
�

�

�

�

�

��� �������	�
��	� ���
���
��������

AutoMed Technical Report 25, Version 2

Charalambos Lazanitis
cl201@doc.ic.ac.uk

Minor Additions and Changes by

Nikolaos Rizopoulos
nr600@doc.ic.ac.uk

����

 2

����������
��
������������
��
������������
��
������������
��
������

�
��������	
����� ��

�������������������
���� �� �

��

���
�	������������������!"� �� ��

�������������!"� ��� ��
��� ��
�����!��#$�� ��

�������%����	�!"�&�����'�����(��������!)��������� ����������������� �*
��� �*
������+��� ��
����!��#$�� ��

��!����������"�����������(���
������������������������������������� ��
����������(�"�����������(���
��� ��
����������	�
��
������������������������� ���
�� �
������� ���	!!������"��� �� �
�������#����"�$�� %
����������!&�&�&��#�
�������%��'&()&���#�
�����������������"�����$����������!��#�
�������*��������������!�+��,��-.'&	/0������"���������������������������������#%
�������1��)�����$�������,���,�"���2�.34��

����,
��� �

�

 3

��������	
������

During the Database Schema Integration process, it is known that in practice the
sequence of transformations that have to take place in order to go from the initial Schema
to the target Schema is not completely random. Transformations are being performed to
resolve conflicts, and of course each conflict requires a sequence of transformations. It
becomes apparent therefore, that if we could define the sequence of transformations that
are required to resolve each particular conflict in a generic manner, we could reach our
target schema a conflict at a time rather than a primitive transformation at a time.

This is partly what the tool developed by Nikolaos Rizopoulos attempts to achieve. A
sequence of transformations is called a template. It is defined in a schema independent
way, and defines as variables what is dependent on the schema, which have to be filled in
by the user to form an instance of the template. As soon as the user defines the required
variables, the sequence of transformations can be executed on the source schema. The
tool is model independent, but each template is dependent on a particular model. A basic
understanding of the functionality of this tool is required in order to follow this
document. A summary of the minimum required things you need to know will be given
here, but if you want more information on this tool you can find it at:
http://www.doc.ic.ac.uk/automed/publications/Riz01.ps.gz

An attempt has been made to create an API that will wrap the NR tool, both in the way
that the templates are defined and the way they are used.

Although this API does not add any extra functionality to the existing tool, it offers a
much simpler way of performing what up to now were hard and tedious tasks. Taking a
familiar analogy, it is like using a high level programming language to wrap an assembly
set. So although the high level language does not add extra functionality to the assembly
set, it facilitates writing complex programs and arguing about their correctness.
Furhtermore, languages often try to guarantee the correctness of a program up to some
level, by introducing types, variable scoping and other features that check part of the
logic of the program in compile time.

In fact the above analogy was the guideline to the development of the API. Previously,
defining a template seemed more or less like filling up a number of tables in a relational
database, through a low level API. Now, in the first level abstraction, a template
definition is seen as a sequence of statements inside, each having arguments and return
values. For this API, types have been introduced for each argument and each return
value. This first level API, has been further wrapped by a second level API, that
simulates the definition of a template as writing a program in a simple procedural
language. The notion of scopes, and checking of the logical order of variables have been
introduced here. This is what we called TemplateCompilerSimulator, and it will be
explained quite thoroughly in this document.

 4

�������������������
�����

Section 2 describes how to use a Graphical Tool developed to implement template
transformations on schemas that are defined using the templates API.

Section 3 describes how the API for defining templates has been created and how it was
evolved

Section 3.1 describes the tool developed by Nikos Rizopoulos and it is the lowest
and basic level of the entire API

Section 3.2 describes the first level of abstraction on top of the basic API

Section 3.3 describes the syntax and semantics of a pseudo-programming
language developed on top of the first level of abstraction API, which tries to
simulate a real programming language that is used to define templates.

 5

�������������������������������

This section explains how to use the GUI developed to perform template (composite)
transformation on schemas. We are assuming that you have the Automed API already
installed on your machine along with the necessary resources.

First of all to define the demonstration templates go the examples directory and simply
type:

javaenv.sh make templates

There is a demonstration GUI that displays schemas and is able to pop-up the dialogue
that implements the templates that have already been defined. This can be run from the
examples directory, by typing:

javaenv.sh make templatesgui

This will pop-up a window and a dialog that will prompt you to select a schema to load.
After doing that you will see something very similar to what is shown bellow:

From there, there is only a handful of options you can do, like loading an other schema,
or moving the objects in the display around. By far though, the most ‘exciting’ option
you have is to chose a composite transformation to execute. To emphasize the
excitement of performing this action we have offered two alternative ways of performing
it. That is choosing it from the menu, or clicking on the lighting image on the menu bar.

After doing that, a dialog box that looks like the following will pop-up:

 6

This gives you a list of all the transformations you can execute, and on selecting any of
them you get its description displayed at the header. If you are not satisfied with what
you see, you can always ‘Cancel’ , but I am sure you will be eager to click on ‘Execute’ .
This will cause yet an other Dialog Box to pop-up (the most interesting one so far) that
will let you implement the Transformation you chose. So, let’s say that we chose
‘Attr ibute to Generalisation Equivalence’ . Then we’ ll get a dialog that will let us
implement the Attribute to Generalisation Equivalence transformation (no surprises
there).

Let’s go step by step, filling up the dialog box, and demonstrate the features that it
provides.

Almost always the first argument of the dialogue will be the initial schema. (In fact if you
use the TemplateCompilerSimulator (Section 3.3) to define your templates, this will
always be the case.) The window will look like the following:

 7

The things to notice:

• The top panel that gives the description of the cur rent argument
• The display of the schema that the transformation is done upon,
• An input panel on the right that gets the inputs for the arguments.
• The “SINGLE” sign that denotes that the argument is a single argument (in

contrast with a LIST argument).

An argument of type SCHEMA, is by default set as the currently displayed schema. If for
any reason you think that the value should be something else, you can edit the box and
type anything you want. If you click NEXT, it will try to SET the argument (The
argument will be set only if the value is valid). If you want to check if it is valid before
moving on, you can click on the SINGLE icon, and if it is successfully set, you will get a
tick as an indication:

So now we are ready to click next, and go on to the next argument, which happens to be
the existing parent entity:

Since, while defining the template, we specified that this argument should be an entity,
all the entities are highlighted, and are accepting mouse events. Clicking on staff will
pass its value to the box to the next. Note that since we are looking for an OBJECT, the
input box has been disabled, and thus we can only enter values by clicking on the
appropriate objects in the schema display (You cannot edit values from the keyboard)

click NEXT:

 8

Similar story as above, just this time the attributes are highlighted instead. We chose
SEX, (we are implementing the sex to Male-Female transformation), and click NEXT.

This asks for the names of sub-entities. Unlike the previous cases, now the argument is
of type list, and you can enter as many elements as you like. We chose to enter the three
genders found in nature, and click NEXT.

This asks for the values that correspond to the sub-entities defined previously. Apparently
when the template was being defined, this list had a reference to the previous list , which

 9

means that the two lists should be of the same size. This had as a result the list to be set,
fixed to 3 elements, and was mad rigid, i.e. not expandable. To demonstrate some of the
features provided think of the following scenario:

The user forgets in which order the subentities where layed out for the previous argument
(i.e. male before female or female before male?). After a few moments of panic, she
wanders what the yellow button above does, and decides to click on it. (of course she
could just have clicked BACK and see what the input was but this would ruin our story).
Anyway, she clicks the yellow button, and to her amazement, the following window
pops-up:

This window describes the way all the referenced lists have been layed down. So she
realises that Male comes before Female (as always J), and she can now go on filling up
the list as required: M for Male, F for Female, H for Hermaphrodite.

But now she suddenly realised that the last Tapeworm has left the college 10 years ago,
and there is a new non-Hermaphrodite-hiring policy. It therefore becomes apparent that
the Hermaphrodite subentity has become obsolete. She tries to click on the “X” button
next to the 3rd element but the element is not removed. (What is written there is deleted
but the input item remains). She clicks on the “X” button 35 more times, turns the screen
on and off a couple of times, but the input item is still there. She then realises that the list
size has been FIXED. How can I ‘break’ it, she asks her self? This is when the word
‘break’ has given her a hint of the use of the icon showing a hammer breaking a glass.
Clicking that, makes the list expandable again. She can thus remove the third item, and
clicks back to fix the previous list as well.

Note that since an input item has been removed, clicking back, the previous list will be
fixed to two elements. The API has been structured such that if we have a set of

 10

referenced lists, all the lists are fixed to the number of elements that the last list in the set
has been set to.

Clicking NEXT, will ask for the generalisation name, and since this is the last argument,
the FINISH button will become enabled.

 If all arguments are set correctly the template will be executed, otherwise you will get an
error message and directed to the argument that gave the error. In the former case,
window will close and the new schema will be loaded to the displaying frame.

�

 11

���
�	������������������!"��

In the introduction we said that all you have to know about the NR tool can be found on
the technical report for the tool. Well, this is not completely true. Although that
documented the tool at that time thoroughly, some extra features have been added to
increase the functionality. What was added, is basically the ability to dynamically define
strings with the DEFINE_DYNAMIC_STRING_STATEMENT, the use of the
RENAME_STATEMENT, a statement that accesses the scheme of an object and one for
accessing a particular element in a list. Furthermore, it has been upgraded such that it
uses the REPS API instead of the STR API to perform the transformations. (If the words
REPS and STR sound Greek to you, now it’s a good time to visit this link:
http://www.doc.ic.ac.uk/automed/techreports/index.html where you can find all the
technical reports you need about AutoMed project. The AutoMed website is at:
http://www.doc.ic.ac.uk/automed).

So, after these adjustments to the initial state of the NR tool, it now looks as described
below:

�������������!"��

��������������

It consists of 7 statements:

1) NEW_OBJECT
2) PRIMITIVE_TRANSFORMATION
3) FOREACH
4) INVOCATION
5) DEFINE_DYNAMIC_STRING
6) SCHEME_LIST
7) INDEX_LIST_STATEMENT

(The last 3 were added later)
The Primitive transformation statement can be parameterized, such that it performs the
following statements:
ADD, DELETE, RENAME, CONTRACT, EXTEND

Each statement contains several arguments. Some of them store variables that are used
to define the statement, and some are defined after the statement has been executed to
define the results of the statement. A template consists of a number of arguments that
define the following:

1. The template’s inputs (that will eventually be defined by the user)

 12

2. The template’s outputs
3. A sequence of statements

On the lowest level, a template is really a set of interconnected tables in a relational
database. At this time, defining a template is not far from filling up these tables. Although
there is some API that somewhat abstracts away from the actual tables, in order to define
a template you will have to be very familiar with the way the statements are defined in
the table level, and even so, defining a complex template can be extremely complicated.

�����!��#$��������������������������

In order to get a view of how a template is defined, I will try to summarize the required
steps in order to define a standard but fairly complex transformation in the sense that it
uses most of the features of the tool. The transformation is the Attr ibute to
Generalization Equivalence. (If you are not sure what this transformation is then you
probably shouldn’ t be reading this document). Note that we won’ t bother to define
functions and constraints, as this will add too much complexity.

If we define this transformation in a generic level, then we define it as:

• Starts on an initial schema Si
• Adds a number of subentities (e1…en)
• Adds a generalization G from a parent entity E to the set of subentities
• Deletes the general attribute A

So the first thing to be done is to ask the user for the variables in the above list:

1. An initial schema ID (Si),
2. A List of subentity names (e1…en)
3. A generalization name (G)
4. The ID of the existing parent entity
5. The ID of the general attribute

These five input arguments have to be defined as records in a table, with a trans_id and
an arg_pos which are the primary keys of each argument. The trans_id is taken care by
the existing API, but the argument position for each argument has to be defined explicity.
A descr iption has to be provided for each argument and a Boolean whether the argument
is a return argument or not (input arguments are not return arguments). The type of each
argument (whether it is a list or an id or a name etc) is only revealed to the user by the
argument description and there is nothing to enforce it.

A possible instance of the above would be the table that follows. (Assume that the
trans_id happens to be number 18)

 13

Trans_id Arg_pos Descr iption isReturn

18 1 Initial Schema Id 0
18 2 Subentity names 0
18 3 Generalization name 0
18 4 Id of existing parent entity 0
18 5 Id of existing general attribute 0

(If you read the documentation of this tool you might realize the existence of two more
rows that define a table and a field, but they are neglected here)

Omitting several details, the next step is to define the first statement in the template. The
first statement is the one that creates all the subentities. Their number is not fixed, and is
defined by the number of names given for the second input by the user. The subentitties
are created inside a loop, which is a foreach statement. Unfortunately the foreach
statement is the most complex one. Basically it works similar to a foreach statement in a
real programming language (if you are familiar with shell scripting the similarity is
greater). It itterating a list and executes a particular block, once for each element in the
list. The special feature in this case is that the foreach block is a single template. It can
be any template, perhaps a complex one that can be defined in a different file and could
have a function by itself. In our case however, the template is fairly simple. It just adds a
single entity. Even so however, will treat this template as a separate entity, since inspite
its simplicity, it demonstrates the main features of any template.

The foreach block template:

Again, we should first define the inputs of the template, which is the name of the entity
and the initial schema. Something that I haven’ t explicitly mentioned (but implied) is that
in a template we can also define output arguments. That is arguments that are unknown
before the execution of the template, and are set by the template execution. This feature
might seem not so useful for a main template, but it is particularly useful for a foreach
template (since the purpose of the loop is to produce a number of items that are going to
be used later). In this case our output should be the ID of the created entity. So, by
defining the template inputs as described in the case of the external template, we get
something like:

Trans_id Arg_pos Descr iption isReturn

19 1 Initial Schema Id 0
19 2 Entity name 0
19 3 Created entity Id 1

All the template does, is to add a single entity to the given schema. So, you would think
that it only requires a single statement, but you would be wrong. It actually requires two.
A statement to create the new object and one to add it to the schema.

 14

The presence of two statements rather than one was necessary since when the tool was
initially developed, the underlying API (STR) required an object to be first explicitly
created and then added to the schema. When the tool was upgraded to the REPS API, it
appeared that it was possible to merge the two statements to one. However, for reasons of
backwards compatibility and simplicity of the upgrade, it was decided to keep both
statements as before. (At this point I could tell you that after the upgrade, the new_object
statement only stores some values temporarily and does not really change anything in the
database, but I won’ t, since this should not concern you as a user of the tool).

So, let’s start with the new_object statement. The statement fingerprints are as follows:

Arg_pos Descr iption

1 Construct ID
2* Schema ID
3* Created object ID
4 Value (name of object)
5 IsTemp
6 Scheme ID (arg_id of object scheme)

The arguments that take an (*) are passed by reference and not by value. In simple terms,
at those positions, the arguments are not known before the execution of the statement, but
and are set by the statement. Their value can therefore be obtained after the statement is
executed, by referring to their position in the statement arguments.

In order to define this statement, we must first define a new TemplateArgumentSequence.
(call to the constructor of the Templ at eAr gument Sequence class). This will
dynamically create a new arg_id, in the table, that will identify the arguments of this
statement. The arguments that are passed by reference (output) should not be defined.
The arguments that are passed by value (input), can either be:

• entered directly OR
• point to an other statement argument OR
• point to one of the arguments of the enclosing template

Here’s the code that creates a new entity:

�������������	���
��������������

����������
����������������	��������
�����	�����������
����������������� �

�

���������������� ��������

��	��������
!��������
������������������ ��������!�"#$���$�%$%�&'()���*�

�����
!+����' ���������!
�����������

�

�������������������������,���������
������

��	��������
!��������
������������������ ��������!�"#$-�./�$�%$%�&'()���*�0���

�

�����������1�������������������

��	��������
!��������
������������������ ��������!�"#$����23$�%$%�&'()���*�414����

 15

�

��555�

����6�%���7����7�2���"#/2�%�������������������� ������������������

����������
����������������	�����������������	�����������
�����������������

�

������ ������,���������������������������������� ������89�����,�� �����������,��������

�������	����8������ ��������������������:�����,!����	����8������,��������;�,���
��������������

��	������������!��������
������<*���	��������
*������������� ��������!�"#$'(��$�%$%�&'()������

��55�

�

��������������������������8�+�������������
�������������������,� ��������������

��	��������
!��������
������������������ ��������!�"#$��7�2�$�%$%�&'()���*�

�����
!+����' ���	������������!
�����������,�����

As you might or might not have noticed, you define an argument by invoking a
cr eat eAr gument method on a Templ at eSequenceAr gument object. Extracting
lines of code we demonstrate how we can define the three types of arguments stated
above:

• Direct:
��	��������
!��������
������������������ ��������!�"#$����23$�%$%�&'()���*�414��� �

• Point to an other statement argument:
��	��������
!��������
������������������ ��������!�"#$��7�2�$�%$%�&'()���*�

�����
!+����' ���	������������!
�����������,������

�

• point to one of the arguments of the enclosing template
��	��������
!��������
������������������ ��������!�"#$-�./�$�%$%�&'()���*�0��

Note that the scheme of an entity only consists of the entity name. This is not generally
the case. If we had an attribute for example the scheme would consist of the attribute
name and a pointer of where the parent attribute sits on the database.

The next thing to do is to add the created entity to the schema. This is a primitive
transformation statement, which has to be parameterized to be an add statement:

�����������	���
��������������

����������
���������������,,%�	�����8�����
�����	�����������
�����������������

��3������+������ ���������������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$����'%$�%$3"�2���-�*�4�,,4���

���������������89�����������������8��������+�������������5<�

�,,%�	�����8�����
!��������
������������������ ��������!�"#$6"'2'()$�%$3"�2���-�*�45<4���

�������89���������	����8���,,�,�����������	��9���������,���������8�+�����������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$�''()$�%$3"�2���-�*���	�����8�����
*�

�� ��������!�"#$'(��$�%$%�&'()������

���������������������� ������
������� ��������������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$6"'2��7�2�$�%$3"�2���-�*�<����

 16

������ ��������������������� ���������������������+�������� ���������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$�'��7�2�$�%$3"�2���-�*������������������������

��	�����8�����
*������������� ��������!�"#$���$�%$%�&'()������

��&������,�,� �������� �������������8���	����������8�������
��������,��������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$6/%���'%$�%$3"�2���-�*�44���

��&������,��,,����������������8���	����������8�������
� �������,��������

�,,%�	�����8�����
!��������
������������������ ��������!�"#$�'%��"��%��$�%$3"�2���-�*�44��

So now that all the statements of the template have been defined, it is time to define the
output arguments of the template. Here’s the code that does that:

��������������
��������������������,����������
������

����������
���������������������,��
�����	�����������
�����������������

�������,��
!��������
������=*���	�����8�����
*������������� ��������!�"#$'(��$�%$%�&'()������

�������,��
!��������
������>*��,,%�	�����8�����
*�

��� ��������!�"#$�'��7�2�$�%$3"�2���-����

�,,�����8���!������"������,��
������� ���������������,��
���

This says that the template has two return arguments, one defined as the 4th argument of
the template and is the id of the created object, and the second one is the 5th argument of
the template and is the final schema.

Now that we created the template, we need to create the execution for it. Although this
might seem quite unintuitive at first, it is actually a rather crucial aspect. What we have
done up to now is created some “methods” that can be called. Actually we didn’ t even do
that. We created the arguments for some methods that can be called. We now need to say
what methods each of those sets of arguments correspond to, and the order by which they
will be called.

Here’s the code:

�

�,,�����8���!����������������:��������<*���������������

�������������������������������!
������������������������ ��������!%�&$'()���$�����2�%��*���

������������������������	�����8�����
���

� � �

�,,�����8���!����������������:��������0*��

�����������������������������!
������������������������ ��������!3"�2���-�$�"�%�6'"2���'%$�����2�%��*��

���������������������,,%�	�����8�����
���

�

A Small Discussion

Now a small discussion that will be an appetizer of what will follow in the next sections.
You have witnessed how a really simple template can be defined. Actually it is a
simplified version of a really simple template.
You should have noted two things (at least)

 17

1) Firstly that there is some equivalence of all of this code to a program written to
some (procedural) language. All it does it stores some arguments in some
database, and provides some sort of guidance of how these arguments will be used
to execute a program that does something. It also has the notion of input and
output.

2) The second thing to notice is how difficult it is to realize the first point.

If you select at random a computer science undergraduate, the chances is that he or she
has been told the following rule:
“Any problem in computing can be solved by adding an extra layer of abstraction.”

Using this rule combined with some common sense and observing points 1 and 2 will
probably make you realize that an abstraction of this code might very well lead us into
creating a programming language.

Other things you might have noticed is that there is nothing that prevents you from(or at
least helps you avoid) writing code that makes no logical or even implementational sense.
There is also nothing that can prevent the user from inputting invalid input, or help the
program realize that the input that was entered was invalid.
One might thing that introducing some sort of typing (perhaps at a higher level) might
solve the problem.

This concluded the brief discussion and I hope you understood the need of providing a
wrapper to this API and might have got a hint of how to go about developing one.

OK, back to the code.

Now that we defined the foreach template, we can define the foreach statement as well,
and link the template to it. There are several details here that mainly have
implementational importance and I will avoid stating them. If you wish to learn exactly
how this statement works you should refer to Nikos Rizopoulos thesis. I will try instead
to give you a simplified version of the truth, hiding much of the implementational details.

The foreach statement is defined to have the following paramenters:

Arg_pos Descr iption

1 Intital schema
2 sequences
3 singletons
4 template to be executed
5* Return value #1
6* Return value #2
7* Return value #3 (and so on)

I have already given you a taste of how a template and a statement is defined, so from
now on I will try to be more descriptive rather than code-dumping.

 18

Before I try to explain what each argument means, let’s recall what this statement is
supposed to do.
It should go through a list of names given as input to the (external) template (at position
2) and for each of those names it should add an entity with the particular name.

We already defined the template that adds the entity. A high level definition of this
template we defined is:

New_ent i t y_I D = addEnt i t yTempl at e(Ent i t y_name, I ni t i al _Schema) ;

So the foreach statement should do something like:

f or each[name I N i nput _name_l i s t]
{
 addEnt i t yTempl at e(name, cur r ent _schema) ;
}

It would be useful to be able to accumulate the entity ids created so that we could
accumulate them later. ie do something like this.

f or each[name I N i nput _name_l i s t]
{
 I D = addEnt i t yTempl at e(name. cur r ent Schema) ;
 r esul t Li s t . add(I D) ;
} f or each_r et ur n = r esul t _l i st ;

A more general definition of the statement would be:

f or each[ar g1 I N l i st 1, ar g2 I N l i s t 2, …, ar gN I N l i st N]
{
 (r es1, r es2, …, r esM) = per f or mTempl at e(t empl at e ar gs) ;
 r esul t Li s t 1. add(r es1) ;
 r esul t Li s t 2. add(r es2) ;
 …
 r esul t Li s t M. add(r esM) ;

} f or each_r et ur n1 = r esul t Li st 1
 f or each_r et ur n2 = r esul t Li st 2
 …
 f or each_r et r unM = r esul t Li st M

Note that all iterated list should have the same number of elements (K) and the loop will
be iterated K times as well.

So here’s what each of the arguments state:

1. initial schema: The schema on which the foreach statement starts on. This is
updated every time the loop is iterated. So you can get the final schema of the
statement from the same position.

 19

2. sequences: A list of lists that define the iterated listst inside the template. Taking
the abstraction above, it would be a pointer to a list containinng the lists: list1,
list2 … listN.

3. Singletons: inside the loop there might be some loop invariant variables. So
singletons points to a list of loop invariants.

4. Template to be executed should somehow point to the template to be executed
inside the loop. We are ommitting the technique used to pass parameters to the
template. You can find this technique on the NR thesis.

5. The return values (returnList1 .. returnListN are pointed at by arguments 5
onwards. So resultList K can be found at position 4+K.

For our case there are no singletons, and only 1 return argument.

The next statement is to add a generalization. The techniques used are the same as when
we added an entity (but quite more complex), so the idea is the same. The complexity of
this statement comes from the fact that the scheme of the generalization is quite more
complex than the scheme of the entity.
It should contain:

1. the name of the generalization, which can be taken from the third input argument
of the template.

2. the parent entity id, which can be taken from the 4th input argument.
3. a list with the subentities. This list is the return argument of the foreach statement

we just created. so we can get it from there.

This means that the format of this statement will be similar to the one for adding an
entity. This time however the scheme arguments should contain a reference to the first
input argument at position 1, a referce to the 4th input argument at position 2 and a
pointer to the 5th (first return) argument at position 3.

If you look at NR thesis you will realise that adding the subentities to the scheme
required a new statement called EXTEND_GENERALISATION_SCHEME. During the
upgrade of the tool, it became apparent that this statement could be avoided.

Hopefully by now you have realized the purpose of generic transformation called
templates and the way they are defined using the initial API. Furthermore we
demonstrated that this API is functional but sometimes tedious and unintuitive which
brings the need of a higher level API that will abstract the current one.

 20

�������%����	�!"�&�����'�����(��������!)����������

��������������

The first layer over the existing API aims to abstract the following things:

1. Prevent either the programmer (who defines the template) or the user (who
implements the template) from using invalid input. For example you prevent the
user of inserting a string input where a number is expected.

2. Hide arguments from statements. Looks at the arguments of a statement as input
arguments and output arguments in which case you only define the input
arguments when you define the statement and only see its output arguments when
you want to use it.

3. Give a graph abstraction to the program.
4. Avoid a lot of the initialization and finalization code which is standard for all the

templates

In this API, templates and statements are treated as objects. All statements are derived
from the TStatement object, (examples are AddSt at ement , Del et eSt at ement ,
Cr eat eLi st St at ement etc). Each template is an instance of the TTemplate
object. Each statement has TStatementArguments and each template has
TTemplateArguments. Both types of arguments are derived from the TArgument

 21

class. Statement input arguments only have setter methods while output arguments only
have getter methods.

For example an AddStatement has setters for:

set Fr omSchema / / i ni t i al schema
set Funct i on / / set s t he f unct i on
set Const r ai nt s
set Const r uct / / set s t he const r uct of t he obj ect t o be added
set Val ue / / set s t he val ue of t he new obj ect (i e name)

and getters for:
r esul t i ngSchema / / The ar gument f or t he r esul t i ng schema af t er

/ / execut i on of st at ement
r esul t i ngObj ect / / The ar gument of t he obj ect i d of t he cr eat ed obj ect

Note that all getters return TSt at ement arguments. Setters for arguments which can be
passed by reference can be set by a TAr gument ..

������+����

Now arguments have types. This guarantees that you do not pass arguments around that
do not make sense. For example, you are not allow to refer to an argument that defines a
construct in order to define a schema. Here’s a view of the type tree in the language.

o class uk.ac.ic.doc.automed.templates.wrapper.TType
o class uk.ac.ic.doc.automed.templates.wrapper.TType.L ist
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Object
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Schema
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Secret
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Str ing

o class uk.ac.ic.doc.automed.templates.wrapper.TType.Constraints
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Function
o class uk.ac.ic.doc.automed.templates.wrapper.TType.Name

o class uk.ac.ic.doc.automed.templates.wrapper.TType.Super type

Note that TType. Secr et is for arguments that are not passed around (for example
there is an argument that defines whether a particular object is temporary or not).
TType. Super Type was introduced later when we needed a super type for lists whose
type whose element type was unknown (see section 3.3).

 22

����!��#$���������������
Here’s an example code using this API which performs the same template transformation
as the example given previously, that is attribute to generalization equivalence.

 publ i c st at i c voi d def i neTempl at e8()
 t hr ows Except i on
 {
 / / Def i ne t he const r uct s and model s/ /

 Syst em. out . pr i nt l n(" Mandat or y At t r i but e t o Gener al i sat i on") ;
 Model er = Model . get Model (" er Ol d") ;
 Const r uct ent i t y = er . get Const r uct (" ent i t yOl d") ;
 Const r uct at t r i but e = er . get Const r uct (" at t r i but eOl d") ;
 Const r uct r el at i onshi p = er . get Const r uct (" r el at i onshi pOl d") ;
 Const r uct gener al i sat i on = er . get Const r uct (" gener al i sat i onOl d") ;

/ / Def i ne t he t empl at e i nput s wi t h t ypes/ /

 TTempl at e t empl = new TTempl at e(" TEST 8: Mandat or y At t r i but e t o
Equi val ence") ;

 t empl . set I nput (" i ni t Schema" , " I ni t i al Schema" , TConst ant s. SCHEMA) ;
 / / The above set s i nput ar gument cal l ed “ i ni t Schema” t o be of t ype SCHEMA, and
 / / user i s pr ompt ed t o add i t , by t he st r i ng: “ I ni t i al Schema” .

 t empl . set I nput (" GenName" , " Gener al i sat i on Name" , TConst ant s. NAME) ;
 t empl . set I nput (" ent i t y" , " Ent i t y I D" , ent i t y) ;
 / / t empl . set I nput (" At t r " , " At t r i but e I D" , at t r i but e) ;
 t empl . set I nput (" ent i t yNames" , " Ent i t y Names" , TConst ant s. NAME,
TConst ant s. LI ST) ;

 For eachSt at ement f or each = new For eachSt at ement () ;
 f or each. set Schema(t empl . get I nput (" i ni t Schema")) ;
 f or each. set I t er at or (" name" , t empl . get I nput (" ent i t yNames")) ;
 f or each. set Var i abl e(" schema" , f or each. r esul t i ngSchema()) ;

 AddSt at ement addEnt i t y = new AddSt at ement () ;
 addEnt i t y. set Const r uct (ent i t y) ;
 addEnt i t y. set Val ue(f or each. get Cur r ent (" name")) ;
 addEnt i t y. set Fr omSchema(f or each. get Cur r ent (" schema")) ;
 addEnt i t y. set Scheme(new Obj ect [] { addEnt i t y. sel f }) ;
 f or each. set Bl ock(new TSt at ement [] { addEnt i t y}) ;
 f or each. set Out put Li st (" subent i t i es" , addEnt i t y. r esul t i ngObj ect ()) ;

 AddSt at ement addGen = new AddSt at ement () ;
 addGen. set Fr omSchema(f or each. r esul t i ngSchema()) ;
 addGen. set Val ue(t empl . get I nput (" GenName")) ;
 addGen. set Const r uct (gener al i sat i on) ;
 addGen. set Scheme(new Obj ect [] { addGen. sel f ,
 " t ot al " ,
 t empl . get I nput (" ent i t y") ,
 f or each. get Out put (" subent i t i es")
 }
) ;

 t empl . set Out put (" f i nal Schema" , " f i nal schema" , addGen. r esul t i ngSchema()) ;

 / / The f ol l owi ng i s ver y i mpor t ant / /
 t empl . set St at ement Sequence(new TSt at ement [] { f or each, addGen}) ;

 23

 t empl . execut e() ;
 }

Some things to notice:

• set Schema is a setter for all statements.
• Notice how the f or each argument is constructed. A f or each statement

iterates through a list. f or each. set I t er at or (“ name” , aLi st Ar g) ,
says that the statement iterates through the list pointed at by aLi st Ar g, and at
each iteration the iterated element wll be refered to by:
f or each. get Cur r ent (“ name”) ; The set Var i abl e function sets
variables that can be used within the loop (not the iterated ones).

• Note the last two arguments of the template. The first one actually links the
statements to produce a program. The last one is the statement that actually
updates the database.

 You might have realized that this API does not add any extra functionality to the
previous one. It just sits above the existing API and provides the abstractions we have
described. Remember that our main goal is to make something that looks like a
programming language. This is not quite yet a programming language yet but you might
be able to see how it can be used to create one.

The following section will describe a pseudo-programming language and its pseudo-
compiler that was created on top of this API. Again this will not add any extra
functionality only extra usability.

 24

��!����������"�����������(���
����

Question: In which language is this program written?

START() ;

 FOREACH() ; NAME subName =I N (subEnt i t yNames) ;
 NAME popName =I N (popul at i onOf Ent i t i es) ;
 OBJECT at t =VARI ES_WI TH(exi st i ngAt t r i but e) ;
 OBJECT par ent =VARI ES_WI TH(par ent Ent i t y) ;
 DO() ;

 FUNCTI ON f 1 = DEFI NE_FUNCTI ON(" @subname(X) : - @at t ?scheme(X, @nameGi ven) ") ;

 OBJECT newEnt i t y = ADD(CONSTRUCT. I S(ent i t y) ,
 SCHEME. I S(new Obj ect [] { my(subName) }) ,
 FUNCTI ON. I S(f 1)
) ;
 OBJECTLI ST c r eat edEnt i t i es =COLLECTS(newEnt i t y) ;
 ENDFOREACH() ;

 ADD (gener al i sat i on,
 new Obj ect [] { my(genName) ,
 " t ot al " ,
 par ent Ent i t y ,
 cr eat edEnt i t i es
 }
) ;
 ex i st i ngAt t r i but e. DELETE() ;
END() ;

Answer : Java.

If you failed to answer this question correctly then the design of the language was
successful. The idea is to create a programming environment where the programmer
writes a java program in such a way that it gives the illusion that he is writing some
procedural language.

����������(�"�����������(���
����

I have to admit this language is not yet to the state where it would deserve a name given
to it. However for this document (and for this document only) we have to give it a name
for convenience. After serious considerations (that lasted 5 seconds) I decided to name it
TDL , which stands for Template Definition Language.

In this section you will learn how to write templates using this “ language” , which has
been built using the API described in the previous section. We will describe the language
in several lessons each describing a different aspect of it.

 25

(������*&�!�-
��.�%+���$���	�$�

If you already know much of the syntax of the language and only need to recall some of
the statements and what they do you will probably appreciate this lesson. The following
table prompts you to which lesson you should read for each of the language statements
and keywords

Statement/Keyword Explained at lesson
ADD 3
ALI AS 7
askFor Const r ai nt s 4
askFor Const r ai nt sLi s t 4
askFor Const r ai nt sLi s t 4
askFor Funct i on 4
askFor Funct i onLi st 4
askFor Funct i onLi st 4
askFor Name 4
askFor NameLi st 4
askFor Obj ect 4
askFor Obj ect Li s t 4
COLLECTS 8
CONSTRAI NTS. I S 3
CONSTRUCT. I S 3
CONTRACT 5
CREATE_LI ST 9
def aul t Model () 1
DEFI NE_CONSTRAI NTS 7
DEFI NE_FUNCTI ON 7
DEFI NE_NAME 7
DEFI NE_STRI NG 7
def i neTempl at e() 1
DELETE 5
DO 8
ELEMENT_AT 9
END 1
ENDFOREACH 8
EXTEND 3
FOREACH 8
FUNCTI ON. I S 3
I N 8
I NPUTS 4
my 3
SCHEME. I S 3
SCHEME_LI ST 9

 26

SI ZEOF 4
START 1
t empl at eDescr i pt i on 1
t empl at eName 1
TypeConst r ai nt s 9
TypeConst r ai nt sLi st 9
TypeFunct i on 9
TypeFunct i onLi st 9
TypeName 9
VARI ES_WI TH 8

 27

(�������&���������%�����	�

This lesson describes how you can use the provided API to write TDL programs before
we start describing the syntax of the language. We assume you have the AUTOMED API
(http://www.doc.ic.ac.uk/automed/releases/index.html) already installed on you computer
as well as the necessary resources required to run AUTOMED programs (see
http://www.doc.ic.ac.uk/automed/ for details).

Templ at eCompi l er Si mul at or is an abstract class found in the AUTOMED API.
Any TDL program should extend this class.

Template compiler simulator provides (amongst other things) a generic structure for a
TDL program. The subclass should specify its details by defining certain abstract
methods, which are summarized below:

Abstract method Purpose
St r i ng t empl at eName() The name of the template that will be stored in the

repository.
St r i ng t empl at eDescr i pt i on() A description for the template, which will be

stored in the repository
St r i ng def aul t Model () The name of a default model that the template is

concerned with. Defining the model here gives a
good syntactic shortcut when the program will be
written.

voi d def i neTempl at e() Here’s where the TDL program is written

Here’s an extremely simple program, which describes a template that doesn’ t do
anything. It illustrates the minimum requirements that a program needs in order to work.

i mpor t uk. ac. i c . doc. aut omed. t empl at es. wr apper . * ;

publ i c c l ass Empt yTempl at ePr ogr am

 ext ends Templ at eCompi l er Si mul at or

{
 /* The constructor should have the following form*/
 publ i c Empt yTempl at ePr ogr am()
 t hr ows Except i on

 28

 {
 super () ;
 }

 /*Define the abstract methods*/

 pr ot ect ed St r i ng t empl at eName()
 {
 r et ur n " Empt y Templ at e" ;
 }

 pr ot ect ed St r i ng t empl at eDescr i pt i on()
 {
 r et ur n " Thi s i s an t est t empl at e t hat basi cal l y doesn’ t do

 anyt hi ng" ;
 }

 pr ot ect ed St r i ng def aul t Model ()
 {
 r et ur n " er " ;
 }

 /*Define the template*/
 pr ot ect ed voi d def i neTempl at e()
 t hr ows Except i on
 {
 START() ;
 END() ;
 / * Don’ t wor r y about what t hese mean * /

 }

 publ i c s t at i c voi d mai n(St r i ng [] ar gs)
 {
 t r y
 {
 new Empt yTempl at ePr ogr am() ;
 }
 cat ch(Except i on e)
 {
 e. pr i nt St ackTr ace() ;
 }
 }
}

 29

When does the program compile?

This question can be quite confusing since we are dealing with two different languages at
the same time. We are writing a TDL program inside a java program. Since the TDL
program is written in java, it should conform to the java constraints, but also to the TDL
constraints. So compiling the program (using javac) will check whether the program is a
correct java program. After doing that, running the java program will check whether it is
a correct TDL program. So compiling it and running it, intuitively means that you are
compiling it, which will in fact define the template in the repository. From now on when
we say compile the TDL program we mean compile and run the java program.

 30

(�������&��+����

TDL is a typed language. There is a finite number of types which are static in the sense
no user defined types are supported.

The following diagram illustrates the type hierarchy of TDL, and it will be a good
reference for the lessons to follow.

Note that although you could play with casting (java allows that) the TDL program will
not do what you think it would in such a case. ITEM is considered an ABSTRACT type
in the sense that it cannot be instantiated in TDL.

 31

(������&��!�������������

As you should know by now, the TDL program is written inside the
def i neTempl at e() function. The idea is that the keywords of TDL are java
functions.
Any TDL program should have the START() ; and END() ; keywords.

START() ;
END() ;

is a valid program that does nothing.

The statements of the program should be written inside the START() ; END() ;
keywords. This lesson explores the ADD statement, which adds an object in the schema.
We will start describing this statement by writing a simple program.
Note that the EXTEND statement works exactly in the same way as the ADD statement
but performs an extend instead of an add transformation.

It is customary for the first program demonstrated in any programming language to be the
Hello Wor ld program and we are not planning to be an exception. TDL does not have
the notion of output, so instead we shall write a program which adds an entity called
Hello_World. We will write the entire class for the last time, after that we are only
focusing on the def i neTempl at e() part. Here’s how it goes:

i mpor t uk. ac. i c . doc. aut omed. t empl at es. wr apper . * ;

publ i c c l ass Hel l oWor l d
 ext ends Templ at eCompi l er Si mul at or

{
 publ i c Hel l oWor l d()
 t hr ows Except i on
 {
 super () ;
 }

 / / Def i ne t he abst r act met hods/ /

 pr ot ect ed St r i ng t empl at eName()
 {
 r et ur n " Hel l o Wor l d" ;
 }

 pr ot ect ed St r i ng t empl at eDescr i pt i on()
 {
 r et ur n " Adds an ent i t y cal l ed Hel l o_Wor l d" ;

 32

 }

 pr ot ect ed St r i ng def aul t Model ()
 {
 r et ur n " er " ;
 }

 / / Def i ne t he t empl at e/ /

 pr ot ect ed voi d def i neTempl at e()
 t hr ows Except i on
 {

 START() ;

 NAME ent i t yName = DEFI NE_NAME(" Hel l o_Wor l d") ;

 OBJECT newEnt i t y = ADD(CONSTRUCT. I S(" ent i t y") ,
 SCHEME. I S(new Obj ect []
 { my(ent i t yName) })
) ;

 END() ;

 }

 publ i c s t at i c voi d mai n(St r i ng [] ar gs)
 {
 t r y
 {
 new At t r i but eEnt i t yEqui val ence() ;
 }
 cat ch(Except i on e)
 {
 e. pr i nt St ackTr ace() ;
 }
 }

}

DEFI NE_NAME creates a NAME. (For now just know that, as we will describe this
statement later.) Here it creates the NAME with value “Hello_World” ;

An ADD statement takes minimum 2 arguments:

1. The construct of the SchemaObj ect that is added
2. the scheme of the object.

It returns an OBJECT: the object created after the statement is executed.

 33

Now let’s take a look at the first two arguments, and how you could fill them in.

Construct
This defines the construct of the created object. In this example we said
CONSTRUCT. I S(“ ent i t y”) ; This is because we have already said that our default
model was the “ er ” model and in the repository “entity” is defined as a Construct of this
model. This is actually one of the syntactic shortcuts of the language.
An alternative way of giving the construct is to say (at the beginning of the function):

Model er = Model . get Model (“ er ”) ;
Const r uct ent i t y = er . get Const r uct (“ ent i t y”) ;

and then, instead of writing CONSTRUCT. I S(“ ent i t y”) , you just write ent i t y , or
CONSTRUCT. I S(ent i t y) ;

Note that when you CONSTRUCT. I S is a polymorphic function. When you give it a
St r i ng as an argument it tries to return the Const r uct given as
def aul t Model . get Const r uct (“ st r i ng”) ; When you give it a Const r uct
as an argument it just echos the argument. The only reason you want to use
CONSTRUCT. I S(ent i t y) instead of just ent i t y is for readability.

Scheme
This defines the scheme of the object that is added (for more on how scheme is used in
automed consult the automed website and the API documentation).

The scheme is defined as an array of Obj ect s (java Objects). The construct of the
OBJECT that is added dictates the structure of the scheme. Each member of the array
can be of the following forms:

a) An OBJECT: When an other SchemaObj ect is referred to at the particular
position of the scheme

b) A STRI NG (a TDL STRI NG not a java St r i ng): When at this position in the
scheme is St r i ng type (for example: “1:1” , “ total” etc)

c) A java St r i ng: Used as above.
d) A LI ST: When this position of the scheme has an unbounded upper limit. For

example when this position holds the subentitites of the generalization. Since the
number of subentities varies, you create an OBJECTLI ST that holds all
subentities, and use this list at the particular position.

e) my(NAME): This is a special case of where you use a name. When you use a
NAME that is the name of the object that is added you need to point it explicitly by
saying my(ent i t yName) for example. If you just say ent i t yName you will
get an invalid scheme exception. All schemes should contain one of these.

In the example above the object added was an ent i t y . Entity scheme only holds the
name of the entity. So we could define the scheme as:
new Obj ect [] { my(ent i t yName) }

 34

which is completely valid. However for readability purposes you might want to say:
SCHEME. I S(new Obj ect [] { my(ent i t yName) })

SCHEME and CONSTRUCT are mandatory parameters and should be used in whenever
ADD is used. Besides these however, you could define a FUNCTI ON and
CONSTRAI NTS of the transformation. You could use a function by:

a) Using a FUNCTI ON directly
b) Using a FUNCTI ON f and saying FUNCTI ON. I S(f)
c) Using a java String and saying FUNCTI ON. I S(“ f unct i on def i ni t i on

. . ”) ;
the same goes for CONSTRAI NTS.

The overloading of the ADD function is shown in the following table (extracted from the
API documentation)

OBJECT ADD Construct

OBJECT ADD Construct CONSTRAINTS

OBJECT ADD Construct FUNCTION

OBJECT ADD Construct FUNCTION CONSTRAINTS

OBJECT ADD Construct CONSTRAINTS FUNCTION

Here are some examples of how add is used:

OBJECT newEnt i t y = ADD(ent i t y ,
 SCHEME. I S(new Obj ect [] { my(subName) }) ,
 FUNCTI ON. I S(f 1)
) ;

ADD(CONSTRUCT. I S(“ ent i t y”) ,
 SCHEME. I S(new Obj ect [] { my(subName) }) ,
 FUNCTI ON. I S(f 1) ,
 CONSTRAI NTS. I S(c1) ,
) ;

 35

ADD (CONSTRUCT. I S(“ gener al i sat i on” ,
 new Obj ect [] { my(genName) ,
 " t ot al " ,
 par ent Ent i t y ,
 cr eat edEnt i t i es
 }
) ;

OBJECT newRel = ADD(CONSTRUCT. I S(" r el at i onshi p") ,

 SCHEME. I S(new Obj ect [] { my(newRel at i onshi pName) ,
 ex i s t i ngEnt i t y ,
 newEnt i t y,
 " 1: 1" ,
 " 1: N" })
) ;

An OBJECT that is added enters the cur rent scope and can be used by other OBJECTs
later.

When an ADD transformation is implemented, the new object is added to a new Schema.
This is true for all tranformations: they take you from a source schema to a target schema.
For the lower layers of the template definition API, linking from one schema to the next
should bee done explicitly. Here this is done on the background and hidden from the user.

 36

(�������&�������������
���

We have already explained that the statements of a TDL program are inside the
START() ; / END() ; keywords. Optionally, before START() ; You could define the
inputs of the template. Inputs are defined after the I NPUTS() ; keyword. So the
structure of the program is:

I NPUTS() ;
 / / def i ne t he i nput s her e
START() ;
 / / t he pr ogr am
END() ;

The default input for each template is the initial schema. This is hidden from the
programmer, but when the template is executed the first input that it asks for is the initial
schema id. However the programmer can ask for more inputs.

Each input has a type and you can have arguments of any of the leaf types. The following
diagram highlights the types that an input can have:

You define inputs using askFor statements. There is a different statement for each type.
for example:

askFor Obj ect
askFor Const r ai nt s
askFor Obj ect Li s t
askFor Const r ai nt sLi s t
etc

The first argument of askFor statements is always the String that will prompt the user
to insert the particular input argument. For example:

 37

askFor Name(“ Pl ease i nser t t he name of t he ent i t y t hat wi l l be added”) ;

Before we start describing these statements, here’s the definitions of the askFor functions
taken from the API documentation:

CONSTRAINTS askForConstraints

FUNCTION askForFunction

NAME askForName

OBJECT askForObject

OBJECT askForObject Construct

CONSTRAINTSLIST askForConstraintsL ist

FUNCTIONLIST askForFunctionList

NAMELIST askForNameList

OBJECTLIST askForObjectList

OBJECTLIST askForObjectList Construct

CONSTRAINTSLIST askForConstraintsL ist LIST

FUNCTIONLIST askForFunctionList LIST

NAMELIST askForNameList LIST

OBJECTLIST askForObjectList LIST

OBJECTLIST askForObjectList Construct LIST

 38

Ask for Constraints, Function, Name

This is the simplest case. The description is the only required argument. For example:

NAME ent i t yName = askFor Name(“ I nser t name of ent i t y t o be added”) ;
FUNCTI ON f unc = askFor Funct i on(“ I nser t t he f unct i on f or t he

t r ansf or mat i on”) ;
CONSTRAI NTS cons = askFor Const r ai nt s(“ I nser t t he const r ai nt s of t he

t r ansf or mat i on”) ;

Note that the created I TEMS can be used later in the program.

Ask for Object

OBJECT obj = askFor Obj ect (“ I nser t an obj ect ”) ;

The will ask for an object of any construct. If you wish to specify a construct you will
have to use a second parameter.

OBJECT obj = askFor Obj ect (“ I nser t an ent i t y” , CONSTRUCT. I S(“ ent i t y”)) ;

(The way Constructs are used is explained in previous lesson (ADD statement))

Ask for L ists

In a similar way to how you ask for single ITEMs, you can ask for lists of ITEMs. For
example:

NAMELI ST subent i t i es = askFor NameLi st (“ I nser t t he names of

subent i t i es”) ;
OBJECTLI ST at t r i but es = askFor Obj ect Li s t (“ I nser t some at t r i but es” ,

CONSTRUCT. I S(“ at t r i but e”)) ;

Sometimes several lists should be of the same size. For example you might want a list of
entities and a list of names, one for each entity. So you would want the two lists to be of
the same size. One way to do it is to trust the common sense of the user and pray that he
will understand from the description that the two lists should be of the same size. On the
other hand you might want to enforce this constraint at compile time. In this case you
should add an extra argument at the end of the second ask for statement to say that it
should be of the same size as the first. For example:

OBJECTLI ST obj ect s = askFor Obj ect s(“ I nser t some obj ect s”) ;

 39

NAMELI ST names = askFor Names(“ Gi ve t he names of t he obj ect s” , obj ect s) ;

the second statement says ask for a list of the same size as the objects list.
For readability you could instead say:
NAMELI ST names = askFor Names(“ Gi ve t he names of t he obj ect s” ,

SI ZEOF(obj ect s)) ;

We could have more than two lists having the same size. To understand what happens in
this case, think of the lists as nodes, and think of referencing one list from an other as
adding an arc from one node to the next. For example the above created the following
graph.

The rule is: A list has the same size as all the lists that are reachable from it. For example
in the following diagram, the lists with the same color have the same size.

 40

(������ &��#(#�#�

You can delete objects that are in the current scope. After you delete the object it is
removed from the current scope. So for example you cannot delete it and then rename
it or use it in the scheme of an other object. Note that the CONTRACT statement works
exactly like the DELETE statement

The following program asks for an object and then deletes it.

I NPUTS() ;
OBJECT obj = askFor Obj ect (“ Obj ect t o be del et ed”) ;
START() ;
DELETE(obj) ;
END() ;

If you try to use obj after the DELETE statement, it will complain for trying to access an
I TEM that is not in the current scope.

A more readable way of saying DELETE(obj) ; is:
obj . DELETE() ;
Which does the same thing.

You could add two more arguments to the DELETE statement, namely the FUNCTI ON
and CONSTRAI NTS, used in a similar way as the ADD statement (see lesson 3 for more).

Examples:

obj . DELETE(FUNCTI ON. I S(f 1) , CONTRAI NTS. I S(c1)) ;
DELETE(obj , FUNCTI ON. I S(f 1) , CONSTRAI NTS. I S(c1)) ;
obj . DELETE(CONSTRAI NTS. I S(c1)) ;

The overloading of the DELETE function is shown below:

DELETE OBJECT

DELETE OBJECT CONSTRAINTS

DELETE OBJECT CONSTRAINTS FUNCTION

DELETE OBJECT FUNCTION

DELETE OBJECT FUNCTION CONSTRAINTS

 41

(������/&�,#0!1#�

This statement to rename SchemaObj ect s and it is quite straight forward. It takes the
OBJECT to be renamed and the new name as arguments. The following example
renames an object with a name given as a paremeter.

I NPUTS() ;
OBJECT obj = askFor Obj ect (“ Obj ect t o be r enamed”) ;
NAME newName = askFor Name(“ New name gi ven”) ;

START() ;
RENAME(obj , newName) ;
END() ;

Similar to DELETE, you could rename the object by saying:
obj . RENAME(newName) ;

If you knew the new name at compile time you could use a java String instead of a NAME.
For example:

RENAME(obj , “ j ohn”) ;
obj . RENAME(“ j ohn”) ;

 42

(������2&�%�����������
������������(�

Strings and string manipulation in TDL is often confusing partly because there is often
the issue of what is a java St r i ng and what is a TDL STRI NG. But before I frighten
you even more, recall on which items are considered a TDL STRI NGs by looking at the
type tree below.

There are 4 main statements that have similar structure, one for each type:

DEFI NE_STRI NG
DEFI NE_CONSTRAI NTS
DEFI NE_FUNCTI ON
DEFI NE_NAME

The difference between them is merely to the type of STRI NG they produce, from then
on if you know one of them you know all of them, that’s why we shall not comment on
each one of these independently but instead use them interchangeably.

There are two ways to use these functions: Using Obj ect arrays, and using St r i ngs .
They both have the same expressive power, however the second one is much more
elegant. We will however explain the first way first as it is simpler and we will later
explain how the second way is derived form the first.

Define STRINGS Using Arrays

The main idea here is that you create a STRI NG by concatenating other STRI NGs . For
example, let’s say that we somehow managed to define two Strings:

STRI NG hel l o; / / has t he val ue “ hel l o_”
STRI NG wor l d; / / has t he val ue “ wor l d”

We can concatenate these two into a new string by saying:

NAME hw = DEFI NE_NAME (new Obj ect [] { hel l o, wor l d} ; / / ” hel l o_wor l d”

 43

The Obj ect [] could have any STRING as its elements. Furthermore it could also have
any j ava St r i ng. So for example:

FUNCTI ON hw = DEFI NE_FUNCTI ON(new Obj ect [] { “ hel l o_” ,

 wor l d,
“ how ar e you” ,
” ?” }) ;

hw now has the value “hello_world how are you?

Note that the STRI NG wor l d could have come from an I nput so its value can be
dynamic.

Define Str ing Using Java Str ing

If we want to define string hel l o_wor l d we could just say:

STRI NG hw = “ hel l o_wor l d” ;

But we would like to do the concatenation stuff we did in the previous approach. Saying:

STRI NG hw = “ hel l o_” +wor l d+“ how ar e you” +“ ?” ;

is not appropriate, as it will just take the string representation (t oSt r i ng()) of the
wor l d variable and form a new static St r i ng (remember that the TDL program
compiles when the java program runs).

Now consider the following program. What it does, is asks the user for her name and
define a STRI NG that could for instance say: “User’s name is Julie”

I NPUTS() ;

STRI NG name = askFor Name(“ What i s your name?”) ;
START() ;
 ALI AS(name, “ name”) ;
 STRI NG sent ence = DEFI NE_STRI NG(“ User ’ s name i s @name”) ;
END() ;

What ALIAS does, is assign an alias java St r i ng to an I TEM. For example here the
St r i ng “ name” is an alias for the STRI NG name. Here we decided to call it “ name”
but we could call it anything of the correct format:

Aliases format:

• Made up only of alphanumeric characters
• Have a length of at least 1.

 44

An I TEM can have any number of aliases, but an alias can only be assigned to a single
I TEM. You can only define aliases for I TEMS that are in the current scope.

STRI NG sent ence = DEFI NE_STRI NG(“ User ’ s name i s @name”) ;

is equivalent to:

STRI NG sent ence = DEFI NE_STRI NG(new Obj ect [] { “ User ’ s name i s” , name}) ;

and in fact when the string above is parsed this is what it returns.

If you want to clearly define the name of the alias, you can include it in brackets, e.g.

STRI NG sent ence = DEFI NE_STRI NG(“ User ’ s name i s @(name) ”) ;

is equivalent to the previous example. This is useful when the rest of the sentence after
the alias contains alphanumerical characters, e.g.

NAME pr i mar ykeyName = DEFI NE_NAME(" @(speci al i zat i onTabl eName) _pk") ;

Having defined the alias you can use it in a St r i ng such that @al i as refers to the item
that the alias is aliasing. For now, just assume that you can only use aliases of OBJECTs
and STRI NGs in the St r i ng.

Using an OBJECT in the String will actually place the ID of the SchemaObj ect in the
repository. Eg.

STRI NG s = DEFI NE_STRI NG(“ ent i t y i s @myEnt i t y”) ;

will return something like: “ ent i t y i s 142” ;

I can’ t think of any real application where this could be of any use. However there are a
coulple of tricks we can do that makes the use of object reallyuseful:
?name extention and
?scheme extension

For example:

STRI NG s1 =DEFI NE_STRI NG(“ at t r i but e name i s @myAt t ?name”) ;
STRI NG s2 = DEFI NE_STRI NG(“ at t r i but e scheme i s @myAt t ?scheme”) ;

s1 will give something like “ at t r i but e name i s p_code”
s2 will give something like “ at t r i but e scheme i s <<per son, p_code>>” ,
depending of how the scheme of the attribute is defined in the repository.

 45

Concatenating Str inglists

An other I TEM instance we can use in a DEFI NE_STRI NG statement is a
STRI NGLI ST. What it does is concatenate all the elements of the STRINGLIST. For
example:

I NPUTS() ;
 STRI NGLI ST f r ui t s = askFor St r i ngLi st (“ Whi ch f r ui t s do you

l i ke?”) ;
START() ;
 ALI AS(f r ui t s , “ f r ui t s”) ;
 STRI NG f = DEFI NE_STRI NG(“ User l i kes: @f r ui t s”) ;
END() ;

If the user entered the list:

Apples
Pears
Figs

f would have the value: “ User l i kes: Appl esPear sFi gs”

I am sure you can think of numerous tasks where the above example can be applied to a
real Database Schema Integration process (ok, stop laughing), however when we explain
how looping works you will really realize the use of this feature.

There is also the option to define the substring that will appear in between the strings that
are concatenated. All the DEFINE_STRING methods are overwritten with an extra
artument (String) which defines the concatenation string to be used. For example, the
following STRING f

STRI NG f = DEFI NE_STRI NG(f r ui t s, “ ++”) ;

would have the value “ Appl es++Pear s++Fi gs” . This can be very useful when
concatenating IQL queries.

 46

(������3&�(������������(4�����'�,#!56�����������

Looping in TDL is done using a FOREACH statement. A FOREACH iterates through a list
and can use the current element of the list at each iteration.
The general structure of the statement is the following:

FOREACH() ;
 / / For each Header

DO() ;
 / / Loop Bl ock
ENDFOREACH() ;

VERY IMPORTANT

The scope of the Loop Block contains ONLY the variables declared at the Foreach
Header . If you want to use a variable that was on the scope before the loop, you have to
explicitly re-declare it (using VARIES_WITH see later) on the Foreach Header. Variables
declared inside the loop body are not on the scope outside the loop (except COLLECT
lists see later).

The following program asks the user for a list of names, and adds entities with those
names, one for each name

I NPUTS() ;
 NAMELI ST ent i t yNames = askFor NameLi st (" Names of ent i t i es t o

add") ;

START() ;

 FOREACH() ; NAME cur r ent Name =I N (ent i t yNames) ;
 DO() ;
 OBJECT newEnt i t y = ADD(CONSTRUCT. I S(ent i t y) ,
 SCHEME. I S(new Obj ect []

{ my(cur r ent Name) }) ,
) ;
 ENDFOREACH() ;

END() ;

The main header statement is the =IN statement.
Seeing I N as a java method, it takes a LI ST and returns an I TEM of the same type as the
elements of the list. Here’s the overloading of the function

 47

CONSTRAINTS IN CONSTRAINTSLIST

FUNCTION IN FUNCTIONLIST

NAME IN NAMELIST

OBJECT IN OBJECTLIST

In the example above, it takes a NAMELI ST and returns a NAME.

NAME cur r ent Name =I N (ent i t yNames) ;

this says that cur r ent Name iterates through the list ent i t yNames , and takes the
current value of the list at each iteration of the loop. The loop is iterated as many times as
the number of elements in the list ent i t yNames .

You can iterate through more than one list at any time. You could say:

FOREACH() ; NAME cur r ent Name =I N(ent i t yNames)
 OBJECT cur r ent At t r =I N(at t r i but es)

The lists ent i t yNames and at t r i but es should have the same size, otherwise the
program might misbehave. If these lists come from the inputs, you could enforce this by
using the SI ZEOF option (see lesson for inputs).

VARIES_WITH

As we said above, if you want to use an item that comes from outside the loop inside the
loop, you will have to re-declare it on the loop header . This is done using the
VARIES_WITH statement.

For example:

OBJECT par ent Ent i t y = …

FOREACH() ; NAME cur r ent Name =I N(subent i t i es) ;
 OBJECT par ent =VARI ES_WI TH(par ent Ent i t y) ;
 DO() ;
 …
ENDFOREACH() ;

So par ent is basically the same object as par ent Ent i t y as far as the programmer is
concerned.

 48

Collecting Inside the loop

We have already mentioned that what is created inside the loop is not accessible outside
the loop. This would mean that you cannot use things that are created by the loop outside
of it.

This is true. However you can use the COLLECTS statement, to create lists that collect
objects that are produced inside the loop.

FOREACH() ; NAME cur r ent Name =I N (ent i t yNames) ;
 DO() ;
 OBJECT newEnt i t y = ADD(CONSTRUCT. I S(ent i t y) ,
 SCHEME. I S(new Obj ect []

{ my(cur r ent Name) }) ,
) ;
 OBJECTLI ST cr eat edEnt s =COLLECTS(newEnt i t y) ;
ENDFOREACH() ;

Each time the loop is iterated an entity is created, and added to the cr eat edEnt s
OBJECTLI ST. Collecting lists are accessible outside the loop. COLLECTS statements
should be the last statements of the loop block but you can have more than one
COLLECTS statements.

Nested Loops

Nested loops are supported in TDL. There is nothing special with nested loops. Just
remember that if you want to use a variable that is outside the loop in the internal loop,
you will have to re-declare it on the header of the outer loop and re-re-declare it on the
header of the internal one.

From what we learned up to now you should be able to understand and reproduce the
following TDL code that implements an Attribute to Generalisation equivalence template
transformation (not complete as it needs some more functions).

I NPUTS() ;
 OBJECT par ent Ent i t y = askFor Obj ect (" Exi st i ng par ent ent i t y" ,

ent i t y) ;
OBJECT exi s t i ngAt t r i but e = askFor Obj ect (" At t r i but e t o be

del et ed" ,
at t r i but e) ;

 NAMELI ST subEnt i t yNames = askFor NameLi st (" Names of t he
Subent i t i es") ;

 49

 NAMELI ST popul at i onOf Ent i t i es = askFor NameLi st (" Val ues of t he
at t r i but e t hat cor r espond t o
subent i t i es" ,
SI ZEOF(subEnt i t yNames)) ;

 NAME genName = askFor Name(" Gener al i sat i on Name") ;

START() ;

 FOREACH() ; NAME subName =I N (subEnt i t yNames) ;
 NAME popName =I N (popul at i onOf Ent i t i es) ;
 OBJECT at t =VARI ES_WI TH(exi st i ngAt t r i but e) ;
 OBJECT par ent =VARI ES_WI TH(par ent Ent i t y) ;

 DO() ;
 ALI AS (popName, " nameGi ven") ;
 ALI AS (subName, " subname") ;
 ALI AS (at t , " at t ") ;
 ALI AS (par ent , " par ent ") ;

 FUNCTI ON f 1 =

DEFI NE_FUNCTI ON(" @subname(X) : -
 @at t ?scheme(X, @nameGi ven) ") ;

 OBJECT newEnt i t y = ADD(CONSTRUCT. I S(ent i t y) ,
 SCHEME. I S(new Obj ect []

{ my(subName) }) ,
 FUNCTI ON. I S(f 1)
) ;
 OBJECTLI ST cr eat edEnt i t i es =COLLECTS(newEnt i t y) ;

 ENDFOREACH() ;

 ADD (gener al i sat i on,
 new Obj ect [] { my(genName) ,
 " t ot al " ,
 par ent Ent i t y ,
 cr eat edEnt i t i es
 }
) ;

 ex i st i ngAt t r i but e. DELETE() ;
END() ;

 50

(������7&�1����
�����������%����������)8�����

Up to this point, TDL is (relatively) strongly typed. The programmer is not allowed to
play with types and therefore we are guaranteed (to some extend) that once the TDL
program compiles then the program will run well (remember that TDL program compiles
means the java program runs).

This lesson introduces the statements:

• SCHEME_LI ST : Creates a list containing the scheme items of an object.
• ELEMENT_AT : Accesses an item of the list at a particular position. The type of

the object has to be explicitly stated when the statement is used.
• CREATE_LI ST : Creates an arbitrary list of I TEM objects. Its main use is the

definition of an object’s scheme.

Someone should use these statements only if she is sure how the scheme of each object is
defined inside the repository.

I could spend quite some time talking about these statements but I think I would save
quite some ink and paper if I described what is going on using an example.

Assume we would like to write a template that resolves Generalization Attribute
equivalence by replacing the generalization with an attribute with the same name as the
generalization. An instance of this transformation is illustrated below.

In order to perform this transformation we will have to know:

• The parent entity (animal)
• The generalization (class)
• The subentities (mammal, fish, bird)

With the statements we have explained up to now, in order to perform this transformation
we will have to ask the user to enter the parent entity, the generalization and a list with
the subentities.

 51

However, the parent entity and the subentities, are all part of the scheme of the
generalization. So if we could access the scheme of objects, then in fact all we would
only require from the user is to give is the generalization.

Here’s an example of the scheme of an SchemaObj ect (generalization) as defined in
the Automed repository (for more on schemes see the Automed website).

Index Scheme Object at this position Type Example
0 name of generalization string/single “class”
1 type of generalization string/single “ total”
2 parent entity object id/single animal:ID
3 subentities object ids/ list list: (mammal:ID,

fish:ID, bird:ID)

This can be seen as a list with a different element at each position. As you can see
different positions have different types. Abstracting the types in the table above to TDL
types, then indices 0 to 4 would have the following types:

Index TDL type
0 STRING
1 STRING
2 OBJECT
3 OBJECTLIST

I will tell you now that you can obtain the Scheme List using the SCHEME_LI ST
statement. The main problem now is what type should this list be? I remind you that the
list types are the following:

 52

None of the leaf types can suit the type of the scheme list. The scheme list is therefore of
type LI ST and we give freedom to the programmer to specify what type each element
has.

To make things even worse, The LI ST given by the SCHEME_LI ST contains lists of
one element instead of single items. The table below summarizes what you will really get
when you get the scheme list:

Type at scheme What you get
OBJECT An OBJECTLIST of one element that contains the object at

index zero
STRING A STRINGLIST of one element that contains the string at

index zero
OBJECTLIST OBJECTLIST

In other words, in order to get the parent entity, you should get the OBJECTLI ST at
position 2, and from that take the OBJECT at position 0.

Getting the scheme list can be done quite simply:

LI ST schemeLi st = SCHEME_LI ST(myGener al i sat i on) ;

Or

LI ST schemeLi st = myGener al i sat i on. SCHEME_LI ST() ;

Note that you cannot use the schemeLi st cr eat ed in the f or each statement as
you are only allowed to iterate a LIST but only the leaf types of LIST.

The only way you can use it is using the ELEMENT_AT statement. Since we don’ t know
what the element at each position is, we trust that the programmer will explicitly say what
the type of the element is and that this type will be correct.

So, ELEMENT_AT is used in the following way:

CONSTRAI NTS c = (CONSTRAI NTS) aLi st . ELEMENT_AT(0, TypeConst r ai nt s) ;
FUNCTI ON c = (FUCNTI ON) aLi st . ELEMENT_AT(3, TypeFunct i on) ;
OBJECT c = (OBJECT) aLi st . ELEMENT_AT(5, TypeObj ect) ;
STRI NG c = (STRI NG) aLi st . ELEMENT_AT(2, TypeSt r i ng) ;
STRI NGLI ST c = (STRI NGLI ST) aLi st . ELEMENT_AT(2, TypeSt r i ngLi st) ;

And so on, for all types (except I TEM and LI ST). Note the how casting is used, and how
the elements are indexed from position zero.

 53

When the Construct of the OBJECT in the list, it is better to specify it by:

OBJECT ent i t y = (OBJECT) aLi st . ELEMENT_AT(5, CONSTRUCT. I S(“ ent i t y”)) ;

So far, we’ve seen how to get LI STs from existing methods, e.g. SCHEME_LI ST() . In
order to create your own LI STs, you need to use the CREATE_LI ST statement. It has a
single argument which is an array of I TEMs that constitute the list.

This statement is useful for defining the scheme of an object and especially when you’ve
got nested lists. For example, to create the scheme of a primary key construct you need a
list of all the columns of the table that are part of the primary key:

OBJECTLI ST pr i mar yKeyCol umns =
 (OBJECTLI ST) CREATE_LI ST(new I TEM[] { newCol umn}) ;
ADD(CONSTRUCT. I S(pr i mar ykey) ,
 SCHEME. I S(new Obj ect [] { my(pr i mar ykeyName) , newSpeci al i zat i on,
pr i mar yKeyCol umns})
) ;

Now take a look at the Generalization to Attr ibute Equivalence we promised you. All
the syntax has been described already. Note how we first take the OBJECTLI ST that
contains the parent entity and use that to take the first element, ie the parent entity itself

I NPUTS() ;
 OBJECT gener al i sat i on = askFor Obj ect (" Exi s t i ng par ent ent i t y" ,
CONSTRUCT. I S(" gener al i sat i on")) ;

START() ;
 LI ST genScheme = gener al i sat i on. SCHEME_LI ST() ;
 OBJECTLI ST par ent Li s t = (OBJECTLI ST) genScheme. ELEMENT_AT(2,
TypeObj ect Li st) ;
 OBJECT par ent = par ent Li st . ELEMENT_AT(0, CONSTRUCT. I S(" ent i t y")) ;

 OBJECTLI ST subEnt i t i es = (OBJECTLI ST) genScheme. ELEMENT_AT(3,
TypeObj ect Li st) ;

 gener al i sat i on. DELETE() ;

 FOREACH() ; OBJECT subEnt i t y =I N(subEnt i t i es) ;

 DO() ;
 subEnt i t y . DELETE() ;

 ENDFOREACH() ;

 ADD(CONSTRUCT. I S(" at t r i but e") ,
 SCHEME. I S(new Obj ect [] { par ent , my(at t Name) , " key" })
) ;
END() ;

 54

����,
�������������������������������

The discussion in the previous section was focused on static template transformations.
They are static because a special Java program needs to be written for each one of them,
with specific methods that should override methods of the
Templ at eCompi l er Si mul at or . (see Lesson 1).

The AutoMed API enables also the definition of Runtime Template Transformations.
There is a class Def aul t Templ at e which can be used for this purpose. To create a
template transformation at run-time, you need an instance of the Def aul t Templ at e,
which you set to have the arguments and statements you need. The syntax is exactly the
same as described in the previous section.

A sample of the code that creates a run-time template transformation follows:

Def aul t Templ at e t = new Def aul t Templ at e(er , “ r unt i me t empl at e” , “ ”) ;

t . I NPUTS() ;
 Templ at eCompi l er Si mul at or . NAME ent i t yName =
 t . askFor Name(" New ent i t y name") ;

t . START() ;
 Templ at eCompi l er Si mul at or . OBJECT newEnt i t y=
 t . ADD(ent i t y , new Obj ect [] { t . my(ent i t yName) }) ;
t . END() ;

