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Abstract

This technical report describes the XML data integration framework being built within the AutoMed
heterogeneous data integration system. It presents a description of the overall framework, as well as an
overview of and comparison with related work and solutions by other researchers. The contributions
of this research are the development of two algorithms for XML data integration, the first for schema
integration and the second for view materialization, both based on graph restructuring.

1 Introduction

In the past ten years, the Internet and the World Wide Web have become an important part of everyday
life. However, the Web still receives a limited amount of help from computers. Computers are effective
in low-level operations, such as handling large amounts of data, search facilities, and transmitting and
displaying data, but lack functionality in more sophisticated tasks, such as the ones envisaged in the
Semantic Web vision [3]. To remedy this, data has to be put on the Web in a form that machines can
understand, or convert it into that form, then provide the machines with the means to process it.

XML is the first step towards this end. It is a markup language designed to structure and transmit
data in an easy to manipulate form, but it is not the total solution - it does not do anything by itself.
The second step consists of logic inference tools and tools that automate specific tasks which have been
manual up to now. These tools involve the combination of XML with RDF and ontologies so as to enable
computers to provide high-level services by communicating with other web services and applications.
Other tools are concerned with automating tasks that are up to now expensive and time-consuming,
as they require the development of new programs every time. Such tasks include importing/exporting
data from/to XML files, automatic schema matching and migrating and integrating XML data.

Apart from the research issues concerning the Semantic Web, the advent of XML as a new data
format has given rise to new research issues. Efficient storing of XML data has resulted in the evolution
of commercial relational databases to support importing and exporting of XML data and also the
development of native XML database products. The need for efficient querying of XML data has led
to the development of various query languages for XML, subsumed now by the XPath [31] and XQuery
[34] languages. Moreover, well-studied research issues concerning mostly the relational domain need to
be redefined in XML, in order to find domain-specific solutions. At present, there is a lot of research
effort on developing XML-specific solutions for the schema matching and data integration problems.

This report describes a framework for XML data integration within the AutoMed heterogeneous
data integration system. It presents the basis for this framework, which is a new schema definition
language for XML data, and a technique for assigning unique identifiers to XML elements. Two new
algorithms have been developed which perform schema integration and view materialization, respec-
tively. The report also discusses related work and compares the work presented here with the work of
other researchers.

Report outline: Section 2.1 provides an overview of the AutoMed system, as well as the AutoMed
approach to data integration. Section 2.2 presents the schema definition language used for XML data,
specifies the representation of the language in terms of AutoMed’s Common Data Model and presents
the unique identifiers used in our framework. Section 3 presents the schema transformation and the
view materialization algorithms and describes the query engine and wrapper architecture. Section 4
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reviews related work and compares it with the work presented here. Finally, Section 5 gives some
concluding remarks on the framework together with plans for future work.

2 The XML Data Integration Framework

2.1 Overview of AutoMed

The AutoMed heterogeneous data integration system supports a schema-transformation approach to
data integration. Figure 1 shows the general integration scenario. Each data source is described by
a data source schema, denoted by LSi. Each LSi is transformed into a union-compatible schema
USi by a series of reversible primitive transformations, thereby creating a transformation pathway
between a data source schema and its respective union-compatible schema. All the union schemas1

are syntactically identical and this is asserted by a series of id transformations between each pair
USi and USi+1 of union schemas. id is a special type of primitive transformation that ‘matches’ two
syntactically identical constructs in two different union schemas, signifying their semantic equivalence.
The transformation pathway containing these id transformations can be automatically generated. An
arbitrary one of the union schemas can then be designated as the global schema GS, or selected for
further transformation into a new schema that will become the global schema.

Figure 1: The AutoMed integration approach

The transformation of a data source schema into a union schema is accomplished by applying a
series of primitive transformations, each making a ‘delta’ change to the current schema by either adding,
deleting or renaming one schema construct. Each add and delete transformation is accompanied by
a query specifying the extent of the newly added or deleted construct in terms of the other schema
constructs. This query is expressed in AutoMed’s Intermediate Query Language, IQL [23, 12]. The
result is a sequence of intermediate schemas, connecting each data source schema to its respective
union schema. The query supplied with a primitive transformation defines the new or removed schema
construct in terms of the other schema constructs, and thus provides the necessary information to make
primitive transformations automatically reversible [17]. This means that AutoMed is a both-as-view
(BAV) data integration system [21]. It subsumes the LAV and GAV approaches, as it is possible to
extract a definition of the global schema as a view over the data source schemas, and it is also possible
to extract definitions of the data source schemas as views over the global schema.

In Figure 1, each USi may contain information that cannot be derived from the corresponding LSi.
These constructs are not inserted in the USi through an add transformation, but rather through an
extend transformation. This takes a pair of queries that specify a lower and an upper bound on the
extent of the new construct. The lower bound may be Void and the upper bound may be Any, which
respectively indicate no known information about the lower or upper bound of the extent of the new
construct. There may also be information present in a data source schema LSi that should not be
present within the corresponding USi, and this is removed with a contract transformation, rather

1Henceforth we use the term ‘union schema’ to mean ‘union-compatible schema’.
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than with a delete transformation. Like extend, contract takes a pair of queries specifying a lower
and upper bound on the extent of the deleted construct.

Figure 2 shows the AutoMed integration approach in an XML setting. Each XML data source is de-
scribed by an XML DataSource Schema (a simple schema definition language presented in Section 2.2),
Si, and is transformed into an intermediate schema, S

′
i , by means of a series of primitive transforma-

tions that insert, remove, or rename schema constructs. The union schemas USi are then automatically
produced, and they extend each S

′
i with the constructs of the rest of the intermediate schemas. After

that, the id transformation pathways between each pair USi and USi+1 of union schemas are also auto-
matically produced. Our XML integration framework supports both top-down and bottom-up schema
integration. With the top-down approach, described in Section 3.1.1, the global schema is predefined,
and the data source schemas are restructured to match its structure. With the bottom-up approach,
described in Section 3.1.2, the global schema is not predefined and is automatically generated.
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Figure 2: XML integration in AutoMed
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2.2 A Schema for Representing XML Data Sources

XML files may or may not have a DTD [30] or XML Schema [32] associated with them. These are
complex grammars to which the file must conform. In a data integration setting, a schema definition
language this complex is not necessary. However, the file’s structure is crucial for schema and data
integration and in optimizing the query processing algorithms. Also, it is possible that the XML file has
no referenced DTD or XML Schema. For these reasons, we introduce the XML DataSource Schema,
which is automatically derivable from an XML file, and abstracts only its structure.

To obtain an XML file’s DataSource Schema, we copy the file’s DOM representation (see [33]) into
memory, then we modify it to become the DataSource Schema, as specified by the following algorithm:

1. Get the root R. If it has child nodes, get its list of children, L.

(a) Get the first node in L, N . For every other node N ′ in L that has the same tag as N do:
• Copy any of the attributes of N ′ not present in N to N .
• Make a ‘deep’ copy of the list of children of N’ and append them to the list of children

of N . ‘Deep’ means that the copy contains the whole tree whose root is the copied node.
• Delete N ′ and its subtree.

(b) Get the next child from L and process it in the same way as the first child, N , in step (a).

2. R now has a new list of children Lnew. Apply step (1) for every node Nnew in Lnew.

AutoMed has as its Common Data Model a Hypergraph Data Model (HDM) [24]. This is a low-level
data model that can represent higher-level modelling languages such as ER, relational, object-oriented
and XML [18, 19]. HDM schemas consist of nodes, edges and constraints. Constructs of higher-level
schemas are identified by their scheme (see below). The selection of a low-level common data model for
AutoMed was intentional, so as to be able to better represent high-level modelling languages without
semantic mismatches or ambiguities.

Higher Level Construct Equivalent HDM Representation
Construct element Node 〈〈xml : e〉〉
Class nodal
Scheme 〈〈e〉〉
Construct attribute Node 〈〈xml : e : a〉〉
Class nodal-linking, constraint Edge 〈〈 , xml : e, xml : e : a〉〉

Links 〈〈xml : e〉〉
Scheme 〈〈e, a〉〉 Cons makeCard(〈〈 , xml : e, xml : e : a〉〉, 0 : 1, 1 : N)
Construct nest-list Edge 〈〈xml : i, ep, xml : ec〉〉
Class linking, constraint Cons makeCard(〈〈xml : i, ep, xml : ec〉〉, 0 : N, 1 : 1)
Scheme 〈〈ep, ec, i〉〉
Construct pcdata Node 〈〈xml : pcdata〉〉
Class nodal
Scheme 〈〈pcdata〉〉

Table 1: XML DataSource Schema representation in terms of HDM

Table 1 shows the representation of XML DataSource Schema constructs in terms of the HDM.
XML DataSource Schemas consist of four constructs:

1. An element e can exist by itself and is a nodal construct. It is represented by the scheme 〈〈e〉〉.
2. An attribute a belonging to element e is a nodal-linking construct. In terms of the HDM this

means that an attribute is represented by a node representing the attribute with scheme 〈〈xml : e :
a〉〉, an edge linking the attribute node to its owner element with scheme 〈〈 , xml : e, xml : e : a〉〉,
and a cardinality constraint that states that an instance of e can have at most one instance of a
associated with it, while an instance of a can be associated with one or more instances of e.

3. The parent-child relationship between two elements ep and ec is a linking construct with scheme
〈〈ep, ec, i〉〉, where i is the order of ec in the list of children of ep. In terms of the HDM, this
is represented by an edge between ep and ec and a cardinality constraint that states that each
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instance of ep is associated with 0 or more instances of ec, while an instance of ec is associated
with precisely one instance of ep.

4. Text in XML is represented by the PCData construct. This is a nodal construct with scheme
〈〈pcdata〉〉. In any schema, there is only one PCData construct. To link the PCData construct
with an element we treat it as an element and use the nest-list construct.

Note that this is somewhat different from the XML schema language given in [19]. In our model
here, we make specific the ordering of children elements under a common parent in XML DataSource
Schemas whereas this was not captured by the model in [19]. Also, in that paper it was assumed that
the extents of schema constructs are sets and therefore extra constructs ‘order’ and ‘nest-set’ were
required, to respectively represent the ordering of children nodes under parent nodes, and parent-child
relationships where ordering is not significant. Here, we make use of the fact that IQL is inherently
list-based, and thus use only one nest-list construct. The nth child of a parent node can be specified
by means of a query specifying the corresponding nest-list, and the requested node will be the nth item
in the IQL result list.

After a modelling language has been defined in terms of HDM via the API of AutoMed’s Model
Definition Repository [4], a set of primitive transformations is automatically available for the trans-
formation of the schemas defined in the language. The XML DataSource Schema definition language
consists of four different constructs, namely element, attribute, nest-list and pcdata. The available
transformations on XML DataSource Schemas are shown in Table 2. The lowerBound and upperBound
parameters in the extend and contract transformations are queries that partially specify the extent
of the construct being inserted/removed.

Insert primitive transformations
addElem(schema, elemNode, query) extendElem(schema, elemNode, lowerBound, upperBound)
addAttr(schema, elemNode, attNode, query) extendAttr(schema, elemNode, attNode,

lowerBound, upperBound)
addPCData(schema, query) extendPCData(schema)
addList(schema, parent, child, position, query) extendList(schema, parent, child, position,

lowerBound, upperBound)
Remove primitive transformations

deleteElem(schema, elemNode, query) contractElem(schema, elemNode, lowerBound, upperBound)
deleteAttr(schema, elemNode, attNode, query) contractAttr(schema, elemNode, attNode,

lowerBound, upperBound)
deletePCData(schema, query) contractPCData(schema)
deleteList(schema, parent, child, query) contractList(schema, parent, child, position

lowerBound, upperBound)
Rename primitive transformations

renameElem(schema, elemNode, newName) renameAttr(schema, elemNode, attrNode, newName)
renameList(schema, nestList, position)

Table 2: XML primitive transformations

XML DataSource Schemas are very similar to DataGuides. According to [9], the benefit of having
a DataGuide is threefold: define data structure, help users understand the structure of the database
and form queries over it and help the query processor devise efficient query plans for computing query
results. XML DataSource Schema also fulfills these aims. The main reason for creating a new schema
definition language is simplicity: DataGuides are OEM graphs, whereas XML DataSource Schemas
are trees. This means that they are very easy to parse, traverse and manipulate. A more detailed
comparison between XML DataSource Schemas and DataGuides is given in Section 2.2.1.

A problem when dealing with XML DataSource Schema is that multiple XML elements can have
the same name. The problem is amplified when dealing with multiple files, as in our case. To resolve
such ambiguities, a new unique identifiers assignment technique had to be implemented. For XML
DataSource Schemas, the assignment technique is 〈schemaName〉:〈elementName〉 :〈count〉, where
〈schemaName〉 is the name of the DataSource Schema as defined in the AutoMed repository and
〈count〉 is a counter incremented every time the same 〈elementName〉 is encountered, in a depth-first
traversal of the Schema. Attributes are then identified as 〈elementUID〉:〈attributeName〉.
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Figure 3: Two different XML files conforming to the same XML DataSource Schema.

In order to capture node identity in XML data, we use a similar technique: the unique identifiers
for nodes are of the form 〈schemaName〉: 〈elementName〉:〈count〉:〈instance〉 where 〈instance〉 is a
counter incremented every time a new instance of the corresponding schema element is encountered.

2.2.1 XML DataSource Schema vs. DataGuides

The concept of XML DataSource Schema is very similar to DataGuides. According to [9], the benefit
of having a DataGuide is threefold: define the structure of the data, enable users to understand the
structure of the database and form meaningful queries over it and help the query processor devise effi-
cient query plans for computing query results. Looking at these aims, we can see that XML DataSource
Schema also fulfills them. The main reason for creating a new schema definition language is simplicity:
DataGuides are OEM graphs, whereas XML DataSource Schemas are XML trees. This means that
they are very easy to parse, traverse and manipulate.

A difference between the two types of schemas is that a source can have many DataGuides, but only
one XML DataSource Schema. On the other hand, both types of schemas may correspond to more
than one data sources. For example, the sources in Figure 3 have the same XML DataSource Schema,
shown in the upper right corner, even though they are not the same.

Another difference between XML DataSource Schemas and DataGuides is the way they handle
the ordering of child elements. In [10], the authors define the problem and suggest three different
approaches. XML DataSource Schema does not use any of these techniques, as it does not try to solve
the ordering problem. The reason for this is that XML DataSource Schema is used only for single files,
contrary to DataGuides. Of course, even in single files there is the issue of an element having the same
child elements with different ordering in different instances. Consider the following case:

<W>
<X><A><B/><C/></A></X>
<X><A><C/><B/></A></X>

</W>

Even in this case, there is no need to try and find the best ordering possible. The fact that an
element does not present a specific policy on its children’s ordering, means that there isn’t one, so there
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is no reason to try and enforce one. This also agrees with the XML Schema specification, which either
enforces a strict ordering policy, or none at all.

One thing that will probably be added to the algorithm producing the XML DataSource Schema is
the ability to preserve a file’s ordering policy, if there is one, even in the presence of optional elements.
Consider the following example:

<W>
<X><A/><C/></X>
<X><A/><B/><C/></X>

</W>

This shows that a possible scenario is that the file has an ordering policy, namely first element A,
then B, then C, but B is optional. The algorithm, if not changed, will create the following schema:

<W>
<X><A/><C/><B/></X>

</W>

Of course, this could be very easily detected if the file references an XML Schema. This is a topic
for future work, as discussed in section 5.

3 Framework Components

The main aim of our research is to develop semi-automatic methods for generating the schema trans-
formation pathways shown in Figure 2. This includes two aspects: first, the matching of individual
elements, also known as schema matching [15, 25], using for example data mining techniques, or se-
mantic mappings to ontologies. Both approaches can be used to automatically generate fragments
of AutoMed transformation pathways - see for example [27]. Next, graph restructuring is applied to
restructure the heterogeneous XML DataSource Schemas into a uniform structure.

Once the semantic equivalences between schema constructs have been identified with schema match-
ing, our framework integrates the data source schemas by transforming each one into its respective union
schema (see Figure 2). This schema transformation process is accomplished by an algorithm that au-
tomatically creates the transformation pathway from a data source schema to its corresponding union
schema. The algorithm, described in Section 3.1, is based on the restructuring of XML DataSource
Schemas. Once several sources have been integrated under a virtual global schema, this can be used
for querying the data sources via the XMLWrapper, as described in Section 3.2, or for materializing the
data from one or more data sources. This view materialization algorithm is described in Section 3.3.

3.1 Schema Transformation Algorithm

The schema transformation algorithm can be applied in two ways: top-down, where there is a global
schema and the schemas of the data sources are transformed into the global schema, regardless of any
loss of information; or bottom-up, where there is no global schema and the data of all the data sources
are preserved. Both approaches create the transformation pathways that produce intermediate schemas
with identical structure. These schemas are then automatically transformed into the union schemas USi

of Figure 1, including the id transformation pathways between them. The transformation pathway from
one of the USi to GS can then be produced in one of two ways: either automatically, using ‘append’
semantics, or semi-automatically, in which case the queries supplied with the transformations that
specify the integration policy need to be supplied by the user. By ‘append’ semantics we mean that
that the lists containing the extents of the constructs of GS are created by appending the corresponding
constructs of US1, US2, . . . , USn in turn. Thus, if the XML data sources were integrated in a different
order, the extent of each construct of GS would contain the same instances, but their ordering would
be different.

3.1.1 Top-down approach

Consider a setting where a global schema GS is given, and the data source schemas need to be conformed
to it, without necessarily preserving their information capacity. Our algorithm works in two phases.
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In the growing phase, the global schema GS is traversed and every construct not present in a data
source schema Si is inserted. In the shrinking phase, each schema Si is traversed and any construct
not present in the global schema is removed. These two phases represent the fact that first the source
schemas are augmented with constructs from the global schema, then they are reduced by removing
the redundant constructs. However, some removals also occur in the first phase. This is in order to
reduce the cost of the traversal of the schemas: if a necessary removal is detected in the first phase, it
is cheaper to issue the transformation at that stage than detect it again in the second phase.

The algorithm to transform an XML Datasource Schema S2 to have the same structure as an
XML Datasource Schema S1 is described as follows. This algorithm considers an element in S1 to be
equivalent to an element in S2 if they have the same element name. As specified below, the algorithm
assumes that element names in both S1 and S2 are unique. We discuss shortly the necessary extensions
to cater for cases when this does not hold.

• Growing phase: consider every element E in S1 in a depth first order.

1. If E does not exist in S2:
(a) Search the attributes in S2 to find one whose name is the same as the name of E in S1

i. If such an attribute a is found, add E with the extent of a and add an edge from the
element in S1 equivalent to owner(a, S2) to E. Then, insert the attributes of E from
schema S1 as attributes to the newly inserted element E in S2 with add or extend
transformations, depending on if it is possible to describe the extent of an attribute
using the rest of the constructs of S2. Then, delete a. This situation is illustrated
in case 1 in Figure 4.

ii. Otherwise, insert E with an extend transformation. Then find the equivalent element
of parent(E, S1) in S2 and add an edge from it to E with an extend transforma-
tion. Next, insert the attributes of E from S1 with add or extend transformations,
depending on if it is possible to describe the extent of an attribute using the rest of
the constructs of S2 (case 2 in Figure 4).

(b) If E is linked to the PCData construct in S1:
i. If S2 does not contain the PCData construct, insert it with an extend transformation.
ii. Insert an edge from E to the PCData construct. The transformation is an add, if E

was inserted with an add transformation and there was already a PCData construct
in S2 before the application of the algorithm. In any other case, the transformation
is an extend.

2. If E exists in S2 and parent(E, S1) = parent(E, S2) (case 3 in Figure 4):
(a) If E in S1 has attributes that E in S2 does not contain, insert them with add or extend

transformations, depending on if it is possible to describe their extents using other con-
structs of S2.

(b) If E is linked to the PCData construct in S1 and there was already a PCData construct in
S2 before the application of the algorithm, add an edge from E to the PCData construct,
otherwise extend the edge.

3. If E exists in S2 and parent(E, S1) 6= parent(E, S2):
(a) Insert an edge from EP to E, where EP is the equivalent element of parent(E, S1) in

S2. This insertion can either be an add or an extend transformation, depending on
the path from EP to E. The algorithm finds the shortest path from EP to E, and, if
it includes only parent-to-child edges, then the transformation is an add, otherwise it
is an extend. To explain this, suppose that the path contains at some point an edge
(B, A), where actually, in S2, element A is the parent of element B. It may be the case
that in the data source of S2, there are some instances of A that do not have instances
of B as children. This means that, when migrating data from the data source of S2 to
schema S1, some data will be lost, specifically those A instances without any B children.
To remedy this, the extend transformation is issued with both a lower bound and an
upper bound query. The lower bound query retrieves the actual data from the data
source of S2, but perhaps losing some data because of the problem just described. The
upper bound query retrieves all the data that the lower bound query retrieves, but also
generates new instances of B (with unique IDs) that are needed in order to preserve the
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instances of A that the lower bound query was not able to. Because such behavior may
not always be desired, the user has the option of telling the algorithm to just use Any as
the upper bound query in such cases. In Figure 4, case 4 illustrates a situation where
the edge from EP to E is inserted with an add transformation, whereas in cases 5 and
6 it is inserted with an extend transformation. Case 6 in particular represents an edge
‘flip’.

• Shrinking phase: traverse S2 and remove any constructs not present in S1. The transformation
is a delete or a contract one, depending on whether it is possible to describe the extent of the
construct with the remaining constructs of the schema, or not, respectively.
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Figure 4: Example cases for the schema transformation algorithm.

The algorithm presented above assumes that element names in both S1 and S2 are unique. In
general, this may not be the case and we may have (a) multiple occurrences of an element name in
S2 and a single occurrence in S1, or (b) multiple occurrences of an element name in S1 and a single
occurrence in S2, or (c) multiple occurrences of an element name in both S1 and S2.

For case (a), suppose that in S2 there are three elements S2:employees:1, S2:employees:2, S2:employees:3,
and in S1 there is a single element S1:employees:1. The algorithm then needs to generate a query that
constructs the extent of the single element in S1 by combining the extents of all three elements from
S2.

For case (b), suppose that in S2 there is a single element S2:employees:1 while in S1 there are three
elements S1:employees:1, S1:employees:2, S2:employees:3. Then the algorithm needs to make a choice
of which of these elements to migrate the extent of S2:employees:1 to. For this, a heuristic can be
applied which favours (i) paths with the fewest extend steps, and (ii) the shortest of such paths.

For case (c), suppose that in S2 there are three elements S2:employees:1, S2:employees:2, S2:employees:3,
and in S1 there are also three elements S1:employees:1, S1:employees:2, S2:employees:3. Then a com-
bination of the solutions for (a) and (b) needs to be applied.
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Case 1
g1: addElem(S2, 〈〈B : 1〉〉, [{b}|{b} ← 〈〈A : B〉〉])
g2: addList(S2, 〈〈A〉〉, 〈〈B, 〉〉, 2, [{a, b, 2}|{a, b} ← 〈〈A, A : B〉〉])
g3: addAttr(S2, 〈〈B〉〉, 〈〈B : F 〉〉, [{f}|{f} ← 〈〈F 〉〉])
g4: extendAttr(S2, 〈〈B〉〉, 〈〈B : G〉〉, V oid, upperBound)
g5: deleteAttr(S2, 〈〈A〉〉, 〈〈A : B〉〉, [{b}|{b} ← 〈〈B〉〉])
s1: contractList(S2, 〈〈C〉〉, 〈〈F 〉〉, 1, [{c, f, 1}|{c, f, o} ← 〈〈C, F, 1〉〉], upperBound)
s2: deleteElem(S2, 〈〈F 〉〉, [{f}|{f} ← 〈〈B : F 〉〉])

Case 2
g1: extendElem(S2, 〈〈B〉〉, V oid, upperBound)
g2: extendList(S2, 〈〈A〉〉, 〈〈B〉〉, 2, V oid, upperBound)
g3: addAttr(S2, 〈〈B〉〉, 〈〈B : F 〉〉, [{f}|{f} ← 〈〈F 〉〉])
g4: extendAttr(S2, 〈〈B〉〉, 〈〈B : G〉〉, V oid, upperBound)
s1: contractList(S2, 〈〈C〉〉, 〈〈F 〉〉, 1, [{c, f, 1}|{c, f, o} ← 〈〈C, F, 1〉〉], upperBound)
s2: deleteElem(S2, 〈〈F 〉〉, [{f}|{f} ← 〈〈B : F 〉〉])

Case 3
g1: extendAttr(S2, 〈〈B〉〉, 〈〈B : E〉〉, V oid, upperBound)

Case 4
g1: addList(S2, 〈〈A〉〉, 〈〈B〉〉, 2, [{a, b, 2}|{a, c, o1} ← 〈〈A,C, 1〉〉; {c, b, o2} ← 〈〈C, B, 1〉〉])
s1: contractList(S2, 〈〈A,C, 1〉〉, [{a, c, 1}|{a, c, o} ← 〈〈A,C, 1〉〉], upperBound)
s2: contractList(S2, 〈〈,C, B, 1〉〉, [{c, b, 1}|{c, b, o} ← 〈〈C,B, 1〉〉], upperBound)
s3: contractElem(S2, 〈〈C〉〉, V oid, upperBound)
s4: renameList(S2, 〈〈A,B, 2〉〉, 1)

Case 5
g1: extendList(S2, 〈〈A〉〉, 〈〈B〉〉, 1, [{a, b, 1}|{a, r, o1} ← 〈〈r,A, 1〉〉;

{r, b, o2} ← 〈〈r,B, 2〉〉], upperBound)
s1: deleteList(S2, 〈〈r〉〉, 〈〈B〉〉, 2, [{r, b, 2}|{r, a, o1} ← 〈〈r,A, 1〉〉; {a, b, o2} ← 〈〈A,B, 1〉〉])

Case 6
g1: addList(S2, 〈〈r〉〉, 〈〈B〉〉, 2, [{r, b, 2}|{r, a, o1} ← 〈〈r,A, 1〉〉; {a, b, o2} ← 〈〈A,B, 1〉〉])
g2: extendList(S2, 〈〈B〉〉, 〈〈A〉〉, 1, [{b, a, 1}|{a, b, o} ← 〈〈A,B, 1〉〉], upperBound)
s1: deleteList(S2, 〈〈A〉〉, 〈〈B〉〉, 1, [{a, b, 1}|{b, a, o} ← 〈〈B, A, 1〉〉])
s2: renameList(S2, 〈〈r,B, 2〉〉, 1)

Table 3: Transformations for Figure 4.

3.1.2 Bottom-up approach

In this approach, a global schema GS is not present and is produced automatically from the source
schemas, without loss of information. In order to integrate the data sources, a slightly different version
of the schema transformation algorithm is applied to the data source schemas in a pairwise fashion,
in order to derive each one’s union-compatible schema (Figure 5). The data source schemas LSi are
transformed into intermediate schemas, ISi, so that they have the same structure. Then, the union
schemas, USi, are produced along with the id transformations.

To start with, the intermediate schema of the first data source schema is itself, LS1 = IS1
1 . Then,

the schema transformation algorithm is employed on IS1
1 and LS2 (see annotation 1 in Figure 5) The

algorithm augments IS1
1 with the constructs from LS2 it does not contain. It also restructures LS2 to

match the structure of IS1
1 , also augmenting it with the constructs from IS1

1 it does not contain. As
a result, IS1

1 is transformed to IS2
1 , while LS2 is transformed to IS1

2 . The same process is performed
between IS1

2 and LS3, resulting in the creation of IS2
2 and IS1

3 (annotation 2). The algorithm is
then applied between IS2

1 and IS2
2 , resulting only in the creation of IS3

1 , since this time IS2
1 does

not have any constructs IS2
2 does not contain (annotation 3). The remaining intermediate schemas

are generated in the same manner: to produce schema ISi, the schema transformation algorithm is
employed on IS1

i−1 and LSi, resulting in the creation of IS2
i−1 and IS1

i ; all other intermediate schemas
except IS2

i−1 and IS1
i are then extended with the constructs of LSi they do not contain. Finally, we

automatically generate the union schemas, USi, the id transformations between them, and the global
schema by applying append semantics. The bottom-up integration of the data sources of Figure 2 is
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shown in Figure 6.

3.2 Querying XML Files

After the generation of transformation pathways by either top-down or bottom-up integration, queries
posed on the global schema can now be evaluated. A query sent to AutoMed’s query engine is first
processed by the query processor, which is responsible for reformulating the input query into queries
suitable for the data sources. This is accomplished by following the reverse transformation pathways
from the global schema to the data source schemas. Each time a delete transformation is encountered,
the query processor replaces any occurrences of the deleted scheme by the query supplied with the
delete transformation. As a result, the original query is turned into a query with multiple branches,
each one suitable for each data source - see [23]. Note that, for the moment, querying of XML files is
performed by DOM traversal. Future plans include XPath and XQuery support.

AutoMed’s query engine and wrapper architecture are displayed in Figure 7. The AutoMedWrap-
perFactory and AutoMedWrapper classes are abstract classes providing some implementation, while the
the XMLWrapperFactory and XMLWrapper classes implement the remaining abstract methods. Factories
deal with model specific aspects, like primary keys for relational databases. The XMLWrapperFactory
class contains a validating switch. When it is on, the parsing of the XML file the XMLWrapper object
is attached to is performed by consulting the DTD or XML Schema the file references. A number of
switches, such as a switch for collapsing whitespace, will be added in the future. As Figure 7 suggests,
the whole architecture is extensible with wrappers for new data source models.

3.3 View Materialization Strategy

After the creation of the transformation pathways between the data source schemas and the global
schema, there exists a direct connection between the data residing in the data sources and GS, through
the transformation pathways and the queries they contain. Our framework provides an algorithm that
can materialize GS into a new XML file. The algorithm traverses GS in a depth-first fashion, and
obtains the necessary data by evaluating the individual schema constructs of GS as global queries. An
issue that arises during this process is to determine the correct parent-child relationships, so that the
resulting XML file precisely reflects the integration semantics. Our algorithm uses the edge constructs
and schema- and instance-level unique IDs for this purpose. After materializing a schema element, EP

say, the algorithm retrieves the edge schema constructs that have EP as the parent node. It retrieves
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the extent of each of these constructs in turn, and inserts the children instances under the appropriate
parent instances of EP , as indicated by the instance-level unique IDs.

4 Related Work

There has been a lot of research effort concentrated on solving issues concerning XML and its connec-
tivity with other models, mainly the relational model. The framework presented here aims at creating
a complete solution for the integration of XML data, by focusing on finding XML-specific solutions.

Schema matching is a problem well-studied in a relational database setting. A seminal paper on
schema matching, focusing on relational databases, but also outlining the general principles of the
problem is [15]. A more recent survey, focused on an XML setting is [25]. In [14], the schema authors
provide themselves the semantics of the schema elements, by providing mappings between elements of
their schemas to a global ontology. These mappings are then used for query reformulation to produce
data source specific queries. The ontology is then used for query reformulation, avoiding the need for
a global schema. Other similar approaches are the ones described in [11] and [22]. The major problem
with these approaches, and the approaches of this category as a whole, is that, if source A and B are
mapped together, if B does not have some of the elements of A, then a user knowing only about schema
B will never know about these elements.

Concerning schema integration, DIXSE [28] transforms the DTD specifications of the source docu-
ments into an inner conceptual representation, with some heuristics to capture semantics. Most work
though is done semi-automatically by the domain experts that augment the conceptual schema with
semantics. [26] has an abstract global DTD, expressed as a tree, very similar to a global ontology. The
connection between this DTD and the DTDs of the data sources is through path mappings: each path
between two nodes in a source DTD is mapped to a path in the abstract DTD. Then, query rewriting
is employed to query the sources. [13] applies schema matching techniques on input DTDs, in order to
create an integrated DTD from the sources’ DTDs. The framework presented in this technical report
approaches the schema integration problem using graph restructuring and is a purely XML solution.
Furthermore, our approach allows for the use of multiple types of schema matching methods (use of
ontologies, provision of semantics in the form of RDF, data-mining), which can all serve as an input to
the schema integration algorithm.

In the context of XML views, an XML-specific tool is Active Views [1] that has advanced features
like active rules for view updates, but is semi-automatic in that the user must program the creation of
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the view in a high-level language. WHAX [16] also defines views programmatically using WHAX-QL.
Xyleme [6] offers automated view creation via tag, DTD and path mappings: the system exploits these
mappings stored in the system to create the view whenever a user specifies its DTD. A similar approach
is followed by [13]. A more straightforward approach to XML data integration is through XQuery [34].
The problem with this approach is automation: a user has to programmatically define the view instead
of just defining its schema. MIX [2] and UXQuery [29] follow this approach, the former using its own
query language (XMAS) and the latter using a subset of the XQuery language.

To our knowledge, there is no approach that considers the XML-specific problem of ordering policy
when materializing views over multiple sources. Therefore all views are created by appending elements
at the end of the parent’s list of children. SilkRoute [8] implements an XML view materialization
approach that supports ordering, but does so because the input is relational data, and is ordered using
the order by SQL clause for all results prior to materialization. The same applies for XPERANTO
[5], which provides a ’pure XML’ middleware on top of an object-relational database. The term ’pure’
is used because users do not need to know anything else than XML technologies to create and query
views.

5 Concluding Remarks

This report presented a framework for the integration of XML data within the AutoMed heterogeneous
data integration system. Assuming that a schema matching process has already occurred which has
identified equivalent individual schema constructs, our schema transformation and view materialization
algorithms succeed in integrating and materializing XML data sources automatically. Our algorithms
make use of a simple schema definition language for XML data and a technique for assigning unique
IDs to schema- and instance-level elements, both developed specifically for the purpose of XML data
integration. The novelty of our algorithms lies in the use of XML-specific graph restructuring techniques
applied to XML schemas. Future work will extend the schema transformation algorithm to cater for
cases where there are multiple occurrences of an element name within an XML Datasource Schema, as
discussed at the end of Section 3.1.1.

We note that our schema transformation algorithm can also be applied in a peer-to-peer setting.
Suppose there is a peer PT that needs to query XML data stored at a peer PS . We can consider PS

as the peer whose XML DataSource Schema needs to be transformed to the XML Datasource Schema
of peer PT . After application of our schema transformation algorithm, PT can then query PS for the
data it needs via its own schema, since AutoMed’s query evaluator can treat the schema of PT as the
‘global’ schema and the schema of PS ’ as the ‘local schema’.

Evolution of applications or changing performance requirements may cause the schema of an XML
data source to change. In the AutoMed project, research has already focused on the schema evolution
problem, both in the context of virtual data integration [20, 21] and materialized data integration [7].
For future work we will investigate the application of these general solutions specifically in the case
of XML data. The main advantage of AutoMed’s both-as-view approach in this context is that it is
based on pathways of reversible schema transformations. This enables the development of algorithms
that update the transformation pathways and the global schema, instead of having to regenerate them,
when data source schemas are modified. These algorithms can be fully automatic if the information
content of a data source schema contracts or remains the same, though require domain knowledge or
human intervention if their information content expands.

The materialization algorithm also opens up several issues. One problem is that of respecting
the data source schemas’ constraints when creating the integrated XML file. For this, we can ex-
ploit constraints supplied within an DTD/XML Schema. However, an XML file may not reference a
DTD/XML Schema, or the authors may not exploit the full capabilities of these languages. Moreover,
even if such constraints exist, they determine intra-schema rather than inter-schema relationships. In
cases of ambiguity, global schema constraints must be supplied. Another issue is supporting partial
re-materialization of the global schema, after one or more data source schemas evolve.

The schema definition language used in our framework, XML DataSource Schema, will also be
extended to capture the semantics of optional elements. This is because if a data source at first does
not contain some optional elements, attributes or PCData sections, when these optional data appear,
the XML Datasource Schema describing the data source will not be valid, and the problem will appear
as a schema evolution problem.
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Finally, the framework currently assumes up to now that the data sources are single XML files, and
therefore each one is described by one XML DataSource Schema. However, we aim to include Native
XML Databases as data sources in the future. In such a setting, a single data source may consist
of multiple very similar XML files. The algorithm producing the XML DataSource Schema must be
extended to handle such a case.
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