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Abstract

Metadata management is an essential factor in data warehousing. In data warehousing
environments, data is transformed and integrated into a single database from multiple
autonomous and heterogeneous data sources. What kind of metadata can be used for
expressing the multiplicity of data models and the data transformation and integration
processes in such environments? How can this metadata be further used for supporting other
data warehouse activities? We examine how these questions are addressed by AutoMed,
a system for expressing data transformation and integration processes in heterogeneous
database environments.

1 Introduction

Metadata has been a part of information processing since there have been programs and data.
It captures the information necessary for supporting the management, querying, consistent
use, and understanding of data. Metadata is particularly important in a data warehouse
environment, since data warehouse activities such as data integration, data transformation,
OLAP, data mining, and so on, are enabled by metadata. Due to the increasing complexity of
data warehouses, metadata management has received increasing research focus [28, 21, 3, 8].

Typically, the metadata in a data warehouse includes information about both data and data
processing. Information about data includes the schemas of the data sources, warehouse and
data marts, ownership of the data, time information etc. Information about data processing
includes rules for data extraction, cleansing and transformation, data refresh and purging
policies, the lineage of migrated and transformed data etc.

Up to now, in order to transform and integrate data from heterogenous data sources, a
conceptional data model (CDM) has been used. For example, [23, 27, 9] use a dimensional
model; [7, 4, 35, 20] use an ER model, or extensions of it; [36] uses a multidimensional CDM
called MAC providing modelling concepts familiar to OLAP users; [17] describes a framework
for data warehouse design based on its Dimensional Fact Model; [38, 37] present a conceptual
model and a set of abstract transformations for data extraction-transformation-loading (ETL);
and [19] adopts the relational data model as the CDM.

All these approaches assume a single conceptual data model (CDM) for the data transforma-
tion/integration — see Figure 1(a). Each data source has a wrapper for translating its schema
and data into the CDM. The integrated schema is then derived from these CDM schemas by
means of view definitions, and is expressed in the same modelling language as them.

This traditional CDM framework has a number of drawbacks. Firstly, since they are both
high-level conceptual data models, semantic mismatches may exist between the CDM and a
source data model, and there may be a loss of information between them. Secondly, if a
source schema changes, it is not straightforward to evolve the view definitions of the integrated
schema constructs in terms of source schema constructs. Finally, the data transformation and
integration metadata is tightly coupled with the CDM of the particular data warehouse. If the
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Figure 1: Frameworks of Data Integration

warehouse is to be redeployed on a platform with a different CDM, it is not easy to reuse the
previous warehouse implementation.

AutoMed is a data transformation and integration system which adopts a low-level hypergraph-
based data model (HDM) as its common data model1. So far, research has focused on using
AutoMed for virtual data integration. This paper describes how AutoMed can also be used for
materialized data integration, in particular for expressing the data transformation/integration
metadata, and using this metadata to support warehouse activities such as data cleansing,
populating the warehouse, incrementally maintaining the warehouse data after data source
updates, and tracing the lineage of warehouse data.

Using AutoMed for materialised data integration, the data source wrappers translate the
source schemas into their equivalent specification in terms of AutoMed’s low-level HDM, with-
out loss of information — see Figure 1(b). AutoMed’s schema transformation facilities can
then be used to incrementally transform and integrate the source schemas into an integrated
schema. The integrated schema can be defined in any modelling language which has been
specified in terms of AutoMed’s HDM (see Section 2 below for more details). We will examine
in this paper the benefits of this alternative approach to data transformation/integration in
data warehousing environments.

An earlier paper [?] proposed a variation of the HDM as the common data model for both
virtual and materialised integration, and a visual, hypergraph-based query language (HQL)
for defining views of derived constructs in terms of source constructs. However, that paper
did not focus on expressing data warehouse metadata, or on warehouse activities such as data
cleansing or populating and maintaining the warehouse.

Outline of this paper: Section 2 gives an overview of the AutoMed framework, to the level
of detail necessary for our purposes here. Section 3 shows how AutoMed metadata has enough
expressivity to describe the data integration and transformation processes in a data warehouse.
Section 4 discusses how the AutoMed metadata can be used for some data warehousing activ-
ities. Section 5 discusses the benefits of our approach. Section 6 gives our concluding remarks
and directions of further work.

2 AutoMed

The basis of the AutoMed data integration system is a low-level hypergraph-based data model
(HDM) [?, 24]. Facilities are provided for defining higher-level modelling languages in terms of
this lower-level HDM. An HDM schema consists of a set of nodes, edges and constraints, and so
each modelling construct of a higher-level modelling language is specified as some combination

1http://www.doc.ic.ac.uk/automed
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of HDM nodes, edges and constraints. For any modelling language M specified in this way (via
the API of AutoMed’s Model Definitions Repository [5]), AutoMed automatically provides a set
of primitive schema transformations that can be applied to schema constructs expressed in M.
In particular, for every construct of M there is an add and a delete primitive transformation
which (conceptually) add to, or delete from, the underlying HDM schema the corresponding
set of nodes, edges and constraints. For those constructs of M which have textual names, there
is also a rename primitive transformation.

One advantage of using a low-level common data model such as the HDM is that semantic
mismatches between high-level modelling constructs are avoided. Another advantage is that
the HDM provides a unifying semantics for higher-level modelling constructs and hence a basis
for automatically or semi-automatically generating the semantic links between them — this is
ongoing work being undertaken by other members of the AutoMed project.

In AutoMed, schemas are incrementally transformed by applying to them a sequence of
primitive transformations t1, . . . , tr. Each primitive transformation ti makes a ‘delta’ change
to the schema by adding, deleting or renaming just one schema construct. Thus, intermediate
schemas may contain constructs of more than one modelling language.

Each add or delete transformation is accompanied by a query specifying the extent of the new
or deleted construct in terms of the rest of the constructs in the schema. This query is expressed
in a functional intermediate query language, IQL [30]2. Also available are contract and extend
transformations which behave in the same way as add and delete except that they indicate that
their accompanying query may only partially construct the extent of the new/removed schema
construct. Moreover, their query may just be the constant Void, indicating that the extent of
the new/removed construct cannot be derived even partially, in which case the query can be
omitted.

We term a sequence of primitive schema transformations from one schema S1 to another
schema S2 a transformation pathway from S1 to S2, denoted S1 → S2.

All source schemas, intermediate schemas, integrated schemas, and the pathways between
them are stored in AutoMed’s Schemas & Transformations Repository [5]. The queries present
within transformations that add or delete schema constructs mean that each primitive transfor-
mation has an automatically derivable reverse transformation. In particular, each add/extend
transformation is reversed by a delete/contract transformation with the same arguments, while
each rename transformation is reversed by another rename transformation with the two argu-
ments swapped. We refer the reader to [25] for an extensive discussion of the AutoMed data
integration approach.

If a set of source schemas S1, . . . , Sn have been integrated into an integrated schema S by
means of a set of pathways, we will see in Section 4.1 below how these pathways can be used
for populating S if it is going to be a materialised schema.

If S is a virtual schema, then view definitions defining its constructs in terms of the con-
structs of S1, . . . , Sn can automatically be derived from the pathways, and in particular,
from the add, extend and rename steps within them. This is done by traversing the pathways
S1 → S, . . . , Sn → S backwards from S down to each Si (see [?]). These view definitions can
then be used for global query processing by substituting them into queries expressed over the
integrated schema in order to reformulate them into queries expressed on the source schemas.
This is the global-as-view approach to global query processing over distributed heterogeneous
data sources and is what we currently support in AutoMed. More specifically, after a query
expressed on an integrated schema has been reformulated and optimised, sub-queries of it are
submitted to the appropriate data source Wrappers for translation into the data source query
languages and evaluation at the data sources. The wrappers then translate sub-query results

2IQL is a comprehensions-based functional query language. Such languages subsume query languages such
as SQL and OQL in expressiveness [?, ?].

3



back into the IQL type system and the IQL query processor undertakes any further necessary
post-processing of the query [22].

The fine granularity of AutoMed’s primitive schema transformations readily allows evolution
of both the integrated and the source schemas, the latter including also the addition or removal
of source schemas. This is because such schema evolutions can be expressed as extensions to
the existing pathways, possibly followed by some automatic or semi-automatic simplification
of the resulting pathways — see [?, 25] for details. New view definitions for the constructs of
the integrated schema can then be regenerated from the evolved pathways. If the integrated
schema is a virtual one, these new view definitions can now be used for global query processing.
We discuss the case of a materialised integrated schema in Section 5 below.

2.1 Representing a Multidimensional Model in the AutoMed

Previous work has shown how conceptual modelling languages such as relational, ER, UML
and XML can be represented in terms of the HDM [?, ?]. Here we illustrate how a simple
multidimensional data model can be specified in terms of the HDM.

A schema in the HDM data model is a triple (Nodes, Edges, Constraints). Nodes and
Edges define a labelled, directed, nested hypergraph. It may be ‘nested’ in the sense that
edges can link any number of both nodes and other edges. A query q over a schema is an
expression whose variables are members of Nodes ∪ Edges. Constraints is a set of boolean-
valued queries over the schema which are satisfied by all instances of the schema. Nodes are
uniquely identified by their names. Edges and constraints have an optional name associated
with them. Edges need not be uniquely named within an HDM schema but are uniquely
identified by the combination of their name and the components they link.

The constructs of any higher-level modelling language M may be nodal, linking, nodal-
linking or constraint constructs, or possibly a combination of these:

• nodal constructs may exist independently of any other constructs and are represented by
an HDM node.

• linking constructs can only exist when certain other constructs exist. The extent of a
linking construct is a subset of the Cartesian product of the extents of its dependent
constructs. Linking constructs are represented by HDM edges.

• nodal-linking constructs are nodal constructs that can only exist when certain other con-
structs exist, and that are linked to these constructs (attributes in the relational model
are an example). Nodal-linking constructs are represented by a combination of an HDM
node and an HDM edge.

• Constraint constructs represent restrictions on the extents of the other three kinds of
constructs.

The scheme of a construct (delimited by double chevrons) uniquely identifies it within a schema.
Our simple multi-dimensional data model has four basic modelling constructs: Fact, Dim

(dimension), Att (non-key attribute) and Hierarchy; for simplicity, we model a measure as any
other non-key attribute. Fact and Dim are nodal, Att is nodal-linking, and Hierarchy is a
constraint. This specification is illustrated in Table 1.

We see that a fact or dimension table R with primary attributes k1, . . . , kn (n ≥ 1) is
uniquely identified by the scheme ¿ R, k1, . . . , kn À. This translates in the HDM to a nodal
construct ¿ R À the extent of which is the projection of the table R onto its primary key
attributes k1, . . . , kn. Each non-key attribute a of a fact or dimension table R is uniquely
identified by the scheme ¿ R, a À. This translates in the HDM into a nodal-linking construct
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Dimensional Construct HDM Representation
construct: Fact
class: nodal node: ¿ R À
scheme: ¿ R, k1, . . . , kn À
construct: Dim
class: nodal node: ¿ R À
scheme: ¿ R, k1, . . . , kn À
construct: Att
class: nodal-linking node: ¿ R : a À
scheme: ¿ R, a À edge: ¿ , R, R : a À
construct: Hierarchy
class: constraint constraint:
scheme: ¿ R, R′, ki, k

′
j À [xi|(x1, . . . , xn) ←¿ R, k1, . . . , kn À] ⊆

[yj |(y1, . . . , ym) ←¿ R′, k′1, . . . , k
′
m À]

Table 1: Definition of Dimensional Model Constructs

comprising a new node ¿ R : a À and an edge ¿ , R, R : a À. The extent of the edge is the
projection of table R onto k1, . . . , kn, a.

Hierarchy constructs reflect the relationship between a primary key attribute ki in a fact
table R and its referenced foreign key attribute k′j in a dimension table R′, or between a primary
key attribute in a dimension table R and its referenced foreign key attribute in a sub-dimension
table R′. A hierarchy construct maps to a constraint in the corresponding HDM schema, which
asserts that the set of values of ki in R are always contained in the set of values for k′j in R′.

3 Expressing Data Warehouse Schemas and Transformations
in AutoMed
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Figure 2: Data Transformation and Integration at the Schema Level

Figure 2 illustrates the data transformation and integration process in a typical data ware-
house. Generally, the ETL process includes extracting and transforming data from the data
sources, and loading the transformed data into the warehouse schema. In this paper we as-
sume that data extraction has already happened i.e. that all the ‘data sources’ are local copies
of data extracted from remote data sources. Thus, the data transformation/integration pro-
cess is divided into the six stages shown in Figure 2: transforming, single-source cleansing,
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multi-source cleansing, integrating, summarizing, and creating data marts.
In Figure 2, the data source schemas (DSSi) may be expressed in any modelling language

that has been specified in AutoMed. The transforming process translates each DSSi into a
transformed schema TSi which is ready for single-source data cleansing. Each TSi may be
defined in the same, or a different, modelling language as DSSi and other TSs. The translation
from a DSSi to a TSi is expressed as an AutoMed transformation pathway DSSi → TSi. Such
translation may not be necessary if the data cleansing tools to be employed can be applied
directly to DSSi, in which case TSi and DSSi are identical.

The single-source data cleansing process transforms each TSi into a single-source-cleaned
schema SSi, which is defined in the same modelling language as TSi but may be a different from
it. The single-source cleansing process is expressed as an AutoMed transformation pathway
TSi → SSi and we discuss it further in Section 3.3.1 below.

Multi-source data cleansing removes conflicts between sets of single-source-cleaned schemas
and creates a multi-source-cleaned schema MSi from them — we discuss it further in Section
3.3.2 below. Between the single-source-cleaned schemas and the detailed schema (DS) of the
data warehouse there may be several stages of MSs, possibly represented in different modelling
languages.

In general, if during multi-source data cleansing, n schemas S1, . . . , Sn need to be trans-
formed and integrated into one schema S, we can first automatically create a ‘union’ schema
S1∪ . . .∪Sn (after first undertaking any renaming of constructs necessary to avoid any naming
ambiguities between constructs from different schemas). We can then express the transfor-
mation/integration process as a pathway S1 ∪ . . . ∪ Sn → S. (There are also other schema
integration approaches possible with AutoMed; with this approach, and in a data warehousing
context, there is no need for extend transformation steps and we ignore them henceforth in this
paper).

After mulit-source data cleansing, the resulting MSs are then transformed and integrated
into a single detailed schema, DS, expressed in the data model supported by the data warehouse.
The DS can then be enriched with summary views by means of a transformation pathway from
DS to the final data warehouse schema DWS.

Data mart schemas (DMS) can subsequently be derived from the DWS and these may be
expressed in the same, or a different, modelling language as the DWS. Again, the derivation is
expressed as a transformation pathway DWS → DMS.

Using AutoMed, four steps are needed in order to create the metadata expressing the above
schemas and transformation pathways:

1. Create AutoMed repositories: AutoMed metadata is stored in the Model Definitions
Repository (MDR) and the Schemas & Transformations Repository (STR) [5]. The API
to these repositories uses JDBC to access an underlying relational database. Thus, these
repositories can be implemented using any DBMS supporting JDBC. If the DBMS of the
data warehouse supports JDBC, then the AutoMed repositories can be part of the data
warehouse itself.

2. Specify data models: All the data models that will be required for expressing the
various schemas of Figure 2 need to be specified in terms of AutoMed’s HDM, via the
API of the MDR (if they are not already specified within the MDR).

3. Extract data source schemas: Each data source schema is automatically extracted
and translated into its equivalent AutoMed representation using the appropriate wrapper
for that data source.

4. Define transformation pathways: The remaining schemas of Figure 2 and the path-
ways between them can now be defined, via the API of the STR.
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After any primitive transformation is applied to a schema, a new schema results. By
default, this will be an ‘intentional’ schema within the STR i.e. it is not stored but its
definition can be derived by traversing the pathway from its nearest ancestor ‘extensional’
schema. The data source schemas are, by definition, extensional schemas i.e their full
definition is stored within the STR. It is also possible to request that any other schema
becomes an extensional one e.g. the successive stages of schemas identified in Figure 2.

After any add(c,q) transformation step, it is possible to materialise the new construct c
by creating, externally to AutoMed, a new local data source whose local schema includes
c and populating this data source by the result of evaluating the query q (we discuss this
process in more detail in Section 4.1 below).

Thus, in general, a schema may be a materialised schema (all its constructs are materi-
alised) or a virtual schema (none of its constructs are materialised) or partially materi-
alised (some of its constructs are materialised, some not).

In the following sections, we discuss in more detail how AutoMed transformation pathways
can be used for describing the six stages of the data transformation/integration process illus-
trated in Figure 2. We first give a simple example illustrating data transformation/integration,
assuming that no data cleansing is necessary.

3.1 An Example
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Figure 3: An Example of Data Integration/Transformation

Figure 3 shows a multi-dimensional schema consisting of a fact table Salary and two dimen-
sion tables Person and Job; an HDM schema consisting of two nodes Dept id and name and an
(un-named) edge between them; and a relational schema consisting of a single table Dept into
which the other two schemas need to be transformed and integrated.

We discussed in Section 2.1 how a multi-dimensional model can be represented in AutoMed.
For the HDM itself, the modelling constructs are Node, Edge and Constaint. We assume here
a simple relational model which is represented similarly to our multi-dimensional model: each
relation R with key attributes k1, . . . , kn and non-key attributes a1, . . . , am is represented by
a Rel construct ¿ R, k1, . . . , kn À whose extent is the projection of R onto k1, . . . , kn, plus
a set of Att constructs ¿ R, a1 À, . . . , ¿ R, am À, where the extent of each ¿ R, ai À is
the projection of R onto k1, . . . , kn, ai (we refer the reader to [?] for an encoding of the full
relational model in the HDM).

In order to integrate the two source schemas into the target schema we first form their
union schema. The following three primitive transformations are then applied to this schema
in order to add the Dept relation to it, defining the extent of its id key attribute to be the same
as the extent of the Dept id HDM node, the extent of its dept name attribute to be the same
as that of the HDM edge from Dept id to name, and the extent of its total salary attribute to
be obtained by summing the salaries for each department in the Salary table:
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addRel (<<Dept,id>>,<<Dept_id>>);
addAtt (<<Dept,dept_name>>,<<_,Dept_id,name>>);
addAtt (<<Dept,total_salary>>,gc sum [(d,s)|(i,j,s)<-<<Salary,salary>>;

(i’,j’,d)<-<<Salary,dept_id>>;
i=i’; j=j’]);

In the last step above, the IQL function gc is a higher-order function that takes as its first
argument an aggregation function and as its second argument a bag of pairs; it groups the
pairs on their first component, and then applies the aggregation function to each bag of values
formed from the second components.

The following three transformations can then be applied to the current schema to remove
the HDM constructs from it — note how the queries show how the extents of these constructs
could be reconstructed from the remaining schema constructs:

delEdge (<<_,Dept_id,name>>,<<Dept,dept_name>>);
delNode (<<name>>,[n|(d,n)<-<<Dept,dept_name>>);
delNode (<<Dept_id>>,(<<Dept,id>>);

Finally, the following sequence of transformations remove the multi-dimensional schema
constructs — note that contract rather than delete transformations are used since their extents
cannot be reconstructed from the remaining schema constructs:

contractHierarchy(<<Salary,Person,id,id>>);
contractHierarchy(<<Salary,Job,job_id,job_id>>);
contractAtt (<<Salary,salary>>);
contractAtt (<<Salary,dept_id>>);
contractFact (<<Salary,id,job_id>>);
contractAtt (<<Job,job_descr>>);
contractDim (<<Job,job_id>>);
contractAtt (<<Person,name>>);
contractDim (<<Person,id>>);

The final schema consists of the Dept relation and its attributes, as required.

3.2 Transforming

The above example illustrates how a schema expressed in one data model can be transformed
into a schema expressed in another. The general approach is to first add the new schema
constructs in the target data model (relational in the above example) and then to delete or
contract the schema constructs expressed in the original data model(s) (multi-dimensional and
HDM in the above example).

3.3 Data Cleansing

Data cleansing, also called data cleaning or scrubbing, deals with detecting and removing errors
and inconsistencies from data in order to improve its quality, and is typically required before
loading the transformed data into the data warehouse. In [31], the data cleansing problem
is classified into two aspects, single-source and multi-source. For each of these, there are two
levels of problems, schema-level and instance-level. Schema-level problems can be addressed
by evolving the schema as necessary. Instance-level problems refer to errors and inconsistencies
in the actual data which are not visible at the schema level. In this section, we describe how
AutoMed metadata can be used for expressing the data cleansing process, for both single and
multiple data sources, and for both schema-level and instance-level problems.
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3.3.1 Single-Source Cleansing

Schema-level single-source problems may arise within a transformed schema TSi in Figure
2 and they can be resolved by means of an AutoMed transformation pathway that evolves
TSi as necessary. Single-source instance-level problems include value, attribute and record
problems. Value problems occur within a single value and include problems such as a missing
value, a mis-spelled value, a mis-fielded value (e.g. putting a city name in a country attribute),
embedded values (putting multiple values into one attribute value), using an abbreviation, or
a mis-expressed value (e.g. using the wrong order of first name and family name within a name
attribute). Attribute problems relate to multiple attributes in one record and include problems
such as dependence violation (e.g. between city and zip, or between birth-date and age). Record
problems relate to multiple records in the data source, and include problems such as duplicate
records or contradictory records.

Some instance-level problems do not require the schema to be evolved, only the extent of
one or more schema constructs to be corrected. In general, suppose that the extent of a schema
construct c needs to be replaced by a new, cleaned, extent. We can do this using an AutoMed
pathway by following these steps:

1. Add a new temporary construct temp to the schema, whose extent consists of the ‘clean’
data that is needed to generate the new extent of c. This clean data is derived from the
extents of the existing schema constructs. This derivation may be expressed as an IQL
query, or as a call to an ‘external’ function or, more generally, as an IQL query with
embedded calls to external functions.

(The IQL interpreter is easily extensible with new built-in functions, implemented in
Java, and these may themselves call out to other external functions. If the extent of a
new schema construct depends on calls to one or more external functions, then the new
construct must be materialised. Otherwise, if the extent of a new construct is defined
purely in terms of IQL and its own built-in functions then the new construct need not
be materialised.)

2. Contract the construct c from the schema.

3. Add a new construct c whose extent is derived from temp.

4. Delete or contract the temp construct.

To illustrate, suppose we have available a built-in function toolCall which allows a spec-
ified external data cleansing tool to be invoked with specified input data. Then, we can
invoke the QuickAddress Batch tool3 to correct the zip and address attributes of a table
Person(id,name,address,zip,city,country,phoneAndFax,maritalStatus) by regenerating these attributes
given the combination of address, zip and city information:

addRel (<<Temp,id,address,zip>>,
toolCall ’QuickAddress Batch’ ’<<Person,address>>’

’<<Person,zip>’ ’<<Person,city>>’);
contractAtt(<<Person,zip>>);
contractAtt(<<Person,address>>);
addAtt (<<Person,zip>>,[(i,z)|(i,a,z)<-<<Temp,id,address,zip>>]);
addAtt (<<Person,address>>,[(i,a)|(i,a,z)<-<<Temp,id,address,zip>>]);
deleteRel (<<Temp,id,address,zip>>,[(i,a,z)|(i,a) <- <<Person,address>>;

(i’,z) <- <<Person,zip>>;
i = i’])

3http://www.techie.techieindex.com/cug/qas/product/search/search.jsp
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Some instance-level problems will also require the schema to be evolved. For example, if
we have available a built-in function split phone fax which slits a string comprising a phone
number followed by one or more spaces followed by a fax number into a pair of numbers, then
the following AutoMed pathway converts the attribute phoneAndFax of the Person table above
into two new attributes phone and fax:

addRel (<<Temp,id,phone,fax>>,[(i,p,f)|(i,pf)<-<<Person,phoneAndFax>>;
(p,f)<-split_phone_fax pf]);

addAtt (<<Person,phone>>,[(i,p)|(i,p,f)<-<<Temp,id,phone,fax>>]);
addAtt (<<Person,fax>>, [(i,f)|(i,p,f)<-<<Temp,id,phone,fax>>]);
contractAtt (<<Person,phoneAndFax>>);
delRel (<<Temp,id,phone,fax>>,[(i,p,f)|(i,p)<-<<Person,phone>>;

(i’,f)<-<<Person,fax>>;
i = i’])

3.3.2 Multi-Source Cleansing

After single-source data cleansing, there may still exist conflicts between different single-source
cleaned schemas in Figure 2, leading to the process of multi-source cleansing.

Schema-level problems in multi-source cleansing include attribute and structure conflicts.
Attribute conflicts arise when different sources use the same name for different constructs
(homonyms) or different names for the same construct (synonyms), and they can be resolved
by applying appropriate rename transformations to one of the schemas. Structure conflicts
arise when the same information is modelled in different ways in different schemas, and they
can be resolved by evolving one or more of the schemas using appropriate AutoMed pathways.

Instance-level problems in multi-source cleansing include attribute, record, reference, and
data source problems. Attribute problems include different representations of the same at-
tribute in different schemas (e.g. for a maritalStatus attribute) or a different interpretations of
the values of an attribute in different schemas (e.g. US Dollar vs Euro in a currency attribute).

Such problems can be resolved by generating a new extent for the attribute in one of the
schemas by applying an appropriate conversion function to each its values. In general, suppose
we wish to convert each of the values within the extent of a construct c in a schema S by
applying a function f to it. First a new construct c new is added to S, whose extent is
populated by iterating over the extent of c and applying f to each of its values. Then, the old
construct c is deleted or contracted from the schema, and finally c new is renamed to c. For
example, the following pathway converts a ’M’/’S’ representation for the maritalStatus attribute
in the above Person table into a ’Y’/’N’ representation, assuming the availability of a built-in
function convertMS which maps ’M’ to ’Y’ and ’S’ to ’N’:

addAtt (<<Person,maritalStatus_new>>,
[(i,convertMS s)|(i,s)<-<<Person,maritalStatus>>]);

contractAtt (<<Person,maritalStatus>>);
renameAtt (<<Person,maritalStatus_new>>, <<Person,maritalStatus>>);

Note that if there is also available an inverse function convertMSinv which maps ’Y’ to ’M’ and
’N’ to ’S’, then a delete transformation could have been used in the second step above instead
of a contract:

deleteAtt (<<Person,maritalStatus>>,
[(i,convertMSinv s)|(i,s)<-<<Person,maritalStatus_new>>]);

Record problems include duplicate records or contradictory records among different data
sources. For duplicate records, suppose that constructs c and c′ from different schemas are to
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be integrated into a single construct within some multi-source cleaned schema. Then, prior to
the integration, we can create a new extent for c comprising only those values not present in
the extent of c′:

add (c_new, [v | v <- c; not (member c’ v)];
contract (c);
rename (c_new, c)

For contradictory records, we can similarly create a new extent for c comprising only those
values which do not contradict values in the extent of c′. For example, suppose we have
tables Person and Employee in different schemas, both with key id, and the attributes <<
Person,maritalStatus >> and << Emp,maritalStatus >> are going to be integrated into a sin-
gle attribute of a single table within some multi-source cleaned schema. Then the following
transformation removes values from << Person,maritalStatus >> which contradict values in <<
Emp,maritalStatus >> (assuming that the latter is the more reliable source — the opposite choice
would also of course be possible);

addAtt (<<Person,maritalStatus_new>>,
<<Person,maritalStatus>> --
[(i,s)|(i,s)<-<<Person,maritalStatus>>;

(i’,s’)<-<<Emp,maritalStatus>>;
i = i’; not (s = s’)]);

contractAtt (<<Person,maritalStatus>>);
renameAtt (<<Person,maritalStatus_new>>,<<Person,maritalStatus>>);

Reference problems occur when a referenced value does not exist in the target schema con-
struct and can be resolved by removing the dangling references. For example, if an attribute
<< Emp,dept id >> references a table << Dept >> with key dept id, then the following trans-
formation removes values from << Emp,dept id >> for which there is no corresponding dept id
value in << Dept >> :

addAtt (<<Emp,dept_id_new>>,[(i,d)|(i,d)<-<<Emp,dept_id>>;
member <<Dept>> d]);

contractAtt (<<Emp,dept_id>>);
renameAtt (<<Emp,dept_id_new>>,<<Person,dept_id>>);

Finally, data source problems relate to whole data sources, for example, aggregation at
different levels of detail in different data sources (e.g. sales may be recorded per product
in one data source and per product category in another data source). Such conflicts can be
resolved either by retaining both sets of source data within the target multi-source schema MSi

(with appropriate renaming of schema constructs as necessary) or by selecting the ‘coarser’
aggregation and creating a view over the more detailed data which summarises this data at
the coarser level, ready for integration with the more coarsely aggregated data from the other
data source.

3.3.3 Summary

In this subsection we have shown how AutoMed metadata has enough expressivity to express
the data cleansing process in a data warehouse environment. For all categories of data cleansing
problems, the general approach is to add new constructs to the current schema and to populate
them by ‘clean’ data generated from the extents of the existing schema constructs by means of
IQL queries and/or or calls to external functions. The old, ‘dirty’, schema constructs are then
contracted from the schema.
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3.4 Integrating

After data cleansing, the resulting multi-source-cleaned schemas MS1, . . . , MSn are ready to
be transformed and integrated into the detailed schema, DS. First, a union schema MS1 ∪ . . .∪
MSn is automatically generated. The transformation/integration process is then expressed as
a pathway MS1 ∪ . . .∪ MSn → DS. Section 3.1 above illustrated this process.

3.5 Summarizing

Data summarization builds either virtual or materialized views over the detailed data. This
can be expressed by means of a transformation pathway from DS to the final data warehouse
schema DWS, consisting of a series of add steps defining the new summarised constructs as
views over the constructs of DS.

3.6 Creating Data Marts

Data mart schemas (DMS) can subsequently be derived from the DWS, again by means of
a transformation pathway DWS → DMS. Unlike the previous, summarizing, step the target
schema may be expressed in a different modelling language to the DWS. In fact, this step can
be regarded as a separate instance of Figure 2 where the DWS now plays the role of the (single)
data source and the DMS plays the role of the target warehouse schema. The scenario is a
simplification of Figure 2 since there is only one data source, and there are no single-source or
multi-source cleaned schemas.

4 Using the AutoMed Transformation Pathways

In the previous section we showed how AutoMed metadata can be used for expressing the
ETL process in a data warehouse. In this section, we discuss how the resulting transformation
pathways can be used for some key data warehousing activities: populating the data warehouse,
incrementally maintaining the warehouse data after data source updates, and tracing the lineage
of warehouse data.

4.1 Populating the Data Warehouse

In order to use the AutoMed transformation pathways for populating the data warehouse,
a wrapper is required for each kind of data store from which data will be extracted or in
which data will be stored. AutoMed’s wrappers are implemented at two levels. A high level
wrapper converts between AutoMed queries and data and the standard representation for a
class of data sources e.g. the SQL92Wrapper converts between IQL and SQL92. A low level
wrapper deals with differences between the class standard and a particular data source e.g. the
PostgresSQLWrapper converts between SQL92 and Postgres databases.

In order to populate a construct c of a schema S, we need to generate a view definition for
each construct of S in terms of its nearest ancestor materialised constructs within the pathways
from the data source schemas DSS1, . . . , DSSn to S. This can be done using a modification
of the view generation algorithm described in [?]. This algorithm traverses the pathway from
S to each DSSi backwards, all the way to DSSi. The modified algorithm stops whenever a
materialised construct is encountered in a pathway. The result is a view definition of the
construct c in terms of already materialised constructs. This view definition is an IQL query
which can be evaluated, and the resulting data can be inserted into the data store linked with
c, via a series of update requests to that data store’s wrapper.
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4.2 Incrementally Maintaining the Warehouse Data

In order to incrementally maintain materialised warehouse data, we need to use incremental
view maintainence techniques. If a materialised construct c is defined by an IQL query q
over other materialised constructs, [13] gives formulae for incrementally maintaining c if one
its ancestor constructs ca has new data inserted into it (an increment) or data deleted from
it (a decrement). We actually do not use the whole view definition q generated for c, but
instead track the changes from ca through each step of the pathway. In particular, at each
add or rename step we use the set of increments and decrements computed so far to compute
the increment and decrement for the schema constructed being generated by this step of the
pathway.

4.3 Tracing the Lineage of Data Warehouse Data

The lineage of a data item t in the extent of a materialised construct c of a schema S is a set of
source data items from which t was derived. The fundamental definitions regarding data lineage
were developed in [11], including the concept of a derivation pool for tracing the data lineage
of a tuple in a materialised view. Another fundamental concept was addressed in [6], namely
the difference between ‘why-provenance’ and ‘where-provenance’. Why-provenance refers to the
source data that had some influence on the existence of the integrated data. Where-provenance
refers to the actual data in the sources from which the integrated data was extracted. The
problem of why-provenance has been studied for relational databases in [11, 39, 10].

We have developed definitions for data lineage in AutoMed based on both why-provenance
and where-provenance, which we term affect-pool and origin-pool. In [15] we give formulae for
deriving the affect-pool and origin-pool of a data item t in the extent of a materialised construct
c created by a transformation step of the form add(c,q) applied to a schema S. These formulae
generate derivation tracing queries [11] qAP

S (t) and qOP
S (t) which can be applied to S in order

to respectively obtain the affect-pool and origin-pool of the data item t.
In [15] we give an algorithm for tracing the affect-pool and origin-pool of a materialised

data item t all the way back to the data sources by using the AutoMed pathways from the
data source schemas DSS1, . . . , DSSn to the warehouse schema. This algorithm traverses a
pathway backwards, and incrementally computes new affect- and origin-pools whenever an add
or rename step is encountered, finally ending with the required affect- and origin-pools for t
from within DSS1, . . . , DSSn.

5 Discussion

We have shown how AutoMed metadata can be used to express the ETL process in a data
warehouse and how the resulting transformation pathways can be used for some key warehouse
activities. There are three main differences between this approach and the traditional data
warehousing approach based on a single conceptual data model (CDM):

1. In the CDM approach, each data source wrapper translates the data source model into
the CDM. Since both are likely to be high-level conceptual models, semantic mismatches
may exist between the CDM and the source data model, and there may be a loss of infor-
mation between them. In contrast, with the AutoMed approach the data source wrappers
translate each data source schema into its equivalent AutoMed representation, without
loss of information. Any necessary inter-model translation then happens explicitly within
the AutoMed transformation pathways, under the control of the data warehouse designer.

2. In the CDM approach, the data transformation and integration metadata is tightly cou-
pled with the CDM of the particular data warehouse. If the data warehouse is to be
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redeployed on a platform with a different CDM, it is not easy to reuse the previous data
transformation and implementation effort. In contrast, with the AutoMed approach it
is possible to extend the existing pathways from the data source schemas DSS1, . . . ,
DSSn to the current detailed data warehouse schema, DS, with extra transformation
steps that evolve DS into a new schema DSnew, expressed in the data model of the new
data warehouse implementation. The pathway DS → DSnew can be used to populate the
detailed schema of the new data warehouse from the current warehouse. The downstream
schemas from DSnew (i.e. the summary views and the data mart schemas) do still have
to be defined again by means of new pathways from DSnew, but all the upstream data
transformation/integration metadata can be reused. In particular, the pathways from
DSS1, . . . , DSSn to DSnew (via DS) can be used to maintain the new data warehouse.

3. In the CDM approach, if a data source schema changes it is not straightforward to evolve
the view definitions of the data warehouse constructs. With the AutoMed approach,
a change of a data source schema DSSi into a new schema DSSnew

i can be expressed
as a transformation pathway DSSi → DSSnew

i . The (automatically derivable) reverse
pathway DSSnew

i → DSSi can then be prefixed to the original pathway DSSi → TSi to
give a pathway DSSnew

i → TSi, thus extending the transformation network of Figure 2
to encompass the new schema.

Let us examine the impact of this extension. Suppose that the pathway DSSi → DSSnew
i

consists of a single primitive transformation t (longer pathways can be treated as a
sequence of single-step pathways). There are three cases to consider for t, the first two
of which can be handled totally automatically and the third semi-automatically:

(i) If t is an add, delete or rename transformation, then DSSnew
i is semantically equiva-

lent to DSSi and no further change to the transformation network is needed. When
new data is extracted from DSSnew

i , the new pathway DSSnew
i → TSi can be used

to transmit the new data to TSi.

(ii) If t is of the form contract(c) then construct c will no longer be available from
DSSnew

i . The transformation network needs to be modified to remove all downstream
constructs directly or indirectly dependent on c (and their underlying extents, if they
have been materialised). This is done by first removing the initial extend(c) step
from DSSnew

i to DSSi (and as a result removing also DSSi) and then examining the
query accompanying each subsequent add step and the constructs referenced in each
subsequent rename step.

(iii) If t is of the form extend(c) then there will be new data available from DSSnew
i that

was not available before. If the transformation network remains as it is, then the first
step from DSSnew

i to DDSi is contract(c) which removes c. Thus, the transformation
network is still consistent, but it does not utilise the new data.
It may be the case that we want to evolve the warehouse detailed schema, DS,
to include this new data. In this case, we can simply remove the contract(c) step
(and hence also DSSi) from the transformation network. This has the effect of
automatically propagating the construct c to all the downstream schemas in the
transformation network. Some further manual modification of the network may also
be necessary e.g. removing c from the data mart schemas by inserting a contract(c)
step in the pathway from the DWS to a data mart schema; ‘cleaning’ c by inserting
extra transformation steps before SSi and/or before the appropriate multi-source
cleaned schemas; semantically integrating c with existing data by inserting extra
transformation steps before the detailed schema, DS; utilising c in new view defini-
tions etc.
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6 Concluding Remarks

In this paper we have discussed the use of AutoMed metadata in data warehousing environ-
ments. We have shown how AutoMed metadata can be used to express the data schemas,
and the data cleansing, transformation, and integration processes. We have shown how this
metadata can then be used for populating the data warehouse, incrementally maintaining the
warehouse data after data source updates, and tracing the lineage of warehouse data.

In contrast to the traditional data warehousing approach which adopts a single conceptual
data model to transform and integrate data from multiple heterogeneous data sources, we use
a low-level common data model, the HDM. Data source wrappers first translate the source
schemas into their equivalent specification in terms of the HDM. AutoMed’s transformation
pathways are then used to incrementally transform and integrate the source schemas into an
integrated schema. The integrated schema can be defined in any modelling language which has
been specified in terms of AutoMed’s HDM. We discussed in Section 5 how several benefits
result: no semantic mismatch between the data source schemas and their representation in the
HDM; support of evolution of the data source schemas; and reuse of much of the transforma-
tion/integration effort if the data warehouse is redeployed on a platform supporting a different
data model.

So far, our incremental view maintenance and data lineage tracing algorithms have used
only the add and rename transformation steps from the data sources to the integrated schema.
We are now looking at how to also make use of the information imparted by the queries wthin
delete and contract transformation steps. We are also looking at the impact of calls to external
functions on our incremental view maintenance and data lineage tracing algorithms.

Clearly, not all data warehouse metadata can be captured by AutoMed e.g. information
about physical organisation of the data, ownership of the data, access control, temporal infor-
mation, and data refresh and purging policies. Thus, in practice, we envisage AutoMed being
used alongside an existing DBMS supporting such facilities. We are currently investigating this
interaction of AutoMed with existing data warehousing functionality in the context of a data
warehousing project in the bioinformatics domain. This project is creating an integrated data
warehouse in Oracle from the CATH database4, the MSD database5 and other specialist data
sources. It is also extracting specialist data marts from this warehouse, tailored for individual
researchers’ needs and deployed in lighter-weight DBMSs such as Postgres or MySQL. The
data sources are evolving over time, as are the researchers’ requirements for their data marts.
Thus, this application is well-suited to the functionality that AutoMed offers.
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