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1. Introduction  
A data warehouse is a materialized view storing the 

tuples of the view over a number of data sources. It 
collects copies of data from remote, distributed, 
autonomous and heterogeneous data sources into a 
central repository to enable analysis and mining of the 
integrated information. Data warehousing is popularly 
used for on-line analytical processing (OLAP), decision 
support systems, on-line information publishing and 
retrieving, and digital libraries. However, sometimes 
what we need is not only to analyse the data in the 
warehouse, but also to investigate how certain warehouse 
information was derived from the data sources. Given a 
tuple t in the warehouse, finding the exact set of source 
data items from which t was derived is termed the data 
lineage problem [CWW00]. Enabling lineage tracing in 
data warehousing environments brings several benefits 
and applications, including in-depth data analysis, on-
line analysis mining (OLAM) and OLAP, scientific 
databases, authorization management and materialized 
view schema evolution [BB99, WS97, Cui01, CWW00, 
GFS+01, FSJ97]. 

Automed (Automatic Generation of Mediator Tools 
for Heterogeneous database Integration) is a database 
transformation and integration system, supporting both 
virtual and materialized integration of schemas expressed 
in a variety of modelling languages.  This system is 
being developed in a collaborative EPSRC-funded 
project between Birkbeck and Imperial Colleges, London 
(see http://www.ic.ac.uk/Automed). 

Common to many methods for integrating 
heterogeneous data sources is the requirement for logical 
integration [Hull97] of the data, due to variations in the 
design of data models for the same universe of discourse. 
When data is to be shared or exchanged between 
heterogeneous databases, it is necessary to build a single 
integrated schema expressed using a common data model 
(CDM). In previous work of the Automed project 
[PM98, MP99a], a general framework has been 
developed to support schema transformation and 
integration in heterogeneous database architectures. The 
framework consists of a low-level hypergraph based 
data model (HDM) and a set of primitive schema 
transformations on HDM schemas.  

[MP99b] gives the definitions of equivalent HDM 
representations for ER, relational and UML schemas, and 
discusses how inter-model transformations can be 
supported via this underlying common data model.  
Using a higher-level CDM such as an ER model or the 
relational model can be complicated because the original 
and transformed schemas may be represented in different 
high-level modelling languages and there may not be a 
simple semantic correspondence between their modelling 
constructs. HDM schemas contain Nodes, Edges and 
Constraints as their constructs, which can be used as the 
underlying representation for higher-level modelling 
constructs. Thus, inter-model transformations can be 
performed by transforming the HDM representations of 
higher-level modelling constructs. We term the sequence 
of primitive transformations defined for transforming a 

schema s1 to a schema s2 a transformation pathway 
from s1 to s2. That is, a transformation pathway consists 
of a sequence of primitive schema transformations. 

In this paper we discuss how Automed’s 
transformation pathways can be used to trace the lineage 
of data in a data warehouse which integrates data from 
several source databases. We assume that both the source 
database schemas and the integrated database schema are 
expressed in the HDM data model since, as discussed in 
[MP99b], higher-level schemas and the transformations 
between can be automatically translated into an 
equivalent HDM representation. We use a functional 
intermediate query language (IQL) as the query 
language to implement our lineage-tracing algorithm.  

The remainder of this paper is as follows. Section 2 
discusses related work and existing methods of tracing 
data lineage. Section 3 reviews the Automed framework, 
including the HDM data model, IQL syntax and 
transformation pathways. Section 4 gives our definitions 
of data lineage and describes the methods of tracing data 
lineage we have adopted in Automed. Section 5 gives our 
conclusions and directions of future work. 
 

2. Related work  
The data lineage problem in data warehouse 

environments has increasingly become a focus of 
database engineering.  

[WS97] proposes a general framework for computing 
fine-grained data lineage using a limited amount of 
information about the processing steps. The notion of 
weak inversion is introduced in the paper. Based on a 
weak inverse function, which must be specified by the 
transformation definer, the paper defines and traces data 
lineage for each transformation step in a visualization 
database environment. In the Automed approach to 
heterogeneous database integration, transformation 
pathways are defined between the source and target 
schemas. [MP99a] discusses how both primitive and 
composite schema transformations are automatically 
reversible, thus allowing automatic translation of data 
and queries between schemas.  In this paper, we show 
how the Automed transformation pathways can also be 
used for data lineage tracing.  

[CWW00] provides some fundamental definitions 
relating to the data lineage problem, including tuple 
derivation for an operator, tuple derivation for operators 
and tuple derivation for a view. It also has addressed the 
derivation tracing problem using bag semantics and 
provided the concept of derivation set and derivation 
pool for tracing data lineage with duplicate elements. We 
use those ideas in our approach and define the notions of 
affect-pool and origin-pool in Automed.  

Another fundamental concept is addressed in [BKT00, 
BKT01]: the difference between “why” provenance and 
“where” provenance. Why-provenance refers to the 
source data that had some influence on the existence of 
the integrated data; while where-provenance refers to the 
actual data in the source databases from which the 
integrated data was extracted. The problem of why-
provenance has been studied for relational databases in 
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[CWW00, WS97, Cui01, CW01]. We introduce the 
notions of affect and origin provenance, give the 
definitions of data lineage in Automed and discuss the 
lineage tracing algorithms for these the two kinds of 
provenance. 

There are also other previous works related to data 
lineage tracing [BB99, FJS97, GFS+01]. Most of these 
consider coarse-grained lineage based on annotations on 
each data transformation step, which provides estimated 
lineage information not the exact tuples in the data 
sources. Using our approach, fine-grained lineage, i.e. a 
specific derivation in the data sources, can be computed 
given the source schemas, integrated schema, and 
transformation pathways between them. All of our 
algorithms are based on bag semantics using the HDM 
data model and the IQL query language. 

 
3. The Automed Framework 

This section gives a short review of the Automed 
schema transformation framework, including the HDM 
data model, IQL language and transformation pathways. 
More details of this material can be found in [PM98, 
MP99a, MP99b, Pou01a]. 

A schema in the Hypergraph Data Model (HDM) is 
a triple <Nodes, Edges, Constraints> containing a set of 
nodes, a set of edges, and a set of constraints. A query q 
over a schema S is an expression whose variables are 
members of Nodes and Edges. Nodes and Edges define a 
labelled, directed, nested hypergraph. It is nested in the 
sense that edges can link any number of both nodes and 
other edges. Constraints is a set of boolean-valued 
queries over S. The nodes and edges of a schema are 
identified by their scheme. For a node this is the form 
nodeName and for an edge it is of the form «edgeName, 
scheme1, scheme2,…, schemen», where scheme1, …, 
schemen are the schemes of the constructs connected by 
the edge. Edge names are optional and the absence of a 
name is denoted by “_”. 

An instance I of a schema S = <Nodes, Edges, 
Constraints> is a set of sets satisfying the following: 
(i) each construct c � Nodes � Edges has an extent, 

denoted by ExtS,I(c), that can be derived from I ;  
(ii) conversely, each set in I can be derived from the set 

of extents {ExtS,I(c)| c � Nodes � Edges} 
(iii) for each e � Edges, ExtS,I(e) contains only values 

that appear within the extents of the constructs 
linked by e (domain integrity); 

(iv) the value of every constraint c � Constraints is true, 
the value of a query q being given by q[c1/ExtS,I(c1), 
… , cn/ExtS,I(cn)] where c1, … , cn are the constructs 
in Nodes � Edges. 

The function ExtS,I is called an extension mapping. A 
HDM model is a triple <S, I, ExtS,I>. The primitive 
transformations on HDM models are as follows. Each 
transformation is a function that when applied to a model 
returns a new model (note that only the schema and 
extension mapping are affected by these transformations, 
not the instance i.e. the data): 
1. renameNode(fromName,toName) renames a node.  
2. renameEdge(«fromName,c1,…,cn», toName) renames 

an edge.  
3. addConstraint c adds a new constraint c.  
4. delConstraint c deletes a constraint.  
5. addNode(name, q) adds a node named name whose 

extent is given by the value of the query q over the 
existing schema constructs.  

6. delNode(name, q) deletes a node. Here, q is a query 
that states how the extent of the deleted node could be 
recovered from the extents of the remaining schema 
constructs (thus, not violating property (ii) of an 
instance).  

7. addEdge(«name, c1, … , cn», q) adds a new edge 
between a sequence of existing schema constructs c1, 
…, cn. The extent of the edge is given by the value of 
the query q over the existing schema constructs. 

8. delEdge(«name, c1, … , cn», q) deletes an edge. q 
states how the extent of the deleted edge could be 
recovered from the extents of the remaining schema 
constructs.  
A composite transformation is a sequence of n ≥ 1 

primitive transformations. We term the composite 
transformation defined for transforming schema s1 to 
schema s2 a transformation pathway from s1 to s2. 

The query, q, in each transformation is expressed in a 
functional intermediate query language, IQL [Pou01a]. 
This supports a number of primitive types, such as 
booleans, strings and numbers, as well as product, 
function and bag types. The set of simple IQL queries are 
as follows, where D, D1 …, Dr denote a bag of the 
appropriate type: 

1. q = D1 ++ D2  ++ … ++ Dr      /* bag union*/ 
2. q = D1 -- D2        /* bag monus [Alb91, GL99] */ 
3. q = group D 

 /* group a bag of pairs on their first         
component*/ 

4. q = sort D 
5. q = sortDistinct D 

 /*sort and remove duplicates*/ 
6. q = aggFun D  (aggFun = “max” | “min” | 

“count” | “sum” | “avg”) 
/*apply an aggregation function*/ 

7. q = gc aggFun D  (aggFun = “max” | “min” | 
“count” | “sum” | “avg”) 

/*group a bag of pairs on their first 
component and apply an aggregation 
function to the second component*/ 

8. q = [p| p � D1; member D2  p] 
/*members of D1 that are members of 
D2*/ 

9. q = [p| p � D1; not (member D2  p)] 
/*members of D1 that are not 
members of D2*/ 

10. q = [p � p1 � D1; …; pr � Dr; c1; …; ck] 
/* the ci  are filters */ 

 
General IQL queries are formed by arbitrary nesting of 

the above simple query constructs.  
The constructs in 8,9,10 above are comprehensions 

[Tri91]. These have the general syntax [e|Q1; …; Qn], 
where Q1 to Qn are qualifiers, each qualifier being either 
a filter or a generator. A filter is a boolean-valued 
expression.  A generator has syntax “p � q” where p is a 
pattern and q is a collection-valued expression.  A pattern 
is either a variable or a tuple of patterns. In IQL, the head 
expression e of a comprehension is also constrained to be 
a pattern.  

IQL can represent common database query operations, 
such as select-project-join (SPJ) operations and SPJ 
operations with aggregation (ASPJ). For example, to get 
the maximum daily sales total for each store in the 
relation StoreSales (store_id, daily_total, date), in SQL 
we use: 
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SELECT store_id, max(daily_total) 
FROM StoreSales 
GROUP BY store_id 

In IQL this query is expressed by 
V = gc max [(s, t)| (s, t, d) � StoreSales] 

 
Example 1: Transforming between HDM schemas  

Consider two HDM schemas S1 = (N1, E1, C1) and S2 
= (N2, E2, C2) where 
N1 = {mathematician, compScientist, salary}, 
C1 = {}, 
E1 = {«_, mathematician, salary», 

 «_, compScientist, salary»}; 
N2 = {dept, person, salary, avgDeptSalary}, 
C2 = {}, 
E2 = {«_, dept, person», «_, person, salary», 

 «_, dept, avgDeptSalary»}. 
 
Figure 1 illustrates these schemas S1 and S2. 

S1 can be transformed to S2 by the following sequence 
of primitive schema transformations: 
TS1,S2 =  
addNode (dept,{“Maths”,“CompSci”}); 
addNode (person, [x| x � mathematician] ++  

[x| x � compScientist]); 
addNode (avgDeptSalary,  

{avg  [s| (m,s)�«_, mathematician, salary»]}  ++ 
{avg  [s| (c,s)�«_, compScientist, salary»]}); 

addEdge («_, dept, person»,  
         [( “Maths”, x)| x � mathematician] ++  

[(“CompSci”, x) | x � compScientist]); 
addEdge («_, person, salary»,  
        «_, mathematician,salary» ++ 

«_, compScientist, salary»); 
addEdge («_, dept, avgDeptSalary»,  

{( “Maths”,  
    avg [s| (m,s)� «_, mathematician, salary»]),  
  (“CompSci”,  
    avg [s| (c,s)�«_, compScientist, salary»])}); 

delEdge («_, mathematician, salary»,  
[(p, s)| (d, p) � «_, dept, person»;  
           (p’, s) � «_, person, salary»; 
           d = “Maths”; p = p’]); 

delEdge («_, compScientist, salary»,  
[(p, s)| (d, p) � «_, dept, person»;  
           (p’, s)� «_, person, salary»;   
           d = “CompSci”; p = p’}); 

delNode (mathematician, [p| (d, p)�  
«_, dept, person»; d = “Maths”]); 

delNode («compScientist», [p| (d, p) �  
«_, dept, person»; d = “CompSci”]); � 
 

The first 6 transformation steps in TS1,S2, create the 
constructs in S2 which do not exist in S1. The query in 
each step gives the extension of the new schema 
construct in terms of the existing schema constructs. The 
last 4 transformation steps then delete the redundant 

constructs of S1. The extension of each deleted construct 
can be reconstructed by the query in the transformation 
step.  
 

4. Tracing data lineage in Automed 
What we investigate in this paper is how the lineage of 

data items in an integrated database can be computed 
given the source databases and the transformation 
pathways between the source schemas and the integrated 
schema.  In this section we present our definitions of data 
lineage and describe our lineage tracing methods. 

 
4.1 Data lineage in Automed 

Regarding the definitions of data lineage, the 
fundamental ones are given in [CWW00], including   
tuple derivation for an operator, tuple derivation for a 
view, and methods of derivation tracing with both set and 
bag semantics. However, these definitions and methods 
are limited to why-provenance [BKT01] and what they 

consider is a class of views defined over base relations 
using the relational algebra operators: selection (�), 
projection (�), join (⋈), aggregation (�), set union (�), 
and set difference (�). The query language used in 
Automed is IQL based on bag semantics allowing 
duplicate elements in a source schema or the integrated 
schema, and also within the collections that are derived 
during lineage tracing. Also, we consider both affect-
provenance and origin-provenance in our treatment of 
the data lineage problem.   

mathematician compScientist personS2: S1: 
salary 

  dept
avgDeptSalary

Transformation Pathway: TS1,S2 salary 

Figure 1: Transforming schema S1 to S2 

What we regard as affect-provenance includes all of 
the source data that had some influence on the result 
data. Origin-provenance is simpler because here we are 
only interested in the specific data in the source 
databases from which the resulting data is extracted.  

 
4.1.1 Data lineage with set semantics in IQL 

The definition of tuple derivation for an operation was 
given in [CWW00] considering only the aspect of affect-
provenance. We use the notions of maximal witness and 
minimal witness from [BKT01] to classify data lineage 
into two aspects: affect-set and origin-set. For set 
semantics and simple IQL queries, the definitions of 
affect-set and origin-set for a tuple and a tuple set1 in the 
integrated database are given as follows. The q in these 
definitions is any IQL simple query. 
 
Definition 1 (Affect-set for a simple query in IQL) Let 
q be any simple query over sets T1, …, Tm, and let V = 
q(T1, …, Tm) be the set that results from applying q to T1, 
…, Tm. Given a tuple t � V, we define t’s affect-set in T1, 
…, Tm according to q to be qA

<T1, …, Tm>(t) = <T1
*, …, 

Tm
*>, where T1

*, …, Tm
* are maximal subsets of T1, …, 

Tm such that:  
(a) q(T1

*, …, Tm
*) = {t} 
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1 By tuple set we mean a set of tuples, and by tuple bag we 
mean a bag of tuples. 



(b) 	Ti’: q(T1
*, …, Ti’, …, Tm

*) = {t}  
  Ti’ � Ti
* 

(c) 	Ti
*: 	t* � Ti

*: q(T1
*, …, {t*}, …, Tm

*) � Ø 
Also, we say that qA

Ti(t) = Ti
* is t’s affect-set in Ti. The 

affect-set of a tuple set T � V contains all tuples in the 
affect-set of any tuple in T, denoted as qA

<T1, …, Tm>(T). 
 
 
Definition 2 (Origin-set for a simple query in IQL) 
Let q, T1, …, Tm, V and t be as above. We define t’s 
origin-set in T1, …, Tm according to q to be qO

<T1, …, 

Tm>(t) = <T1
*, …, Tm

*>, where T1
*, …, Tm

* are minimal 
subsets of T1, …, Tm such that:  

(a) q(T1
*, …, Tm

*) = {t} 
(b) 	Ti’: Ti’ � Ti

*: q(T1
*, …, Ti’, …, Tm

*) � {t} 
(c) 	Ti

*: 	t* � Ti
*: q(T1

*, …, {t*}, …, Tm
*) � Ø 

Also, we say that qO
Ti(t) = Ti

* is t’s origin-set in Ti, and 
qO

<T1, …, Tm>(T) is the origin-set of a tuple set T � V.      
 
 

In those two definitions, condition (a) states that the 
result of applying query q to the lineage must be the 
tracing tuple t; condition (b) is used to enforce the 
maximizing and minimizing properties respectively; and 
condition (c) removes the redundant elements in the 
computed derivation of tuple t (see [CWW00]). 
 
Proposition 1: The origin-set of a tuple set T is a subset 
of the affect-set of T.   
 
 
4.1.2 Data lineage with bag semantics in IQL 

As mentioned as above, our approach for tracing data 
lineage is based on bag semantics which allow duplicate 
elements to exist in the source schemas, the integrated 
schema and computed lineage collections. We use the 
notions of affect-pool and origin-pool to describe the 
data lineage problem with bag semantics:  
 
Definition 3 (Affect-pool for a simple query in IQL) 
Let q be any simple query over bags T1, …, Tm, and let V 
= q(T1, …, Tm) be the bag that results from applying q to 
T1, …, Tm. Given a tuple t � V, we define t’s affect-pool 
in T1, …, Tm according to q to be qAP

<T1, …, Tm>(t) = <T1
*, 

…, Tm
*>, where T1

*, …, Tm
* are maximal sub-bags of T1, 

…, Tm such that:  <[x| x � D; x = t]> 
(aggFun = “max”| “min”) 

<D> 
(aggFun = “count”| “sum”| “avg”) 

(a) q(T1
*, …, Tm

*) = {x| x � T; x =  t} 
(b) 	Ti’: q(T1

*, …, Ti’, …, Tm
*) = {x| x � T; x =  t}  


  Ti’ � Ti
* 

(c) 	Ti
*: 	t* � Ti

*: q(T1
*, …, {t*}, …, Tm

*) � Ø 
Also, we say that qAP

Ti(t) = Ti
* is t’s affect-pool in Ti. The 

affect-pool of a tuple bag T � V contains all tuples in the 
affect-pool of any tuple in T, denoted as qAP

<T1, …, Tm>(T).
 <[x| x � D; x = t]> 
(aggFun = “max”| “min”) 

<[x| x � D; first x = first t]> 
(aggFun = “count”| “sum”| “avg”) 

 
Definition 4 (Origin-pool for a simple query in IQL) 
Let q, T1, …, Tm, V and q be as above. We define t’s origin-
pool in T1, …, Tm according to q to be qOP

<T1, …, Tm>(t) = 
<T1

*, …, Tm
*>, where T1

*, …, Tm
* are minimal sub-bags of 

T1, …, Tm such that:  
(a) q(T1

*, …, Tm
*) = {x| x � T; x =  t} 

(b) 	Ti
*: ��t*:  t* � Ti

*, t* � (Ti -- Ti
*) 

(c) 	Ti
*: 	t* � Ti

*: q(T1
*, …, {x| x � Ti

*; x � t*}, …, 
Tm

*) � {x| x � T; x =  t} 
(d) 	Ti

*: 	t* � Ti
*: q(T1

*, …, {t*}, …, Tm
*) � Ø 

Also, we say that qOP
Ti(t) = Ti

* is t’s origin-pool in Ti, and 
qOP

<T1, …, Tm>(T) is the origin-pool of a tuple bag T � V.  

 
 

Note that the condition (b) in Definition 4 ensures that 
if the origin-pool of a tuple t is Ti* in the source bag Ti, 
then for any tuple in Ti, either all of the copies of the 
tuple are in Ti* or none of them are in Ti*. 

From above definitions and the definition of simple 
IQL queries in Section 3, we now specify the affect-pool 
and origin-pool for IQL simple queries. As in [CWW00], 
we use derivation tracing queries to evaluate the lineage 
of a tuple t. That is, we apply a query to the source data 
repository D and the obtained result is the derivation of t 
in D. We call such a query the tracing query for t on D, 
denoted as TQD(t). 
 
Theorem 1 (Affect- and Origin-pool for a tuple with 
IQL simple queries):  

Let V = q(D) be the bag that results from applying a 
simple IQL query q to a source data repository D, 
consisting of one or more bags.  Then, for any tuple t � 
V, the tracing queriesTQAP

D(t) below give the affect-pool 
of t in D, and the tracing queries TQOP

D(t) give the 
origin-pool of t in D: 
 
1. q = D1 ++ … ++ Dr            (D = <D1, …, Dr>) 
TQAP

D(t) = <[x| x � D1; x = t], …, [x| x � Dr; x = t]> 
TQOP

D(t) = <[x| x � D1; x = t], …, [x| x � Dr; x = t]> 
2. q = D1 -- D2              (D = <D1, D2>) 
TQAP

D(t)  = <[x| x � D1; x = t], D2> 
TQOP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]> 
3. q = group D 
TQAP

D(t) = <[x| x � D;  first x = first t]> 
TQOP

D(t) = <[x| x � D;  first x = first t]> 
4. q = sort D 
TQAP

D(t) = <[x| x � D; x = t]> 
TQOP

D(t) = <[x| x � D; x = t]> 
5. q = sortDistinct D 
TQAP

D(t) = <[x| x � D; x = t]> 
TQOP

D(t) = <[x| x � D; x = t]> 
6. q = aggFun D  (aggFun = “max” | “min” | 

“count” | “sum” | “avg”) 
TQAP

D(t) = <D> 
 
 

TQOP
D(t) = 

 
 

7. q = gc aggFun D  (aggFun = “max” | “min” |  
“count” | “sum” | “avg”) 

TQAP
D(t) = <[x| x � D; first x = first t]> 

 
 

TQOP
D(t) =  

 
 

8. q = [x| x � D1; member D2 x]           (D = <D1, D2>) 
TQAP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]> 
TQOP

D(t) = <[x| x � D1; x = t], [x| x � D2; x = t]> 
9. q = [x| x � D1; not (member D2 x)]        (D = <D1, D2>) 
TQAP

D(t) = <[x| x � D1; x = t], D2> 
TQOP

D(t) = <[x| x � D1; x = t]> 
10. q = [p� p1 � D1; …; pr � Dr; c1; …; ck]    

             (D = <D1, …, Dr>) 
In the above expression, each pattern pi is a sub-pattern 
of p and all tuples t � V match p. For any t � V, let ti be 
the tuple derived by projecting the components of pi from 
t. Then: 
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TQAP
D(t) = <[p1| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1; 

…; ck], …, [pr| p1 � D1; p1 = t1; …; pr � 
Dr; pr = tr; c1; …; ck]> 

TQOP
D(t) = <[p1| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1; 

…; ck], …, [pr| p1 � D1; p1 = t1; …; pr � 
Dr; pr = tr; c1; …; ck]>  
 

 
It is simple to show that the results of queries TQAP

D(t) 
and TQOP

D(t) satisfy Definition 3 and 4 respectively.  For 
more complex IQL queries, the above formulae can be 
recursively applied to the syntactic structure of an IQL 
query. An alternative (which we discuss in the 
Conclusions section) is to decompose a transformation 
step containing a complex IQL query into a sequence of 
transformation steps each containing a simple IQL query.  

 
4.1.3 Data lineage through Automed 

transformation pathways 
In the Automed framework, given an integrated 

schema GS, an instance of it I, and a construct O of GS, a 
tuple t � ExtGS,I(O) may  have multiple derivations in the 
source databases. Some derivations are the “actual” 
source data that t was extracted from i.e. the origin-pool, 
while some derivations just had an influence on the 
existence of t i.e. the affect-pool. 

For simplicity of exposition, henceforth we assume 
that all of the source schemas have first been integrated 
into a single schema S consisting of the union of the 
constructs of the individual source schemas (with 
appropriate renaming of schema constructs to avoid 
duplicate names).  

Suppose an integrated schema GS has been derived 
from this source schema S though an Automed 
transformation pathway TP = tp1, …, tpr.  Treating each 
transformation step as a function applied to S, GS can be 
obtained as GS = tp1◦ tp2◦…◦tpr(S) = tpr (tpr-1 … (tp1(S))…)). 
Thus, tracing the lineage of data in GS requires tracing 
data lineage via a query-sequence, defined as follows: 
 
Definition 5 (Affect-pool for a query-sequence) Let Q 
= q1, q2, …, qr be a query sequence over bags D, and let 
V = Q(D) = q1◦q2◦…◦qr(D) be the set of bags that results 
from applying Q to D. Given a tuple t contained in some 
bag B � V, we define t’s affect-pool in D according to Q 
to be QAP

D(t) = D*, where Di* = qi
AP(Di+1*) (1 ≤ i � r), 

Di+1* = {t} and D* = D1*. The affect-pool of a tuple bag 
T � V according to Q contains all tuples in the affect-
pool according to Q of any tuple in T, denoted as 
QAP

D(T).   
 
 
Definition 6 (Origin-pool for query-sequence) Let Q, 
D, V and t be as above. We define t’s origin-pool in D 
according to Q to be QOP

D(t) = D*, where Di* = 
qi

OP(Di+1*) (1 ≤ i � r), Di+1* = {t} and D* = D1*. The 
origin-pool of a tuple bag T � V according to Q contains 
all tuples in the origin-pool according to Q of any tuple 
in T, denoted as QOP

D(T).    
 
 

Definitions 5 and 6 show that the derivations of data in 
an integrated schema can be derived though the reverse 
transformation pathways, step by step. 

An Automed transformation pathway is a composite 
transformation that consists of a sequence of primitive 

transformations, which generate the integrated schema 
from the given source schemas. The constructs of an 
HDM schema are Nodes, Edges, and Constraints.   When 
considering data lineage tracing, we treat Nodes and 
Edges similarly since both of these kinds of constructs 
have an extension i.e. contain data. We ignore the 
Constraints part of a schema because a constraint is just 
a query over the nodes and edges of a schema and does 
not contain any data. 

Thus, for data lineage tracing, we integrate the 
primitive transformations addNode and addEdge into a 
single addConstruct tranformation, we integrate delNode 
and delEdge into delConstruct, we integrate renameNode 
and renameEdge into renameConstruct, and we ignore 
addConstraint and delConstraint transformations in a 
transformation pathway.  

Other ongoing work within the Automed project is 
investigating simplification techniques for transformation 
pathways, such as removing matching pairs of add and 
delete steps for the same construct, and combining pairs 
of add and rename steps into a single add step [Tong02].  
As a result of such simplifications, we assume here that 
the following pre- and post-conditions hold for each step 
in an Automed transformation pathway: 
 
(Pre- and Post-conditions for transformation 
pathways)  Suppose source schema S was transformed to 
integrated schema GS via a transformation pathway, TP 
= tp1, …, tpr.  Then, 
1. The pre- and post-conditions for tpi = 

addConstruct(O, q) (1 ≤ i ≤ r) are as follows: 
(i) O must not exist in S and not be created in the 

transformation pathway TP’= tp1,…,tpi-1; 
(ii) The constructs appearing in q must already exist 

in S or have been created by the transformation 
pathway TP’ = tp1, …, tpi-1; 

(iii) O must exist in GS after the transformation 
pathway has been applied. 

2. The pre- and post-conditions for tpi =  delConstruct(O, 
q) (1 ≤ i ≤ r) are as follows: 
(i) O must already exist in S; 
(ii) The constructs appearing in q must already exist 

in S or have been created by the transformation 
pathway TP’ = tp1, …, tpi-1;. 

(iii) O must not exist in GS after the transformation 
pathway has been applied. 

3. The pre- and post-conditions for tpi = 
renameConstruct(P, O) (1 ≤ i ≤ r)  are as follows: 
(i) P must exist in S; 
(ii) P must not exist in GS after the transformation 

pathway has been applied; 
(iii) O must not exist in S and not be created in the 

transformation pathway TP’ = tp1, …, tpi-1; 
(iv) O must exist in GS after the transformation 

pathway has been applied. 
 
With these pre- and post-conditions, all the constructs 

appearing in GS must have been created in one of three 
ways: (a) created by an addConstruct transformation; (b) 
created by a renameConstruct transformation; and (c) 
constructs existing in the source schema S and remaining 
in the integrated schema GS. Thus, the problem of data 
lineage, falls into three cases: 
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(a) If a construct O was created by an addConstruct(O, 
q) transformation, then the lineage of data in O is  
located in the constructs that appear in q.  

procedure originPoolOfTuple(t, O) 
input: a tracing tuple t; the construct O which 

contains tuple t. 
output: t’s origin pool 
begin 

case (O.relateTP = Ø) do 
D* � traceRemaining(t,O); 

case (O.transfType = “rename”) do 
D* � traceRename(t, O);  

case (O.transfType = “add”) do { 
D � [ExtS,I(o)| o �  
                         O.relateTP.sourceConstruct)]; 
D* � TQOP

D(t); }  // from Theorem 1 
return (D*); 

end 

(b) If a construct O was created by a 
renameConstruct(P, O) transformation, then the 
lineage of data in O is located in the source 
construct P. 

(c) If a construct O exists in the source schema and 
remains in the integrated schema, the lineage of data 
in the integrated construct O is located in the source 
construct O.  
 
4.2 Algorithm for tracing derivations through 

Automed transformation pathways  
It is simple to trace data lineage in cases (b) and (c) 

discussed above.  Procedure traceRename(t, O) shown in 
Figure 2 can be used to trace the lineage of a tuple t in 
the schema construct O  created by renameConstruct(P, 
O) transformation (case (b) above).  Procedure 
traceRemaining(t, O) shown in Figure 3 can be used for 

the remaining schema constructs (case (c)).  In these two 
cases, all of data in the construct O is extracted from the 
source schema, so the affect-pool is equal to the origin-
pool.  

Figure 5: Origin Pool Tracing Procedure for a tuple 

We assume that each schema construct, O, has an 

attribute, relateTP, that refers to the transformation step 
that created O. If O is remaining from the source schema, 
then O.relateTP = Ø. Furthermore, each transformation 
step tp has four attributes:transfType which is “add” or 
“rename” (we ignore the “delConstruct” operator 
because no construct in the integrated schema can be 
created by this operator); query which is the query used 
in this transformation step; sourceConstruct which 
includes all constructs appearing in the query; and 
resultConstruct which is the construct created by this 

transformation step.  
As to case (a), in which the construct O was created by 

a transformation step addConstruct(O, q), the key point 
is how to trace the lineage using the IQL query, q. We 
can use the formulae given in Theorem 1 to obtain the 
lineage of the data created in this case. The procedures 
affectPoolOfTuple(t, O) and originPoolOfTuple(t, O) 
shown in Figures 4 and 5 can be applied to trace the 
affect pool and origin pool of a tuple in this case, where t 
is the tracing tuple in the schema construct O.  The result 
of these procedures, D*, is a bag which contains t’s 
derivation in the source schema. Note that for any tuple 
in the source database, either all of the copies of the tuple 
are in D* or none of them are. 

procedure traceRename(t, O) 
// O is the construct containing tuple t; 
   D � ExtS,I(O.relateTP.sourceConstruct); 
   D* � [x| x � D; x = t]; 
return (D*); 

Figure 2: Tracing for renameConstruct  

The procedures affectPoolOfSet(T, O) and 
originPoolOfSet(T, O) in Figure 6 can then be used to 
compute the derivations of a tuple set, T. (Because 
duplicate tuples have an identical derivation, we  
eliminate duplicate items and convert T into a set first.) 
In these two procedures, we trace the data lineage of each 

procedure traceRemaining(t, O) 
// O is the construct containing tuple t; 
// O.relateTP = Ø; 
   D* � [x| x � ExtS,I(O); x = t]; 
return (D*); 

procedure affectPoolOfSet(T, O) 
input: a tracing tuple set T = {t1, …, tn}, the 

construct O which contains tuple set T.  
output: T’s affect pool  
begin 

D* � Ø; 
for i � 1 to n do 
   D* � D*  ++  
                [x| x � affectPoolOfTuple(ti, O);  

not (member D*  x)]; 
return (D*); 

end 

Figure 3: Tracing for remaining constructs

procedure originPoolOfSet(T, O) 
input: a tracing tuple set T = {t1, …, tn}, the 

construct O which contains tuple set T. 
output: T’s origin pool 
begin 

D* � Ø; 
for i � 1 to n do 
  D* � D*  ++  

                                   [x| x � originPoolOfTuple(ti, O);  
not (member D*  x)]; 

return (D*); 
end 

procedure affectPoolOfTuple(t, O) 
input: a tracing tuple t; the construct O which 

contains tuple t. 
output: t’s affect pool 
begin 

case (O.relateTP = Ø) do 
D* � traceRemaining(t,O); 

case (O.transfType = “rename”) do 
D* � traceRename(t, O);  

case (O.transfType = “add”) do { 
D � {ExtS,I(o)| o � 
                          O.relateTP.sourceConstructt)}; 
D* � TQAP

D(t); }   // from Theorem 1 
return (D*); 

end 

Figure 6: Derivation Tracing Procedures for a set of tuples

 6Figure 4: Affect Pool Tracing Procedure for a tuple 



tuple ti � T in turn and incrementally add each time the 
result into D*. Because a tuple t* can be the lineage of 
both ti and tj (i � j), if t* and all of its copies in the source 
database have already been added to D* as the lineage of 
ti, we then do not add them again into D* as the lineage 
of tj (we use the test, not (member D* x), to avoid such 
repetitions).  

Finally, Figure 7 gives our recursive derivation tracing 

algorithms, traceAffectPool(TL, OL) and 
traceOriginPool(TL, OL), for tracing data lineage using 
entire transformation pathways. Given a integrated 
schema GS, the source schema S, and a transformation 
pathway TP = tp1, …, tpr from S to GS. TL = T1,…, Tn is 
a list of tuple sets such that each Ti is contained in the 
extension of some integrated schema construct Oi.. OL is 
the list of integrated schema constructs O1,…, On. We 
recall that each schema construct has an attribute 
relateTP, and each transformation step has attributes 
operatorType, query, sourceConstruct and 
resultConstruct. 

In procedure traceAffectPool(TL, OL) (and similarly in 
traceOriginPool(TL, OL)), we compute derivations for 
each tuple set Ti in TL one by one using the procedure  
affectPoolofSet(Ti, Oi).  If the construct Oi which 
contains tuple set Ti is created by a renameConstruct 
transformation or remains from the source schema (i.e. 
relateTP is Ø), then the computed data can be directly 

extracted from the source schema (as a result of the pre- 
and post-conditions of Section 4.1.3). If Oi is created by 
an addConstruct(Oi, q) transformation, the constructs in 
query q may have been created by the earlier part of the 
transformation pathway, and the computed data needs to 
be extracted from these constructs.  Therefore, we call 
procedure traceAffectPool recursively while the relateTP 
of the construct is “addConstruct”. 

 
5. Conclusions and future work procedure traceAffectPool(TL, OL) 

input: a list of tuple sets TL = T1, …, Tn; the list of 
corresponding constructs OL = O1,…, On in 
the integrated schema;  

output: T’s affect pool in the source schema 
begin 

D* � Ø; 
for i = 1 to n do { 

temp � affectPoolofSet(Ti, Oi); 
if (Ti.relateTP.transfType = “add”) 

temp  � traceAffectPool(temp, 
Ti.relateTP.sourceConstruct); 

D* � D* ++  
                       [x| x � temp; not (member D* x)]; 

} 
return (D*); 

end 

We have presented definitions for data lineage in 
Automed based on both why-provenance and where-
provenance, which we have termed affect-pool and 
origin-pool, respectively. We have given formulae for 
tracing the affect-pool and the origin-pool for tuples and 
tuple sets derived from sequences of simple IQL queries. 
Rather than relying on a high-level common data model 
such as an ER or relational model, the Automed 
integration approach is based on a lower-level CDM – 
the HDM data model. Heterogeneous source schemas 
can be automatically translated into the equivalent HDM 
representation, and transformations between them 
expressed as transformations on their HDM 
representations.  The contribution of the work we have 
discussed in this paper is that we have shown how the 
individual transformation steps in an Automed 
transformation pathway can be used to trace the 
derivation of data in the integrated database in a step-
wise fashion, thus simplifying the lineage tracing 
process. The data lineage problem and the solutions 
presented in this paper have led to a number of areas of 
further work:  

procedure traceOriginPool(TL, OL) 
input: a list of tuple sets TL = T1, …, Tn; the list of 

corresponding constructs  OL = O1,…, On in 
the integrated schema; 

output: T’s origin pool in the source schema 
begin 

D* � Ø; 
for i = 1 to n do { 

temp � originPoolofSet(Ti, Oi); 
if (Ti.relateTP.transfType = “add”) 

temp  � traceOriginPool(temp, 
Ti.relateTP.sourceConstruct); 

D* � D* ++ 
                       [e| e � temp; not (member D* e)]; 

} 
return (D*); 

end 

�� Handling more complex IQL queries appearing in 
transformation pathways. We are investigating 
techniques for decomposing complex IQL queries 
appearing in single a transformation step into a 
sequence of transformation steps each accompanied 
by a single simple query, so that the formulae in 
Theorem 1 can be applied directly. 

�� Combining our approach for tracing data lineage 
with the problem of incremental view maintenance. 
Automed transformation pathways are automatically 
reversible and this feature can be exploited for both 
these issues. We have already done some 
preliminary work on using the Automed 
transformation pathways for incremental view 
maintenance. We now plan to explore the 
relationship between our lineage tracing and view 
maintenance algorithms, to determine if an 
integrated approach can be adopted for both. 

Figure 7: Derivation Tracing Procedures for entire 
transformation pathways 

�� Implementing our lineage tracing and view 
maintenance algorithms. As a part of the Automed 
project, we will implement our algorithms in Java 
over the Automed repository and API [BT01, Auto]. 

�� Extending the lineage tracing and view maintenance 
algorithms to a more expressive transformation 
language. [Pou01b] extends the Automed 
transformation language with parametrised 
procedures and iteration and conditional constructs, 
and we plan to extend our algorithms to this more 
expressive transformation language. 
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