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Abstract

We describe ongoing work on the use of subsumption to remove redundant inferences from propositional resolution
refutation proofs of the style generated by conflict driven clause learning SAT solvers. This is used for faster LCF-style
proof replay in interactive theorem provers. There may alsobe an application in the extraction of small unsatisfiable cores.

1 Introduction

Recent years have seen a trend towards tool combination in the automated reasoning community, where specialised high-
performance proof engines are integrated within more mature and expressive frameworks. The hope is to combine the
expressiveness and maturity of the framework with the performance of the specialised tool.

One such framework is the “HOL” family of LCF style higher-order logic interactive theorem provers, e.g., Isabelle,
HOL4, HOL Light etc(Gordon and Melham, 1993). Being LCF style, only a small core of code is trusted. This assurance
comes at a price: all non-trusted code must ultimately delegate to the core.

A SAT solver is a specialised high-performance tool for deciding propositional satisfiability. Many important problems
in verification can be solved by representing them as instances of the satisfiability problem. zChaff (Moskewicz et al., 2001)
is, among others, a well known SAT solver that can produce a resolution refutation proof in case of unsatisfiability.

In earlier work we constructed an LCF style interface between HOL provers and proof producing SAT solvers (Weber
and Amjad, 2007), dramatically improving the provers’ propositional proof capability. In this paper we describe ongoing
work on compressing SAT solver proofs using subsumption. The aim is to reduce proof checking time in the theorem
prover by giving it a shorter proof.

We assume the reader is familiar with the terms resolution and subsumption as used in automated reasoning, and related
terminology.

2 Our Contribution

We can prove propositional tautologies in interactive provers by asking a SAT solver to prove that the negation of the
tautology is unsatisfiable. The SAT solver outputs a proof ofunsatisfiability. The input term to the SAT solver must be in
conjunctive normal form. The proof is then output as a groundresolution refutation from the initial clauses of the input
term. This proof is then replayed in the LCF style prover.

Subsumption on propositional clauses is just subset inclusion, where clauses are considered as sets of literals. The core
idea is that replacing clauses by smaller ones may allow us toskip inferences further down the proof, and also give faster
convergence to the empty clause.

The proof trace from the SAT solver is just a log of all conflictclause derivations. Each derivation is a linearchainof
resolutions. Since the SAT solver uses backtracking, many chains are never used later in the proof. As a preprocessing
step, we discard such chains via a DFS of the resolution graphstarting with the empty clause.

A chain can be represented by the notationC0(p1)C1(p2)C2 . . . (pn)Cn, i.e., resolve clausesC0 andC1 with pivot
variablep1, then resolve the resolvent withC2, with pivot p2, and so on. LetR1, R2, . . . be the intermediate resolvents
andRn be the final resolvent. TheCi are either initial clauses or the final resolvents of earlierchains.

We scan resolvents in order of derivation, looking for subsumption by initial clauses or earlier final resolvents. During
the scan of a chain, a subsumption may replace, say,R1 by D, such thatp2 /∈ D. We can then reduce the original chain to
C0(p1)C1(p3)C3 . . . (pn)Cn which derives a possibly smaller final resolvent. SupposeC1 was an earlier such resolvent,
so perhaps nowp3 /∈ C1. If p3 /∈ C0 also, we can further reduce the chain toC0(p1)C1 . . . (pn)Cn.

The scan for subsuming clauses must be done on the fly, since proofs are often too big to read into memory. We use
forward subsumption since backward subsumption, while faster, suffers from serious problems, which we shall touch upon
later. We considered ideas for fast forward subsumption used in first-order provers but were unable to usefully adapt them
to our setting. Instead, we employ the following ideas to speed up forward subsumption:



1. Given how conflict clauses are derived, we may assume∀i.pi /∈ Rn. Then either∃D.D ⊆ Rn, or Rn is not
subsumed. If it is, and if also∃E, i < n.E ⊆ Ri ∧ E * Rn, then∃j > i.pj ∈ E. On the other hand, ifRn is not
subsumed, then if∃E, i < n.E ⊆ Ri, the same restriction onE applies. Thus, when checking subsumption for any
Ri, it suffices to look at clauses containingpj for j > i. In fact, it suffices to check only those containingpi+1.

2. The above optimisation does not help when checking subsumption of Rn, where clauses containing any of the
literals ofRn must be examined. However, by ordering literals, it sufficesto check only those clauses whose least
literal is inRn, by checking clauses containing literals ofRn in ascending order of literal.

3. Once we have rejected obvious non-candidates by considering their literals, we can further narrow down the search
by considering clause characteristics. ConsiderC = {p1, . . . , pn}. For{q1, . . . , qm} ⊆ C, it must be thatm ≤ n,
q1 ≥ p1 andqm ≤ pn, if literals are ordered. Then we can partition clauses by size and for each partition:

(a) Map a clauseD = {q1, . . . , qm} to the point(qm, q1) ∈ R2.

(b) Record the projectionDπ of (qm, q1) considered as a position vector, onto the unit position vector(1/
√

2, 1/
√

2).

(c) Then forD ⊆ {p1, . . . , pn} to hold, we need
√

2p1 ≤ Dπ ≤
√

2pn.

Thus we quickly narrow the search to promising clauses. The worst-case complexity is as bad as a brute force linear
scan of all candidate clauses because the range is an over-approximation, but the method works well in practice.

4. Finally, we use a fast but incomplete test for subset inclusion (Eén and Biere, 2005), falling back to a more expensive
check that is linear in the length of the smaller clause.

3 Concluding Remarks

We have so far achieved compression ratios of three to seven percent with our prototype implementation (ignoring the
compression from the obvious preprocessing step), on largeindustrial problems taken from the SATLIB benchmarks
collection. The small figures are unsurprising, as SAT solvers are already very accurate and efficient. The pay-off in terms
of net time savings has so far been mixed, with savings between -20% to +4%, but we are confident the pay-offs will all
become positive as our implementation improves.

Even though checking backward subsumption is faster than forward subsumption, for each successful check we must
confirm that the subsumed clause was not used to derive the subsuming clause, to avoid a circular dependency in the
proof. Doing this efficiently is a challenge, because the proofs can be very large, with millions of inferences. Preliminary
experiments show compression doubling, but the implementation is too slow at the moment.

Another application of this work is the extraction of small unsatisfiable cores. We just count the initial clauses of the
compressed proof. At the moment this count yields about 50% of the performance of the latest algorithm (Gershman et al.,
2006). We are therefore hopeful that with the addition of backward subsumption and special heuristics for expressing
initial clause preference during scans, we will have a competitive method.

There has been limited related work in this area. Subsumption has been used for minimising SAT problems prior to
proof search (Eén and Biere, 2005) but has been mostly ruledout as too costly to be of use during proof search. Though
there is much literature on proof compression, particularly in the proof-carrying code community, we have only been able
to find theoretical papers as far as shortening of propositional proofs is concerned.
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