
Incremental view maintenance and data lineage tracing in
heterogeneous database environments

Hao Fan
School of Computer Science & Information Systems

Birkbeck College, University of London
h.fan@dcs.bbk.ac.uk

1. Motivation for the research
With the increasing amount and diversity of information available on the Internet,

there has been a huge growth in information systems that need to integrate data from
distributed, heterogeneous data sources.

Automed (Automatic Generation of Mediator Tools for Heterogeneous database
Integration) is a database transformation and integration system, which is designed to
support both virtual and materialized integration of schemas expressed in a variety of
modelling languages. In previous work of the Automed project [PM98, MP99a,
MP99b], a general framework has been developed to support schema transformation
and integration in heterogeneous database architectures. The framework consists of a
low-level hypergraph based data model (HDM) and a set of primitive schema
transformations on HDM schemas. We term the sequence of primitive
transformations defined for transforming a schema S1 to a schema S2 a transformation
pathway from S1 to S2. That is, a transformation pathway consists of a sequence of
primitive transformations.

The purpose of my research is to investigate techniques for incremental view
maintenance and data lineage tracing for integrated databases which have been
formed from heterogeneous source databases via Automed schema transformation
pathways (data lineage tracing investigates how data in a data warehouse has been
derived from the data sources). My approach is to decompose the processes of
incremental view maintenance and data lineage tracing into a sequence of simple
steps based on the transformation pathways. I use a functional intermediate query
language (IQL) as the query language to implement the algorithms for incremental
view maintenance and tracing data lineage.

The remainder of this paper is as follows. Section 2 outlines the related work.
Section 3 gives the examples of the IQL language and Automed transformation
pathways. Section 4 presents my research questions and research approach. The
preliminary ideas and results achieved so far are given in Section 5. Section 6
describes contributions of my research so far and directions of future work.

2. Related work
An overview of materialized views and their maintenance can be found in

[GM95], and [Dong99] gives a survey of incremental view maintenance. Many
incremental view maintenance algorithms have been developed [Qua96, CGL+96,
GL95, GMS93, BLT86] which deal with views and source databases with duplicate
elements (bag algebra) but do not apply in a multi-source environment because they
assume views and tables are in the same source. Several algorithms have also been
developed for incremental view maintenance in a multi-source scenario but are
limited to relational select-project-join (SPJ) views without duplicates, including the
ECA algorithm [ZGH+95] designed for a system with a central database site, the
Strobe algorithm [ZGW96] handling multiple, distributed source databases and the
SWEEP algorithm [AASY97] computing view changes for multi-source updates
collectively. [MS01] gives an algorithm for incrementally maintaining views with
multiple independent data sources and bag algebra semantics. Most of these

 1

mailto:h.fan@dcs.bbk.ac.uk

algorithms treat the query that defines the materialized view as a single SPJ query of
the form Q(S1,S2,…,Sn) = �(�(S1 ⋃ S2 ⋃…⋃ Sn). In contrast, in my approach, the
process creating the integrated database is decomposed into a sequence of
transformation steps. Each step is a primitive transformation [PM98] possibly
accompanied by an IQL query [Pou01a]. IQL queries can represent common database
query operations, such as select-project-join (SPJ) operations and SPJ operations with
aggregation (ASPJ).

Another recent topic is incremental view schema maintenance that needs to update
not only the data but also the schema of the integrated views [KR02]. An extension of
SQL, SchemaSQL [LSS01], is used for this kind of incremental view maintenance.
The Automed project has also considered the problem of source schema and global
schema evolution [MP02a, MP02b].

[QGM+96] introduces the concept of self-maintainable views by storing auxiliary
views in the data warehouse. This auxiliary data can also be used for improving the
efficiency of view maintenance and lineage tracing [CW00]. I use similar ideas in my
approach.

As to the problem of tracing data lineage, previous works have defined the notions
of fine-grained data lineage [WS97], derivation set and derivation pool [CWW00],
and the difference of why- and where-provenance [BKT01]. I have used all of these
notions in my approach. I have introduced the concepts of affect- and origin-pool for
data lineage, and developed algorithms of tracing data lineage which compute the
derivation given the source schemas, integrated schema, and transformation pathways
between them.

3. Examples of IQL queries and Automed transformation pathways
This section gives examples of IQL and Automed transformation pathways. More

details of these can be found in [PM98, MP99a, MP99b, Pou01a].

Example 1:(IQL query) To get the maximum daily sales total for each store in a relation StoreSales
(store_id, daily_total, date), in SQL we use,

SELECT store_id, max(daily_total)
FROM StoreSales
GROUP BY store_id

In IQL this query is expressed by
V = gc max [(s, t) | (s, t, d) � StoreSales]

where “gc” is a “group-and-compute” operator and [(s, t)| (s, t, d) � StoreSales] is a comprehension. �

Example 2:(Transforming between HDM schemas) An HDM schema consists of a set of nodes, a
set of edges and a set of constraints. Consider two HDM schemas S1 = (N1, E1, C1) and S2 = (N2, E2,
C2) where N1 = {mathematician, compScientist, salary}, C1 = {},
E1 = {«_, mathematician, salary», «_, compScientist, salary»}; N2 = {dept, person, salary,
avgDeptSalary}, C2 = {}, E2 = {«_, dept, person», «_, person, salary», «_, dept, avgDeptSalary»}.

Figure 1 illustrates these schemas S1 and S2. S1 can be transformed to S2 by the following sequence of
primitive schema transformations, where “++” is a bag append operator.

S2:

Transformation Pathway: TS1,S2

person
salary

 dept
avgDeptSalary

compScientist

salary

mathematician S1:

Figure 1: Transforming schema S1 to S2

 2

TS1,S2 =
addNode (dept,{“Maths”,“CompSci”});
addNode (person, [x| x � mathematician] ++ [x| x � compScientist]);
addNode (avgDeptSalary, {avg [s| (m,s)�«_, mathematician, salary»]} ++
 {avg [s| (c,s)�«_, compScientist, salary»]});
addEdge («_, dept, person», [(“Maths”, x)| x � mathematician] ++

 [(“CompSci”, x) | x � compScientist]);
addEdge («_, person, salary», «_, mathematician,salary» ++ «_, compScientist, salary»);
addEdge («_, dept, avgDeptSalary», {(“Maths”, avg [s| (m,s)� «_, mathematician, salary»]),

 (“CompSci”, avg [s| (c,s)�«_, compScientist, salary»])});
delEdge («_, mathematician, salary», [(p, s)| (d, p) � «_, dept, person»; (p’, s) � «_, person, salary»;

 d = “Maths”; p = p’]);
delEdge («_, compScientist, salary», [(p, s)| (d, p) � «_, dept, person»; (p’, s)� «_, person, salary»;

 d = “CompSci”; p = p’});
delNode (mathematician, [p| (d, p) � «_, dept, person»; d = “Maths”]);
delNode («compScientist», [p| (d, p) � «_, dept, person»; d = “CompSci”]);

The first 6 transformation steps in TS1,S2, create the constructs of S2 which do not exist in S1. The
query in each step defines the extension of the new schema construct in terms of the existing schema
constructs. The last 4 transformation steps then delete the redundant constructs of S1. The query in each
step shows how the extension of the deleted construct can be reconstructed from the extents of the
remaining constructs. �

4. Research questions and approach
My research issue is to develop techniques for incrementally maintaining an

integrated database and tracing the lineage of the integrated data, and I am
investigating how the Automed transformation pathways can be used for both of
these. The Automed transformation pathways consist of a sequence of primitive
transformation steps and are automatically reversible [MP99a]. Using this feature, the
process of incremental view maintenance and data lineage tracing can also be
decomposed into a sequence of simple steps. One of my aims is to explore the
relationship between the two processes and determine if they can be combined into an
integrated approach.

To achieve these research aims, firstly, we consider simple formulae for
evaluating the changes in the integrated database in response to the changes in the
source databases and the simple processes for obtaining the lineage of the integrated
data. All of the formulae and methods are based on simple IQL queries (see [FP02]),
from which general IQL queries can be formed by arbitrary nesting. Then we
investigate how the individual transformation steps in an Automed transformation
pathway can be used to incrementally maintain materialized views and trace the
derivation of the data in an integrated database in a stepwise fashion. Finally, entire
procedures are given for incremental view maintenance and data lineage tracing using
the Automed transformation pathways.

5. Preliminary ideas and results achieved so far

5.1 Incremental view maintenance using schema transformation pathways
Suppose we have a set of base relations Di (i = 1, …, n), from which we derive a

materialized view, V. We use �Di, �Di to denote the bags inserted into, deleted from a
base relation, Di, respectively. Similarly, �V, �V denote the bags inserted into, deleted
from the materialized view, V, respectively. �Di, �Di, �V and �V are possibly empty.

The incremental maintenance of a view V is to maintain V’s data only by
computing the changes to V (�V and �V) that are generated from the changes in the
base relations (�Di’s and �Di’s). When a base relation Di has changed, we obtain the

 3

new extent of the view as Vnew = (V ++ �V) -- �V, where “--” is the bag monus
operator [Alb91]. Of course many such expressions for �V and �V are possible but
not all are equally desirable. For example, we could simply let �V = V and �V = Vnew,
but this is equivalent to recomputing the view from scratch [Qua96]. To guard against
such useless definitions, it is necessary to introduce the concept of “minimality”
[GL95] to ensure that no unnecessary tuples are produced.

Definition 1: (Minimality Condition) �V and �V should satisfy the following minimality conditions:

(1) �V � V: we only delete tuples that are in V;
(2) �V ∩ �V = Ø: we do not delete a tuple and then reinsert it. �

Incremental view maintenance with simple IQL queries: Let V = q(D) be the bag that results from
applying a simple IQL query q to a source data repository D, consisting of one or more bags. Then the
formulae for computing �V and �V from �D and �D for simple IQL queries are as follows:

Simple IQL query1 �V �V
D1 ++ D2 (�D1 -- �D2) ++ (�D2 -- �D1) (�D1 -- �D2) ++ (�D2 -- �D1)
D1 -- D2 ((�D1 -- �D2) ++ (�D2 -- �D1)) ∩ V ((�D1 -- �D2) ++ (�D2 -- �D1)) -- (D2 -- D1)

group D [x| x � V; y � (�D ++ �D); first x = first y] group ([x| x � D; y � (�D ++ �D);
first x = first y] ++ �D -- �D)

�D
let r = [x| x � gc max �D]
in [x| x � V; y � r; (first x = first y)

& (second x < second y)]

let r = [x| x � gc max �D]
in r -- [x| x � r; y � V; (first x = first y)

& (second x � second y)] aggFun
= max

�D
let r = [x| x � gc max �D]
in [x| x � V; y � r; (first x = first y)

& (second x = second y)]

let r = [x| x � gc max �D]
in gc max [x| x � (D -- �D); y � �V;

first x = first y]

�D
let r = [x| x � gc min �D]
in [x| x � V; y � r; (first x = first y)

& (second x > second y)]

let r = [x| x � gc min �D]
in r -- [x| x � r; y � V; (first x = first y)

& (second x � second y)] aggFun
= min

�D
let r = [x| x � gc min �D]
in [x| x � V; y � r; (first x = first y)

& (second x = second y)]

let r = [x| x � gc min �D]
in gc min [x| x � (D -- �D); y � �V;

first x = first y]

�D let r = [x| x � gc count �D]
in [x| x � V; y � r; first x = first y]

let r = [x| x � gc count �D]
in gc sum (r ++ �V) aggFun

= count
�D

let r = [x| x � gc count �D]
in [x| x � V; y � r; first x = first y]

let r = [x| x � gc count �D]
in [(first x, (second x – second y))| x � �V;

 y � r; first x = first y]

�D let r = [x| x � gc sum �D]
in [x| x � V; y � r; first x = first y]

let r = [x| x � gc sum �D]
in gc sum (r ++ �V) aggFun

= sum
�D

let r = [x| x � gc sum �D]
in [x| x � V; y � r; first x = first y]

let r = [x| x � gc sum �D]
in [(first x, (second x – second y))| x � �V;

 y � r; first x = first y]

gc
 a

gg
Fu

n
D

aggFun
= avg

�D /
�D [x| x � V; y � (�D ++ �D) first x = first y] gc avg [x| x � (D ++ �D -- �D);

y � (�D ++ �D); first x = first y]
�D1 /
�D1

[x| x � �D1; member V x] [x| x � �D1; member D2 x] [x| x � D1;
member D2

x] �D2 /
�D2

let r = [x| x � �D2; not (member (D2 -- �D2) x)]
in [x| x � D1; member r x]

let r = [x| x � �D2; not (member D2 x)]
in [x| x � D1; member r x]

�D1 /
�D1

[x| x � �D1; member V x] [x| x � �D1; not (member D2 x)] [x| x � D1;
not (member

D2 x)] �D2 /
�D2

[x| x � V; member �D2 x]
let r = [x| x � �D2;not (member (D2 -- �D2) x)]
in [x| x � D1; member r x]

[p| p1 � D1;
…; pr � Dr;
c1; …; ck]2

�Di /
�Di

[p| p1 � D1; …; pi � �Di; …; pr � Dr; c1; …; ck] [p| p1 � D1; …; pi � �Di; …; pr � Dr; c1; …; ck]

With these formulae, we can incrementally maintain a view that is created by

applying a simple IQL query to the source databases. For general IQL queries, formed

1 See [FP02] for the details of simple IQL queries. Note that the �V and �V are not applicable for the queries “aggFun D”, “sort
D” and “sortDistinct D”, because we must recompute V entirely in these cases.
2 In this expression, each pattern pi is a sub-pattern of p, and c1; …; ck are conditions.

 4

from arbitrary nesting of simple IQL queries, the procedures for incremental view
maintenance can be derived from the above simple formulae. Where an integrated
database is derived by an Automed transformation pathway, we have developed an
algorithm for incremental view maintenance using this pathway. For simplicity of
exposition, henceforth we assume that all of the source schemas have first been
integrated into a single schema S consisting of the union of the constructs of the
individual source schemas (with appropriate renaming of schema constructs to avoid
duplicate names).

Suppose we have an integrated schema GS that has been derived from this source
schema S though an Automed transformation pathway TP = tp1, … tpr. When a source
database has some changes, �D and �D, we incrementally maintain the data in GS
step by step though the transformation pathway, TP. We need only consider
transformation steps that add or rename schema constructs (not ones that delete
schema constructs). At each such step tpi (1 � i � n), we use the current set of
increments and decrements computed so far, to compute a new increment and
decrement for the schema construct being added or renamed by tpi. After considering
the last step tpn, we will have computed a set of increments/decrements for the
constructs of the integrated schema GS.

5.2 Data lineage tracing using schema transformation pathways
As to the problem of data lineage tracing, we give the definitions of affect-set and

origin-set for set semantics and affect-pool and origin-pool for bag semantics in
[FP02], and refer the reader to that paper for details. What we regard as affect-
provenance includes all of the source data that had some influence on the result data.
Origin-provenance is simpler because here we are only interested in the specific data
in the source databases from which the resulting data is extracted.

Our processes for tracing the affect-pool and origin-pool with IQL simple queries
are specified below. As in [CWW00], we use derivation tracing queries to evaluate
the lineage of a tuple t. That is, we apply a query to the source data repository D and
the obtained result is the derivation of t in D. We call such a query the tracing query
for t on D, denoted as TQD(t).

Affect- and Origin-pool for a tuple with IQL simple queries: Let V = q(D) be the bag that results
from applying a simple IQL query q to a source data repository D, consisting of one or more bags.
Then, for any tuple t � V, the tracing queries TQAP

D(t) below give the affect-pool of t in D, and the
tracing queries TQOP

D(t) give the origin-pool of t in D (note that, in some cases, they are identical):
Simple IQL query TQAP

D(t) TQOP
D(t)

D1 ++…++ Dr <[x| x � D1; x = t], …, [x| x � Dr; x = t]>
D1 -- D2 <[x| x � D1; x = t], D2> <[x| x � D1; x = t], [x| x � D2; x = t]>
Group D <[x| x � D; first x = first t]>

sort D <[x| x � D; x = t]>
sortDistinct D <[x| x � D; x = t]>

<[x| x � D; x = t]> (aggFun = “max”| “min”) aggFun D <D> <D> (aggFun = “count”| “sum”| “avg”)
<[x| x � D; x = t]> (aggFun = “max”| “min”) gc aggFun D <[x| x � D; first x = first t]> <[x| x � D; first x = first t]> (aggFun = “count”| “sum”| “avg”)

[x| x � D1; member D2 x] <[x| x � D1; x = t], [x| x � D2; x = t]>
[x| x � D1; not (member D2 x)] <[x| x � D1; x = t], D2> <[x| x � D1; x = t]>

[p| p1 � D1; …; pr � Dr;
c1; …; ck] 3

<[p1| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1; …; ck], …,
[pr| p1 � D1; p1 = t1; …; pr � Dr; pr = tr; c1; …; ck]]>

3 Here, each pattern pi is a sub-pattern of p and all tuples t � V match p. For any t � V, ti is the tuple derived by projecting the
components of pi from t. c1; …; ck are conditions.

 5

For more complex IQL queries, the above formulae can be recursively applied to
the syntactic structure of an IQL query. An alternative (which we discuss in the
Conclusions section) is to decompose a transformation step containing a complex IQL
query into a sequence of transformation steps each containing a simple IQL query.

Other ongoing work within the Automed project is investigating simplification
techniques for transformation pathways, such as removing matching pairs of add and
delete steps for the same construct, and combining pairs of add and rename steps into
a single add step [Tong02]. As a result of such simplification, we assume here that all
the constructs appearing in the integrated schema GS must have been created from the
source schema in one of three ways: (a) by an add transformation; (b) by a rename
transformation; and (c) constructs existing in the source schema and remaining in the
integrated schema GS. Thus, the problem of data lineage falls into three cases (see
[FP02] for details):

(a) If a construct O was created by an add(O, q) transformation, then the lineage of data in O is
located in the constructs that appear in q.

(b) If a construct O was created by a rename(P, O) transformation, then the lineage of data in O is
located in the source construct P.

(c) If a construct O exists in the source schema and remains in the integrated schema, the lineage
of data in the integrated construct O is located in the source construct O.

It is simple to trace data lineage in cases (b) and (c) discussed above. If a construct
O in GS was created by (b) or (c), then the lineage of a tuple t in O are all of the t’s
copies in the source construct which is renamed or remains in GS. In these two cases,
all of data in the construct O is extracted from a source database, and the affect-pool
is equal to the origin-pool.

As to case (a), the key point is how to trace the lineage using the IQL query, q.
We can use the formulae for the tracing queries given earlier to obtain the lineage of
the data created in this case:

We first use two procedures affectPoolOfTuple(t, O) and originPoolOfTuple(t, O) to
trace the affect pool and origin pool of a tuple, where t is the tracing tuple in the extent of
some construct O of the integrated schema (see [FP02] for these procedures). The result
of these procedures, D*, is a bag which contains t’s derivation in the source databases.

We next consider the derivations of a tuple set4 T in the extent of a construct O.
Two procedures affectPoolOfSet(T, O) and originPoolOfSet(T, O) are used to
compute the derivations of a tuple set T = {t1, …, tn} (see [FP02] for these
procedures). In these procedures, we use the procedures affectPoolOfTuple(t, O) and
originPoolOfTuple(t, O) above to trace the derivations of each tuple ti (1 � i � n) in
turn and incrementally add each time the result to D*.

Finally, we give our recursive derivation tracing algorithm for tracing data lineage
using entire transformation pathways, traceAffectPool(TL, OL), in Figure 2 (the
traceOriginPool(TL, OL) algorithm is similar, obtained by replacing “affect” by
“origin” everywhere). TL = T1,…, Tn is a list of tuple sets such that each Ti is
contained in the extension of some integrated schema construct Oi.. OL is the list of
integrated schema constructs O1,…, On. We assume that each schema construct has an
attribute relateTP that refers to the transformation step that created this construct (if O
is remaining from the source schema, then O.relateTP = Ø). Each transformation step
has attributes transfType, query, sourceConstruct and resultConstruct; query is the
query used in the transformation step; transfType is “add” or “rename”; and for an
add transformation, sourceConstruct includes all the schema constructs appearing in
the query.

4 By tuple set we mean a set of tuples, and by tuple bag we mean a bag of tuples.

 6

In procedure traceAffectPool(TL, OL) ,
we compute derivations for each tuple set Ti
in TL one by one using the procedure
affectPoolofSet(Ti, Oi). If the construct Oi
which contains tuple set Ti is created by a
renameConstruct transformation or remains
from a source schema, then the computed
data can be directly extracted from the source
databases. If Oi is created by an add(Oi, q)
transformation, the constructs in query q may
have been created by the earlier part of the
transformation pathway, and the computed
data needs to be extracted from these
constructs. Therefore, we call procedure
traceAffectPool recursively while the
relateTP of the construct is “add”.

D* � D* +
 not (member D* x)];

return (D*);
end

procedure traceAffectPool(TL, OL)
input: a list of tuple sets TL = T1, …, Tn; the

list of corresponding constructs OL =
O1,…, On in the integrated schema;

output: T’s affect pool in the source schema
begin

D* � Ø;
for i = 1 to n do {

temp � affectPoolofSet(Ti, Oi);
if (Ti.relateTP.transfType = “add”)

 temp � traceAffectPool(temp,
Ti.relateTP.sourceConstruct)
;
+ [x| x � temp;

}

Figure 2: Affect-Pool Tracing Procedure for
entire transformation pathways

6. Contributions of the work so far and future work
We have presented formulae for incrementally maintaining views defined using

simple IQL queries and have discussed how the Automed transformation pathways
can be used for incremental view maintenance. We have also presented formulae for
tracing the affect-pool and the origin-pool for a tuple derived from simple IQL queries
and described how the Automed transformation pathways can be used for this
problem also. The problems of incremental view maintenance and data lineage and
their solutions presented here have led to a number of areas of future work, which we
expect to carry out roughly in this order during the remainder of the PhD (2.5 years):

1) Implementing our lineage tracing and view maintenance algorithms. As a part of the
Automed project, we will implement our algorithms in Java over the Automed repository
and API [BT01, Auto].

2) Handling more complex IQL queries appearing in transformation pathways. We will
derive techniques for decomposing complex IQL queries appearing in single a
transformation step into a sequence of transformation steps each accompanied by a
single simple query, so that our techniques for simple queries can be applied.

3) Extending the lineage tracing and view maintenance algorithms to a more expressive
transformation language. [Pou01b] extends the Automed transformation language
with parametrised procedures and iteration and conditional constructs, and we plan to
extend our algorithms to this more expressive transformation language.

4) Combining our approach for tracing data lineage with the problem of incremental
view maintenance. We plan to explore the relationship between our lineage tracing
and view maintenance algorithms, to determine if an integrated approach can be
adopted for both.

5) Apply and evaluate our techniques for incremental view maintenance and data
lineage tracing in the area of genomic data warehouses, in collaboration with an
ongoing Bioinformatics project at Birkbeck, UCL and EBI ("Structural and
Functional Annotation of Genomes through Synchronised Data Warehouses").

References

[AASY97] D. Agrawal, A. Abbadi, A. Singh and T. Yurek. Efficient view maintenance at data warehouses. In

ACM’97, pages 417-427, May, 1997.
[Alb91] J. Albert. Algebraic properties of bag data types. In VLDB’91, pages 211-219, 1991.
[Auto] http://www.doc.ic.ac.uk/automed/resources/ apidocs/index.html

 7

http://www.doc.ic.ac.uk/automed/resources/ apidocs/index.html

[BKT01] P. Buneman, S. Khanna and W. Tan. Why and Where: a characterization of data provenance. In
ICDT’01, LNCS 1973, pp. 316-330, Springer-Verlag, Berlin Heidelberg, 2001.

[BLT86] J. A. Blakeley, P. Larson and F. Tompa. Efficiently updating maintenance views. In SIGMOD’86,
pages 61-71, June, 1986.

[BT01] M. Boyd and N. Tong. The Automed repositories and API. Automed Technical Report. August 2001.
http://www.doc.ic.ac.uk/automed/techreports/automed_repository.ps

[CGL+96] L. Colby, T. Griffin, L. Libkin, I. Mumick and H. Trickey. Algorithms for deferred view maintenance.
In SIGMOD’96, pages 469-480, June, 1996.

[CW00] Y. Cui and J. Widom. Storing auxiliary data for efficient maintenance and lineage tracing of complex
views. In DMDW’00, Stockholm, Sweden, June 2000.

[CWW00] Y. Cui, J. Widom and J.L. Wiener. Tracing the lineage of view data in a warehousing environment. In
ACM Transactions on Database Systems, June 2000.

[Dong99] G. Dong. Incremental maintenance of recursive views: a surevy. In A. Gupta and I. S. Mumick, editors,
Materialized Views Techniques, Implementations, and Applications, The MIP Press, pages 159-162, 1999.

[FP02] H. Fan and A. Poulovassilis. Tracing data lineage using Automed schema transformation pathways.
Automed Technical Report, April 2002. http://www.dcs.bbk.ac.uk/~hao/publications/DLSTP.pdf

[GL95] T. Griffin and L. Libkin, Incremental maintenance of views with duplicates. In SIGMOD’95, pages
328-339, May 1995.

[GM95] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, Techniques, and
Applications. In IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Data
Warehousing, 18(2): 3-18, June, 1995

[GMS93] A. Gupta, I. S. Mumick and V. Subrahmanian. Maintaining views incrementally. In SIGMOD’93,
Washington, DC, May 26-28 1993.

[KR02] A. Koeller and E. A. Rundensteiner. Incremental maintenance of schema-restructuring views. In
EDBT’02, LNCS 2287, pages 354-367, Spring-Verlag Berlin Heidelberg 2002.

[LSS01] L. Lakshmanan, F. Sadri and S. Subramanian. SchemaSQL – an extension to SQL for multi-database
interoperability. In ACM TODS, Vol. 26, No. 4 pages 476-519, December, 2001.

[MP99a] P.J. McBrien and A. Poulovassilis. Automatic migration and wrapping of database applications – a
schema transformation approach. In proc. ER’99, Volume 1728 of LNCS, pages 96 – 113. Springer-
Verlag, 1999.

[MP99b] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In CAiSE’99,
volume 1626 of LNCS, pages 333-348. Springer-Verlag, 1999.

[MP02a] P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database architectures, a schema
transformation approach. In CaiSE’02, volume TBC, Springer-Verlag LNCS, 2002.

[MP02b] P.McBrien and A.Poulovassilis. Data Integration by Bi-Directional Schema Transformation Rules,
Automed Technical Report, February 2002. http://www.dcs.bbk.ac.uk/~ap/pubs/BAVTechRep.ps

[MS01] G. Moro and C. Sartori. Incremental maintenance of multi-source views. In Proceedings of the 12th
Australasian Database Cinference (ACD’01), 2001.

[PM98] A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation. Data and
Knowledge Engineering, 28(1): 47-71, 1998.

[Pou01a] A. Poulovassilis. The Automed Intermediate Query Language. Automed Working Document 2. June
2001. http://www.doc.ic.ac.uk/automed/techreports/query_language.ps

[Pou01b] A. Poulovassilis. An enhanced transformation language for the HDM. Automed Working Document
4. Technical Report, Birkbeck College, University of London, July 2001.
http://www.doc.ic.ac.uk/automed/techreports/enhanced_transformation_language.ps

[QGM+96] D. Quass, A. Gupta, I. Mumick and J. Widom. Making views self-maintainable for data warehousing.
In Proceedings of the 4th International Conference on Parallel and Distributed Information Systems
(PDIS), pages 158-169, December 1996.

[Qua96] D. Quass, Maintenance Expressions for Views with Aggregation. In VIEWS’96. pages 110-118, June 1996.
[Tong02] N. Tong. Database schema transformation optimisation techniques for the Automed system. Automed

Technical Report, March 2002.
[WS97] A. Woodruff and M. Stonebraker. Supporting fine-grained data lineage in a database visualization

environment. In ICDE’97, pages 91-102, 1997.
[ZGH+95] Y. Zhuge, H. Garcia-Molina, J. Hammer and J. Widom. View maintenance in a warehousing

environment. In SIGMOD’95, pages 316-327, May 1995.
[ZGW96] Y. Zhuge, H. Garcia-Molina and J. Wiener. The strobe algorithms for multi-source warehouse

consistency. In PDIS’96, IEEE Computer Society, December 1996.

 8

http://www.doc.ic.ac.uk/automed/techreports/automed_repository.ps
http://www.dcs.bbk.ac.uk/~hao/publications/DLSTP.pdf
http://www.dcs.bbk.ac.uk/~ap/pubs/BAVTechRep.ps
http://www.doc.ic.ac.uk/automed/techreports/query_language.ps
http://www.doc.ic.ac.uk/automed/techreports/enhanced_transformation_language.ps

	References

