables also the definition of Runtime Template Transformations.
Thereisaclass Def aul t Tenpl at e which can be used for this purpose. To create a
template transformation at run-time, you need an instance of the Def aul t Tenpl at e,
which you set to have the arguments and statements you need. The syntax is exactly the
same as described in the previous section.

A sample of the code that creates a run-time template transformation follows:

Def aul t Tenpl ate t = new Defaul t Tenpl ate(er, “runtine tenplate”, “");

t. I NPUTS();
Tenpl at eConpi | er Si nul at or. NAME entityNanme =
t.askFor Nane("New entity nane");

t. START();
Tenpl at eConpi | er Si mul at or. OBJECT newEntity=
t.ADD(entity, new Object[]{t.my(entityNane)});

t.END();

54

