
Tracing Data Lineage Using Automed Schema Transformation
Pathways

Hao Fan Alexandra Poulovassilis
School of Computer Science and Information Systems

Birkbeck College, University of London, {hao, ap}@dcs.bbk.ac.uk

1. Introduction
A data warehouse is a materialized view storing the

tuples of the view over a number of data sources. It
collects copies of data from remote, distributed,
autonomous and heterogeneous data sources into a
central repository to enable analysis and mining of the
integrated information. Data warehousing is popularly
used for on-line analytical processing (OLAP), decision
support systems, on-line information publishing and
retrieving, and digital libraries. However, sometimes
what we need is not only to analyse the data in the
warehouse, but also to investigate how certain warehouse
information was derived from the data sources. Given a
tuple t in the warehouse, finding the exact set of source
data items from which t was derived is termed the data
lineage problem [CWW00]. Enabling lineage tracing in
data warehousing environments brings several benefits
and applications, including in-depth data analysis, on-
line analysis mining (OLAM) and OLAP, scientific
databases, authorization management and materialized
view schema evolution [BB99, WS97, Cui01, CWW00,
GFS+01, FSJ97].

Automed (Automatic Generation of Mediator Tools
for Heterogeneous database Integration) is a database
transformation and integration system, supporting both
virtual and materialized integration of schemas expressed
in a variety of modelling languages. This system is
being developed in a collaborative EPSRC-funded
project between Birkbeck and Imperial Colleges, London
(see http://www.ic.ac.uk/Automed).

Common to many methods for integrating
heterogeneous data sources is the requirement for logical
integration [Hull97] of the data, due to variations in the
design of data models for the same universe of discourse.
When data is to be shared or exchanged between
heterogeneous databases, it is necessary to build a single
integrated schema expressed using a common data model
(CDM). In previous work of the Automed project
[PM98, MP99a], a general framework has been
developed to support schema transformation and
integration in heterogeneous database architectures. The
framework consists of a low-level hypergraph based
data model (HDM) and a set of primitive schema
transformations on HDM schemas.

[MP99b] gives the definitions of equivalent HDM
representations for ER, relational and UML schemas, and
discusses how inter-model transformations can be
supported via this underlying common data model.
Using a higher-level CDM such as an ER model or the
relational model can be complicated because the original
and transformed schemas may be represented in different
high-level modelling languages and there may not be a
simple semantic correspondence between their modelling
constructs. HDM schemas contain Nodes, Edges and
Constraints as their constructs, which can be used as the
underlying representation for higher-level modelling
constructs. Thus, inter-model transformations can be
performed by transforming the HDM representations of
higher-level modelling constructs. We term the sequence
of primitive transformations defined for transforming a

schema s1 to a schema s2 a transformation pathway
from s1 to s2. That is, a transformation pathway consists
of a sequence of primitive schema transformations.

In this paper we discuss how Automed’s
transformation pathways can be used to trace the lineage
of data in a data warehouse which integrates data from
several source databases. We assume that both the source
database schemas and the integrated database schema are
expressed in the HDM data model since, as discussed in
[MP99b], higher-level schemas and the transformations
between can be automatically translated into an
equivalent HDM representation. We use a functional
intermediate query language (IQL) as the query
language to implement our lineage-tracing algorithm.

The remainder of this paper is as follows. Section 2
discusses related work and existing methods of tracing
data lineage. Section 3 reviews the Automed framework,
including the HDM data model, IQL syntax and
transformation pathways. Section 4 gives our definitions
of data lineage and describes the methods of tracing data
lineage we have adopted in Automed. Section 5 gives our
conclusions and directions of future work.

2. Related work
The data lineage problem in data warehouse

environments has increasingly become a focus of
database engineering.

[WS97] proposes a general framework for computing
fine-grained data lineage using a limited amount of
information about the processing steps. The notion of
weak inversion is introduced in the paper. Based on a
weak inverse function, which must be specified by the
transformation definer, the paper defines and traces data
lineage for each transformation step in a visualization
database environment. In the Automed approach to
heterogeneous database integration, transformation
pathways are defined between the source and target
schemas. [MP99a] discusses how both primitive and
composite schema transformations are automatically
reversible, thus allowing automatic translation of data
and queries between schemas. In this paper, we show
how the Automed transformation pathways can also be
used for data lineage tracing.

[CWW00] provides some fundamental definitions
relating to the data lineage problem, including tuple
derivation for an operator, tuple derivation for operators
and tuple derivation for a view. It also has addressed the
derivation tracing problem using bag semantics and
provided the concept of derivation set and derivation
pool for tracing data lineage with duplicate elements. We
use those ideas in our approach and define the notions of
affect-pool and origin-pool in Automed.

Another fundamental concept is addressed in [BKT00,
BKT01]: the difference between “why” provenance and
“where” provenance. Why-provenance refers to the
source data that had some influence on the existence of
the integrated data; while where-provenance refers to the
actual data in the source databases from which the
integrated data was extracted. The problem of why-
provenance has been studied for relational databases in

 1

[CWW00, WS97, Cui01, CW01]. We introduce the
notions of affect and origin provenance, give the
definitions of data lineage in Automed and discuss the
lineage tracing algorithms for these the two kinds of
provenance.

There are also other previous works related to data
lineage tracing [BB99, FJS97, GFS+01]. Most of these
consider coarse-grained lineage based on annotations on
each data transformation step, which provides estimated
lineage information not the exact tuples in the data
sources. Using our approach, fine-grained lineage, i.e. a
specific derivation in the data sources, can be computed
given the source schemas, integrated schema, and
transformation pathways between them. All of our
algorithms are based on bag semantics using the HDM
data model and the IQL query language.

3. The Automed Framework

This section gives a short review of the Automed
schema transformation framework, including the HDM
data model, IQL language and transformation pathways.
More details of this material can be found in [PM98,
MP99a, MP99b, Pou01a].

A schema in the Hypergraph Data Model (HDM) is
a triple <Nodes, Edges, Constraints> containing a set of
nodes, a set of edges, and a set of constraints. A query q
over a schema S is an expression whose variables are
members of Nodes and Edges. Nodes and Edges define a
labelled, directed, nested hypergraph. It is nested in the
sense that edges can link any number of both nodes and
other edges. Constraints is a set of boolean-valued
queries over S. The nodes and edges of a schema are
identified by their scheme. For a node this is the form
nodeName and for an edge it is of the form «edgeName,
scheme1, scheme2,…, schemen», where scheme1, …,
schemen are the schemes of the constructs connected by
the edge. Edge names are optional and the absence of a
name is denoted by “_”.

An instance I of a schema S = <Nodes, Edges,
Constraints> is a set of sets satisfying the following:
(i) each construct c � Nodes � Edges has an extent,

denoted by ExtS,I(c), that can be derived from I ;
(ii) conversely, each set in I can be derived from the set

of extents {ExtS,I(c)| c � Nodes � Edges}
(iii) for each e � Edges, ExtS,I(e) contains only values

that appear within the extents of the constructs
linked by e (domain integrity);

(iv) the value of every constraint c � Constraints is true,
the value of a query q being given by q[c1/ExtS,I(c1),
… , cn/ExtS,I(cn)] where c1, … , cn are the constructs
in Nodes � Edges.

The function ExtS,I is called an extension mapping. A
HDM model is a triple <S, I, ExtS,I>. The primitive
transformations on HDM models are as follows. Each
transformation is a function that when applied to a model
returns a new model (note that only the schema and
extension mapping are affected by these transformations,
not the instance i.e. the data):
1. renameNode(fromName,toName) renames a node.
2. renameEdge(«fromName,c1,…,cn», toName) renames

an edge.
3. addConstraint c adds a new constraint c.
4. delConstraint c deletes a constraint.
5. addNode(name, q) adds a node named name whose

extent is given by the value of the query q over the
existing schema constructs.

6. delNode(name, q) deletes a node. Here, q is a query
that states how the extent of the deleted node could be
recovered from the extents of the remaining schema
constructs (thus, not violating property (ii) of an
instance).

7. addEdge(«name, c1, … , cn», q) adds a new edge
between a sequence of existing schema constructs c1,
…, cn. The extent of the edge is given by the value of
the query q over the existing schema constructs.

8. delEdge(«name, c1, … , cn», q) deletes an edge. q
states how the extent of the deleted edge could be
recovered from the extents of the remaining schema
constructs.
A composite transformation is a sequence of n ≥ 1

primitive transformations. We term the composite
transformation defined for transforming schema s1 to
schema s2 a transformation pathway from s1 to s2.

The query, q, in each transformation is expressed in a
functional intermediate query language, IQL [Pou01a].
This supports a number of primitive types, such as
booleans, strings and numbers, as well as product,
function and bag types. The set of simple IQL queries are
as follows, where D, D1 …, Dr denote a bag of the
appropriate type:

1. q = D1 ++ D2 ++ … ++ Dr /* bag union*/
2. q = D1 -- D2 /* bag monus [Alb91, GL99] */
3. q = group D

 /* group a bag of pairs on their first
component*/

4. q = sort D
5. q = sortDistinct D

 /*sort and remove duplicates*/
6. q = aggFun D (aggFun = “max” | “min” |

“count” | “sum” | “avg”)
/*apply an aggregation function*/

7. q = gc aggFun D (aggFun = “max” | “min” |
“count” | “sum” | “avg”)

/*group a bag of pairs on their first
component and apply an aggregation
function to the second component*/

8. q = [p| p � D1; member D2 p]
/*members of D1 that are members of
D2*/

9. q = [p| p � D1; not (member D2 p)]
/*members of D1 that are not
members of D2*/

10. q = [p � p1 � D1; …; pr � Dr; c1; …; ck]
/* the ci are filters */

General IQL queries are formed by arbitrary nesting of

the above simple query constructs.
The constructs in 8,9,10 above are comprehensions

[Tri91]. These have the general syntax [e|Q1; …; Qn],
where Q1 to Qn are qualifiers, each qualifier being either
a filter or a generator. A filter is a boolean-valued
expression. A generator has syntax “p � q” where p is a
pattern and q is a collection-valued expression. A pattern
is either a variable or a tuple of patterns. In IQL, the head
expression e of a comprehension is also constrained to be
a pattern.

IQL can represent common database query operations,
such as select-project-join (SPJ) operations and SPJ
operations with aggregation (ASPJ). For example, to get
the maximum daily sales total for each store in the
relation StoreSales (store_id, daily_total, date), in SQL
we use:

 2

SELECT store_id, max(daily_total)
FROM StoreSales
GROUP BY store_id

In IQL this query is expressed by
V = gc max [(s, t)| (s, t, d) � StoreSales]

Example 1: Transforming between HDM schemas

Consider two HDM schemas S1 = (N1, E1, C1) and S2
= (N2, E2, C2) where
N1 = {mathematician, compScientist, salary},
C1 = {},
E1 = {«_, mathematician, salary»,

 «_, compScientist, salary»};
N2 = {dept, person, salary, avgDeptSalary},
C2 = {},
E2 = {«_, dept, person», «_, person, salary»,

 «_, dept, avgDeptSalary»}.

Figure 1 illustrates these schemas S1 and S2.

S1 can be transformed to S2 by the following sequence
of primitive schema transformations:
TS1,S2 =
addNode (dept,{“Maths”,“CompSci”});
addNode (person, [x| x � mathematician] ++

[x| x � compScientist]);
addNode (avgDeptSalary,

{avg [s| (m,s)�«_, mathematician, salary»]} ++
{avg [s| (c,s)�«_, compScientist, salary»]});

addEdge («_, dept, person»,
 [(“Maths”, x)| x � mathematician] ++

[(“CompSci”, x) | x � compScientist]);
addEdge («_, person, salary»,
 «_, mathematician,salary» ++

«_, compScientist, salary»);
addEdge («_, dept, avgDeptSalary»,

{(“Maths”,
 avg [s| (m,s)� «_, mathematician, salary»]),
 (“CompSci”,
 avg [s| (c,s)�«_, compScientist, salary»])});

delEdge («_, mathematician, salary»,
[(p, s)| (d, p) � «_, dept, person»;
 (p’, s) � «_, person, salary»;
 d = “Maths”; p = p’]);

delEdge («_, compScientist, salary»,
[(p, s)| (d, p) � «_, dept, person»;
 (p’, s)� «_, person, salary»;
 d = “CompSci”; p = p’});

delNode (mathematician, [p| (d, p)�
«_, dept, person»; d = “Maths”]);

delNode («compScientist», [p| (d, p) �
«_, dept, person»; d = “CompSci”]); �

The first 6 transformation steps in TS1,S2, create the
constructs in S2 which do not exist in S1. The query in
each step gives the extension of the new schema
construct in terms of the existing schema constructs. The
last 4 transformation steps then delete the redundant

constructs of S1. The extension of each deleted construct
can be reconstructed by the query in the transformation
step.

4. Tracing data lineage in Automed
What we investigate in this paper is how the lineage of

data items in an integrated database can be computed
given the source databases and the transformation
pathways between the source schemas and the integrated
schema. In this section we present our definitions of data
lineage and describe our lineage tracing methods.

4.1 Data lineage in Automed

Regarding the definitions of data lineage, the
fundamental ones are given in [CWW00], including
tuple derivation for an operator, tuple derivation for a
view, and methods of derivation tracing with both set and
bag semantics. However, these definitions and methods
are limited to why-provenance [BKT01] and what they

consider is a class of views defined over base relations
using the relational algebra operators: selection (�),
projection (�), join (⋈), aggregation (�), set union (�),
and set difference (�). The query language used in
Automed is IQL based on bag semantics allowing
duplicate elements in a source schema or the integrated
schema, and also within the collections that are derived
during lineage tracing. Also, we consider both affect-
provenance and origin-provenance in our treatment of
the data lineage problem.

mathematician compScientist personS2: S1:
salary

 dept
avgDeptSalary

Transformation Pathway: TS1,S2 salary

Figure 1: Transforming schema S1 to S2

What we regard as affect-provenance includes all of
the source data that had some influence on the result
data. Origin-provenance is simpler because here we are
only interested in the specific data in the source
databases from which the resulting data is extracted.

4.1.1 Data lineage with set semantics in IQL

The definition of tuple derivation for an operation was
given in [CWW00] considering only the aspect of affect-
provenance. We use the notions of maximal witness and
minimal witness from [BKT01] to classify data lineage
into two aspects: affect-set and origin-set. For set
semantics and simple IQL queries, the definitions of
affect-set and origin-set for a tuple and a tuple set1 in the
integrated database are given as follows. The q in these
definitions is any IQL simple query.

Definition 1 (Affect-set for a simple query in IQL) Let
q be any simple query over sets T1, …, Tm, and let V =
q(T1, …, Tm) be the set that results from applying q to T1,
…, Tm. Given a tuple t � V, we define t’s affect-set in T1,
…, Tm according to q to be qA

<T1, …, Tm>(t) = <T1
*, …,

Tm
*>, where T1

*, …, Tm
* are maximal subsets of T1, …,

Tm such that:
(a) q(T1

*, …, Tm
*) = {t}

 3

1 By tuple set we mean a set of tuples, and by tuple bag we
mean a bag of tuples.

(b) 	Ti’: q(T1
*, …, Ti’, …, Tm

*) = {t}
 Ti’ � Ti
*

(c) 	Ti
: 	t � Ti

*: q(T1
, …, {t}, …, Tm

*) � Ø
Also, we say that qA

Ti(t) = Ti
* is t’s affect-set in Ti. The

affect-set of a tuple set T � V contains all tuples in the
affect-set of any tuple in T, denoted as qA

<T1, …, Tm>(T).

Definition 2 (Origin-set for a simple query in IQL)
Let q, T1, …, Tm, V and t be as above. We define t’s
origin-set in T1, …, Tm according to q to be qO

<T1, …,

Tm>(t) = <T1
*, …, Tm

*>, where T1
*, …, Tm

* are minimal
subsets of T1, …, Tm such that:

(a) q(T1
*, …, Tm

*) = {t}
(b) 	Ti’: Ti’ � Ti

*: q(T1
*, …, Ti’, …, Tm

*) � {t}
(c) 	Ti

: 	t � Ti
*: q(T1

, …, {t}, …, Tm
*) � Ø

Also, we say that qO
Ti(t) = Ti

* is t’s origin-set in Ti, and
qO

<T1, …, Tm>(T) is the origin-set of a tuple set T � V.

In those two definitions, condition (a) states that the
result of applying query q to the lineage must be the
tracing tuple t; condition (b) is used to enforce the
maximizing and minimizing properties respectively; and
condition (c) removes the redundant elements in the
computed derivation of tuple t (see [CWW00]).

Proposition 1: The origin-set of a tuple set T is a subset
of the affect-set of T.

4.1.2 Data lineage with bag semantics in IQL

As mentioned as above, our approach for tracing data
lineage is based on bag semantics which allow duplicate
elements to exist in the source schemas, the integrated
schema and computed lineage collections. We use the
notions of affect-pool and origin-pool to describe the
data lineage problem with bag semantics:

Definition 3 (Affect-pool for a simple query in IQL)
Let q be any simple query over bags T1, …, Tm, and let V
= q(T1, …, Tm) be the bag that results from applying q to
T1, …, Tm. Given a tuple t � V, we define t’s affect-pool
in T1, …, Tm according to q to be qAP

<T1, …, Tm>(t) = <T1
*,

…, Tm
*>, where T1

*, …, Tm
* are maximal sub-bags of T1,

…, Tm such that: <[x| x � D; x = t]>
(aggFun = “max”| “min”)

<D>
(aggFun = “count”| “sum”| “avg”)

(a) q(T1
*, …, Tm

*) = {x| x � T; x = t}
(b) 	Ti’: q(T1

*, …, Ti’, …, Tm
*) = {x| x � T; x = t}

 Ti’ � Ti
*

(c) 	Ti
: 	t � Ti

*: q(T1
, …, {t}, …, Tm

*) � Ø
Also, we say that qAP

Ti(t) = Ti
* is t’s affect-pool in Ti. The

affect-pool of a tuple bag T � V contains all tuples in the
affect-pool of any tuple in T, denoted as qAP

<T1, …, Tm>(T).
 <[x| x � D; x = t]>
(aggFun = “max”| “min”)

<[x| x � D; first x = first t]>
(aggFun = “count”| “sum”| “avg”)

Definition 4 (Origin-pool for a simple query in IQL)
Let q, T1, …, Tm, V and q be as above. We define t’s origin-
pool in T1, …, Tm according to q to be qOP

<T1, …, Tm>(t) =
<T1

*, …, Tm
*>, where T1

*, …, Tm
* are minimal sub-bags of

T1, …, Tm such that:
(a) q(T1

*, …, Tm
*) = {x| x � T; x = t}

(b) 	Ti
: ��t: t* � Ti

, t � (Ti -- Ti
*)

(c) 	Ti
: 	t � Ti

*: q(T1
*, …, {x| x � Ti

; x � t}, …,
Tm

*) � {x| x � T; x = t}
(d) 	Ti

: 	t � Ti
*: q(T1

, …, {t}, …, Tm
*) � Ø

Also, we say that qOP
Ti(t) = Ti

* is t’s origin-pool in Ti, and
qOP

<T1, …, Tm>(T) is the origin-pool of a tuple bag T � V.

Note that the condition (b) in Definition 4 ensures that
if the origin-pool of a tuple t is Ti* in the source bag Ti,
then for any tuple in Ti, either all of the copies of the
tuple are in Ti* or none of them are in Ti*.

From above definitions and the definition of simple
IQL queries in Section 3, we now specify the affect-pool
and origin-pool for IQL simple queries. As in [CWW00],
we use derivation tracing queries to evaluate the lineage
of a tuple t. That is, we apply a query to the source data
repository D and the obtained result is the derivation of t
in D. We call such a query the tracing query for t on D,
denoted as TQD(t).

Theorem 1 (Affect- and Origin-pool for a tuple with
IQL simple queries):

Let V = q(D) be the bag that results from applying a
simple IQL query q to a source data repository D,
consisting of one or more bags. Then, for any tuple t �
V, the tracing queriesTQAP

D(t) below give the affect-pool
of t in D, and the tracing queries TQOP

D(t) give the
origin-pool of t in D:

1. q = D1 ++ … ++ Dr (D = <D1, …, Dr>)
TQAP

D(t) = <[x| x � D1; x = t], …, [x| x � Dr; x = t]>
TQOP

D(t) = <[x| x � D1; x = t], …, [x| x � Dr; x = t]>
2. q = D1 -- D2 (D = <D1, D2>)
TQAP

D(t) = <[x| x � D1; x = t], D2>
TQOP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]>
3. q = group D
TQAP

D(t) = <[x| x � D; first x = first t]>
TQOP

D(t) = <[x| x � D; first x = first t]>
4. q = sort D
TQAP

D(t) = <[x| x � D; x = t]>
TQOP

D(t) = <[x| x � D; x = t]>
5. q = sortDistinct D
TQAP

D(t) = <[x| x � D; x = t]>
TQOP

D(t) = <[x| x � D; x = t]>
6. q = aggFun D (aggFun = “max” | “min” |

“count” | “sum” | “avg”)
TQAP

D(t) = <D>

TQOP
D(t) =

7. q = gc aggFun D (aggFun = “max” | “min” |
“count” | “sum” | “avg”)

TQAP
D(t) = <[x| x � D; first x = first t]>

TQOP
D(t) =

8. q = [x| x � D1; member D2 x] (D = <D1, D2>)
TQAP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]>
TQOP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]>
9. q = [x| x � D1; not (member D2 x)] (D = <D1, D2>)
TQAP

D(t) = <[x| x � D1; x = t], D2>
TQOP

D(t) = <[x| x � D1; x = t]>
10. q = [p� p1 � D1; …; pr � Dr; c1; …; ck]

 (D = <D1, …, Dr>)
In the above expression, each pattern pi is a sub-pattern
of p and all tuples t � V match p. For any t � V, let ti be
the tuple derived by projecting the components of pi from
t. Then:

 4

TQAP
D(t) = <[p1| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1;

…; ck], …, [pr| p1 � D1; p1 = t1; …; pr �
Dr; pr = tr; c1; …; ck]>

TQOP
D(t) = <[p1| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1;

…; ck], …, [pr| p1 � D1; p1 = t1; …; pr �
Dr; pr = tr; c1; …; ck]>

It is simple to show that the results of queries TQAP

D(t)
and TQOP

D(t) satisfy Definition 3 and 4 respectively. For
more complex IQL queries, the above formulae can be
recursively applied to the syntactic structure of an IQL
query. An alternative (which we discuss in the
Conclusions section) is to decompose a transformation
step containing a complex IQL query into a sequence of
transformation steps each containing a simple IQL query.

4.1.3 Data lineage through Automed

transformation pathways
In the Automed framework, given an integrated

schema GS, an instance of it I, and a construct O of GS, a
tuple t � ExtGS,I(O) may have multiple derivations in the
source databases. Some derivations are the “actual”
source data that t was extracted from i.e. the origin-pool,
while some derivations just had an influence on the
existence of t i.e. the affect-pool.

For simplicity of exposition, henceforth we assume
that all of the source schemas have first been integrated
into a single schema S consisting of the union of the
constructs of the individual source schemas (with
appropriate renaming of schema constructs to avoid
duplicate names).

Suppose an integrated schema GS has been derived
from this source schema S though an Automed
transformation pathway TP = tp1, …, tpr. Treating each
transformation step as a function applied to S, GS can be
obtained as GS = tp1◦ tp2◦…◦tpr(S) = tpr (tpr-1 … (tp1(S))…)).
Thus, tracing the lineage of data in GS requires tracing
data lineage via a query-sequence, defined as follows:

Definition 5 (Affect-pool for a query-sequence) Let Q
= q1, q2, …, qr be a query sequence over bags D, and let
V = Q(D) = q1◦q2◦…◦qr(D) be the set of bags that results
from applying Q to D. Given a tuple t contained in some
bag B � V, we define t’s affect-pool in D according to Q
to be QAP

D(t) = D*, where Di* = qi
AP(Di+1*) (1 ≤ i � r),

Di+1* = {t} and D* = D1*. The affect-pool of a tuple bag
T � V according to Q contains all tuples in the affect-
pool according to Q of any tuple in T, denoted as
QAP

D(T).

Definition 6 (Origin-pool for query-sequence) Let Q,
D, V and t be as above. We define t’s origin-pool in D
according to Q to be QOP

D(t) = D*, where Di* =
qi

OP(Di+1*) (1 ≤ i � r), Di+1* = {t} and D* = D1*. The
origin-pool of a tuple bag T � V according to Q contains
all tuples in the origin-pool according to Q of any tuple
in T, denoted as QOP

D(T).

Definitions 5 and 6 show that the derivations of data in
an integrated schema can be derived though the reverse
transformation pathways, step by step.

An Automed transformation pathway is a composite
transformation that consists of a sequence of primitive

transformations, which generate the integrated schema
from the given source schemas. The constructs of an
HDM schema are Nodes, Edges, and Constraints. When
considering data lineage tracing, we treat Nodes and
Edges similarly since both of these kinds of constructs
have an extension i.e. contain data. We ignore the
Constraints part of a schema because a constraint is just
a query over the nodes and edges of a schema and does
not contain any data.

Thus, for data lineage tracing, we integrate the
primitive transformations addNode and addEdge into a
single addConstruct tranformation, we integrate delNode
and delEdge into delConstruct, we integrate renameNode
and renameEdge into renameConstruct, and we ignore
addConstraint and delConstraint transformations in a
transformation pathway.

Other ongoing work within the Automed project is
investigating simplification techniques for transformation
pathways, such as removing matching pairs of add and
delete steps for the same construct, and combining pairs
of add and rename steps into a single add step [Tong02].
As a result of such simplifications, we assume here that
the following pre- and post-conditions hold for each step
in an Automed transformation pathway:

(Pre- and Post-conditions for transformation
pathways) Suppose source schema S was transformed to
integrated schema GS via a transformation pathway, TP
= tp1, …, tpr. Then,
1. The pre- and post-conditions for tpi =

addConstruct(O, q) (1 ≤ i ≤ r) are as follows:
(i) O must not exist in S and not be created in the

transformation pathway TP’= tp1,…,tpi-1;
(ii) The constructs appearing in q must already exist

in S or have been created by the transformation
pathway TP’ = tp1, …, tpi-1;

(iii) O must exist in GS after the transformation
pathway has been applied.

2. The pre- and post-conditions for tpi = delConstruct(O,
q) (1 ≤ i ≤ r) are as follows:
(i) O must already exist in S;
(ii) The constructs appearing in q must already exist

in S or have been created by the transformation
pathway TP’ = tp1, …, tpi-1;.

(iii) O must not exist in GS after the transformation
pathway has been applied.

3. The pre- and post-conditions for tpi =
renameConstruct(P, O) (1 ≤ i ≤ r) are as follows:
(i) P must exist in S;
(ii) P must not exist in GS after the transformation

pathway has been applied;
(iii) O must not exist in S and not be created in the

transformation pathway TP’ = tp1, …, tpi-1;
(iv) O must exist in GS after the transformation

pathway has been applied.

With these pre- and post-conditions, all the constructs

appearing in GS must have been created in one of three
ways: (a) created by an addConstruct transformation; (b)
created by a renameConstruct transformation; and (c)
constructs existing in the source schema S and remaining
in the integrated schema GS. Thus, the problem of data
lineage, falls into three cases:

 5

(a) If a construct O was created by an addConstruct(O,
q) transformation, then the lineage of data in O is
located in the constructs that appear in q.

procedure originPoolOfTuple(t, O)
input: a tracing tuple t; the construct O which

contains tuple t.
output: t’s origin pool
begin

case (O.relateTP = Ø) do
D* � traceRemaining(t,O);

case (O.transfType = “rename”) do
D* � traceRename(t, O);

case (O.transfType = “add”) do {
D � [ExtS,I(o)| o �
 O.relateTP.sourceConstruct)];
D* � TQOP

D(t); } // from Theorem 1
return (D*);

end

(b) If a construct O was created by a
renameConstruct(P, O) transformation, then the
lineage of data in O is located in the source
construct P.

(c) If a construct O exists in the source schema and
remains in the integrated schema, the lineage of data
in the integrated construct O is located in the source
construct O.

4.2 Algorithm for tracing derivations through

Automed transformation pathways
It is simple to trace data lineage in cases (b) and (c)

discussed above. Procedure traceRename(t, O) shown in
Figure 2 can be used to trace the lineage of a tuple t in
the schema construct O created by renameConstruct(P,
O) transformation (case (b) above). Procedure
traceRemaining(t, O) shown in Figure 3 can be used for

the remaining schema constructs (case (c)). In these two
cases, all of data in the construct O is extracted from the
source schema, so the affect-pool is equal to the origin-
pool.

Figure 5: Origin Pool Tracing Procedure for a tuple

We assume that each schema construct, O, has an

attribute, relateTP, that refers to the transformation step
that created O. If O is remaining from the source schema,
then O.relateTP = Ø. Furthermore, each transformation
step tp has four attributes:transfType which is “add” or
“rename” (we ignore the “delConstruct” operator
because no construct in the integrated schema can be
created by this operator); query which is the query used
in this transformation step; sourceConstruct which
includes all constructs appearing in the query; and
resultConstruct which is the construct created by this

transformation step.
As to case (a), in which the construct O was created by

a transformation step addConstruct(O, q), the key point
is how to trace the lineage using the IQL query, q. We
can use the formulae given in Theorem 1 to obtain the
lineage of the data created in this case. The procedures
affectPoolOfTuple(t, O) and originPoolOfTuple(t, O)
shown in Figures 4 and 5 can be applied to trace the
affect pool and origin pool of a tuple in this case, where t
is the tracing tuple in the schema construct O. The result
of these procedures, D*, is a bag which contains t’s
derivation in the source schema. Note that for any tuple
in the source database, either all of the copies of the tuple
are in D* or none of them are.

procedure traceRename(t, O)
// O is the construct containing tuple t;
 D � ExtS,I(O.relateTP.sourceConstruct);
 D* � [x| x � D; x = t];
return (D*);

Figure 2: Tracing for renameConstruct

The procedures affectPoolOfSet(T, O) and
originPoolOfSet(T, O) in Figure 6 can then be used to
compute the derivations of a tuple set, T. (Because
duplicate tuples have an identical derivation, we
eliminate duplicate items and convert T into a set first.)
In these two procedures, we trace the data lineage of each

procedure traceRemaining(t, O)
// O is the construct containing tuple t;
// O.relateTP = Ø;
 D* � [x| x � ExtS,I(O); x = t];
return (D*);

procedure affectPoolOfSet(T, O)
input: a tracing tuple set T = {t1, …, tn}, the

construct O which contains tuple set T.
output: T’s affect pool
begin

D* � Ø;
for i � 1 to n do
 D* � D* ++
 [x| x � affectPoolOfTuple(ti, O);

not (member D* x)];
return (D*);

end

Figure 3: Tracing for remaining constructs

procedure originPoolOfSet(T, O)
input: a tracing tuple set T = {t1, …, tn}, the

construct O which contains tuple set T.
output: T’s origin pool
begin

D* � Ø;
for i � 1 to n do
 D* � D* ++

 [x| x � originPoolOfTuple(ti, O);
not (member D* x)];

return (D*);
end

procedure affectPoolOfTuple(t, O)
input: a tracing tuple t; the construct O which

contains tuple t.
output: t’s affect pool
begin

case (O.relateTP = Ø) do
D* � traceRemaining(t,O);

case (O.transfType = “rename”) do
D* � traceRename(t, O);

case (O.transfType = “add”) do {
D � {ExtS,I(o)| o �
 O.relateTP.sourceConstructt)};
D* � TQAP

D(t); } // from Theorem 1
return (D*);

end

Figure 6: Derivation Tracing Procedures for a set of tuples

 6Figure 4: Affect Pool Tracing Procedure for a tuple

tuple ti � T in turn and incrementally add each time the
result into D*. Because a tuple t* can be the lineage of
both ti and tj (i � j), if t* and all of its copies in the source
database have already been added to D* as the lineage of
ti, we then do not add them again into D* as the lineage
of tj (we use the test, not (member D* x), to avoid such
repetitions).

Finally, Figure 7 gives our recursive derivation tracing

algorithms, traceAffectPool(TL, OL) and
traceOriginPool(TL, OL), for tracing data lineage using
entire transformation pathways. Given a integrated
schema GS, the source schema S, and a transformation
pathway TP = tp1, …, tpr from S to GS. TL = T1,…, Tn is
a list of tuple sets such that each Ti is contained in the
extension of some integrated schema construct Oi.. OL is
the list of integrated schema constructs O1,…, On. We
recall that each schema construct has an attribute
relateTP, and each transformation step has attributes
operatorType, query, sourceConstruct and
resultConstruct.

In procedure traceAffectPool(TL, OL) (and similarly in
traceOriginPool(TL, OL)), we compute derivations for
each tuple set Ti in TL one by one using the procedure
affectPoolofSet(Ti, Oi). If the construct Oi which
contains tuple set Ti is created by a renameConstruct
transformation or remains from the source schema (i.e.
relateTP is Ø), then the computed data can be directly

extracted from the source schema (as a result of the pre-
and post-conditions of Section 4.1.3). If Oi is created by
an addConstruct(Oi, q) transformation, the constructs in
query q may have been created by the earlier part of the
transformation pathway, and the computed data needs to
be extracted from these constructs. Therefore, we call
procedure traceAffectPool recursively while the relateTP
of the construct is “addConstruct”.

5. Conclusions and future work procedure traceAffectPool(TL, OL)

input: a list of tuple sets TL = T1, …, Tn; the list of
corresponding constructs OL = O1,…, On in
the integrated schema;

output: T’s affect pool in the source schema
begin

D* � Ø;
for i = 1 to n do {

temp � affectPoolofSet(Ti, Oi);
if (Ti.relateTP.transfType = “add”)

temp � traceAffectPool(temp,
Ti.relateTP.sourceConstruct);

D* � D* ++
 [x| x � temp; not (member D* x)];

}
return (D*);

end

We have presented definitions for data lineage in
Automed based on both why-provenance and where-
provenance, which we have termed affect-pool and
origin-pool, respectively. We have given formulae for
tracing the affect-pool and the origin-pool for tuples and
tuple sets derived from sequences of simple IQL queries.
Rather than relying on a high-level common data model
such as an ER or relational model, the Automed
integration approach is based on a lower-level CDM –
the HDM data model. Heterogeneous source schemas
can be automatically translated into the equivalent HDM
representation, and transformations between them
expressed as transformations on their HDM
representations. The contribution of the work we have
discussed in this paper is that we have shown how the
individual transformation steps in an Automed
transformation pathway can be used to trace the
derivation of data in the integrated database in a step-
wise fashion, thus simplifying the lineage tracing
process. The data lineage problem and the solutions
presented in this paper have led to a number of areas of
further work:

procedure traceOriginPool(TL, OL)
input: a list of tuple sets TL = T1, …, Tn; the list of

corresponding constructs OL = O1,…, On in
the integrated schema;

output: T’s origin pool in the source schema
begin

D* � Ø;
for i = 1 to n do {

temp � originPoolofSet(Ti, Oi);
if (Ti.relateTP.transfType = “add”)

temp � traceOriginPool(temp,
Ti.relateTP.sourceConstruct);

D* � D* ++
 [e| e � temp; not (member D* e)];

}
return (D*);

end

�� Handling more complex IQL queries appearing in
transformation pathways. We are investigating
techniques for decomposing complex IQL queries
appearing in single a transformation step into a
sequence of transformation steps each accompanied
by a single simple query, so that the formulae in
Theorem 1 can be applied directly.

�� Combining our approach for tracing data lineage
with the problem of incremental view maintenance.
Automed transformation pathways are automatically
reversible and this feature can be exploited for both
these issues. We have already done some
preliminary work on using the Automed
transformation pathways for incremental view
maintenance. We now plan to explore the
relationship between our lineage tracing and view
maintenance algorithms, to determine if an
integrated approach can be adopted for both.

Figure 7: Derivation Tracing Procedures for entire
transformation pathways

�� Implementing our lineage tracing and view
maintenance algorithms. As a part of the Automed
project, we will implement our algorithms in Java
over the Automed repository and API [BT01, Auto].

�� Extending the lineage tracing and view maintenance
algorithms to a more expressive transformation
language. [Pou01b] extends the Automed
transformation language with parametrised
procedures and iteration and conditional constructs,
and we plan to extend our algorithms to this more
expressive transformation language.

 7

References

[Alb91] J. Albert. Algebraic properties of bag data

types. In VLDB’91, pages 211-219, 1991.

[Auto] http://www.doc.ic.ac.uk/automed/resources/

apidocs/index.html

[BB99] P. Bernstein and T. Bergstraesser. Meta-data

support for data transformations using
Microsoft repository. IEEE Data Engineering
Bulletin, 22(1): 9-14, March 1999.

[BKT00] P. Buneman, S. Khanna and W. Tan. Data

Provenance: some basic issues. In Foundations
of Software Technology and Theoretical
Computer Science, 2000.

[BKT01] P. Buneman, S. Khanna and W. Tan. Why and

Where: a characterization of data provenance.
In ICDT’01, LNCS 1973, pp. 316-330,
Springer-Verlag, Berlin Heidelberg, 2001.

[BT01] M. Boyd and N. Tong. The Automed

repositories and API. Technical Report.
Imperial College, University of London,
August 2001. http://www.doc.ic.ac.uk/
automed/techreports/automed_repository.ps

[Cui01] Y. Cui. Lineage tracing in data warehouses.

Ph.D. Thesis, Computer Science Department,
Stanford University, 2001.

[CW01] Y. Cui and J. Widom. Lineage tracing for

general data warehouse transformations. In
VLDB’01, Rome, Italy. September 2001.

[CWW00] Y. Cui, J. Widom and J.L. Wiener. Tracing

the lineage of view data in a warehousing
environment. In ACM Transactions on
Database Systems, June 2000.

[FJS97] C. Faloutsos, H.V. Jagadish and N.D.

Sidiropoulos. Recovering information from
summary data. In VLDB’97. Pages 36-45,
Athens, Greece, August 1997.

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon

and C.A. Saita. Improving data cleaning quality
using a data lineage facility. In Proceedings of
the International Workshop on Design and
Management of Data Warehouses (DMDW’01),
Interlaken, Switzerland, June 2001.

[GL99] T. Griffin and L. Libkin, Incremental

Maintenance of Views with Duplicates. In A.
Gupta and I. S. Mumick, editors, Materialized
Views Techniques, Implementations, and
Applications, The MIP Press, 1999.

[Hull97] R. Hull. Managing semantic heterogeneity in

databases: A theoretical perspective. In
PODS’97, 1997

[Jas01] E. Jasper. Query translation in heterogeneous

database environment. MSc thesis, Birkbeck
College, University of London, September 2001.

[MP99a] P.J. McBrien and A. Poulovassilis. Automatic

migration and wrapping of database
applications – a schema transformation
approach. In ER’99, Volume 1728 of LNCS,
pages 96 – 113. Springer-Verlag, 1999.

[MP99b] P.J. McBrien and A. Poulovassilis. A uniform

approach to inter-model transformations. In
CAiSE’99, volume 1626 of LNCS, pages 333-
348. Springer-Verlag, 1999.

[MP02] P.J. McBrien and A. Poulovassilis. Schema

evolution in heterogeneous database
architectures, a schema transformation
approach. In CaiSE’02, volume TBC,
Springer-Verlag LNCS, 2002.

[PM98] A. Poulovassilis and P.J. McBrien. A general

formal framework for schema transformation.
Data and Knowledge Engineering, 28(1): 47-
71, 1998.

[Pou01a] A. Poulovassilis. The Automed Intermediate

Query Language. Automed Working
Document 2. June 2001.
http://www.doc.ic.ac.uk/automed/techreports/q
uery_language.ps

[Pou01b] A. Poulovassilis. An enhanced transformation
language for the HDM. Automed Working
Document 4. July 2001.
http://www.doc.ic.ac.uk/automed/techreports/e
nhanced_transformation_language.ps

[SL90] A. Sheth and J. Larson. Federated database
system for Managing Distributed,
Heterogeneous, and Autonomous Databases.
ACM Computing Surveys, 22(3): 183-236, 1990

[Tong02] N. Tong. Database schema transformation

optimisation techniques for the Automed
system. Technical Report, Imperial College,
University of London, March 2002.

[Tri91] P. Trinder. Comprehensions, a query notation

for DBPLs. In DBPL’91, pages 55-68, 1991.

[WS97] A. Woodruff and M. Stonebraker. Supporting

fine-grained data lineage in a database
visualization environment. In ICDE’97, pages
91-102, 1997.

 8

http://www.doc.ic.ac.uk/automed/resources/ apidocs/index.html
http://www.doc.ic.ac.uk/automed/resources/ apidocs/index.html
http://www.doc.ic.ac.uk/ automed/techreports/automed_repository.ps
http://www.doc.ic.ac.uk/ automed/techreports/automed_repository.ps
http://www.doc.ic.ac.uk/automed/techreports/query_language.ps
http://www.doc.ic.ac.uk/automed/techreports/query_language.ps
http://www.doc.ic.ac.uk/automed/techreports/enhanced_transformation_language.ps
http://www.doc.ic.ac.uk/automed/techreports/enhanced_transformation_language.ps

	Hao Fan Alexandra Poulovassilis
	Example 1: Transforming between HDM schemas
	
	References

