
Proof Tool Integration with Proof General

David Aspinall?
?School of Informatics
University of Edinburgh

Scotland
David.Aspinall@ed.ac.uk

Christoph Lüth†

† Deutsches Forschungszentrum für künstliche Intelligenz (DFKI)
Bremen

Germany
Christoph.Lueth@dfki.de

Abstract

We give a brief overview of the Proof General Kit software framework for proof development. The goal of the
framework is to enable flexible environments for managing formal proofs across their life-cycle: creation, maintenance
and exploitation. The framework connects together different kinds of component, exchanging messages using a com-
mon communication infrastructure and protocol called PGIP. We describe the main component of our framework, Proof
General Eclipse, and our plans to turn it into an integration platform for proof tools.

1 A kit of components for directing proof
The Proof General system (Aspinall, 2000) provides a popular and generic interface for interactive proof assistants, whose
central metaphor is script management. Script management sends lines of proof one-by-one to a proof assistant in an
interactive dialogue, colouring the proof document to indicate the state of processing and to keep synchronization with
the proof assistant. Proof General is almost 10 years old by now, and is held back by its Emacs-based architecture. In
late 2003, we started work on building a new component-based architecture for interactive proof called Proof General Kit,
pictured below.

PGIP D

PGIP P

PGIP P

PGIP

PGIP

Prover

Prover

Graphical User
Interface

Text Editor

Eclipse

Broker

File System Theory Store

Prover Components Display Components

D

D

Components connect to a central broker middleware, which is
responsible for managing proof components and controlling the
progress of proof. Components communicate using the PGIP pro-
tocol. PGIP comprises three sub-protocols, corresponding to the
different types of components illustrated.

• The prover protocol PGIPP defines messages exchanged be-
tween proof tools (primarily interactive theorem provers)
and the broker. This captures the control mechanisms of
script management, including command processing, state
synchronization and state examination.

• The display protocol PGIPD defines messages exchanged
between displays and the broker. This captures the interaction mechanisms of script management, including re-
quests to load files, process proof steps, and object querying. Messages to display to the user are also part of this
protocol fragment. A message model specifies different modes and locations for message appearance.

• The inter-broker protocol PGIPI defines messages exchanged between different brokers, for example allowing run-
ning the prover on a remote machine.

The syntax of PGIP messages is defined by an XML schema written in RELAX NG. Every message is wrapped in a
<pgip> packet which uniquely identifies its origin and contains a sequence number and possibly a referent identifier and
sequence number.

To help control script management and provide user-level navigation, documents have PGIP mark-up added by a parser
in the theorem prover. For example, the statement of proof is labelled with an <opengoal> element, the proof com-
mands or declarations with it are tagged with <proofstep>, and the end of the proof is labelled with <closegoal>.
Attributes within these elements can indicate the names and contents of statements being proved, as well as declarations
and definitions. The markup is imposed on the native proof script text without changing it in any way, and is never directly
seen by the user.



2 Interactive proof development in Eclipse
The main UI in our architecture
is Proof General Eclipse, a plugin
for the Eclise IDE. It provides fea-
tures including:

• Script management, includ-
ing synchronization of mul-
tiple files and a navigator
which indicates file state.

• Editing features: outlining
and folding of proofs, to-
kenised symbol sequences,
syntax highlighting, script
formatting, proof views.

• Platform features: problems
display and markers on text;
bookmarks and tasks lists;
CVS or Subversion integra-
tion; system consoles.

3 From script management to proof tool integration
With PGIP markup, Proof General provides a means for manipulating proof documents and attaching arbitrary meta-data.
In previous work we have proposed literate extensions of this document mechanism, primarily to assist in constructing
human-oriented texts at the same time as machine-oriented texts (Aspinall et al., 2006). A new extension we are currently
planning is to allow generic mechanisms for proof texts to specify the use of different proof tools to prove particular
lemmas, or even eventually the transfer of partial developments between different proof systems. We believe that providing
generic, lightweight means for individually justified embeddings and transformations could be very useful in practice,
and technically much easier than a fully formalised globally-sound logical framework which imposes a heavy burden.
Indeed, this approach is already being followed with work on connecting resolution provers and model checkers to existing
interactive theorem provers (e.g., Meng and Paulson (2004); Shankar (2000)). Rather than repeat ad hoc and different proof
language extensions anew in each different theorem prover, we want to provide for these kind of connections in a uniform
way, turning Proof General into an integration platform for different proof tools.

The basic idea is simple. We can extend our proof document model by a simple annotation of which prover can check
particular parts of the script, such that scripts can become heterogeneous. We extend the proof document mechanism with
ways to transfer proof obligations between systems, given some support from the underlying proof systems to transfer
theorem statements (and theory contexts) into a standard format such as TPTP. Within the document, we exploit this by
adding another form of document generating instruction in a literate markup scheme. Previously we considered document
generating instructions to generate human-oriented texts (i.e., LATEX articles) from fragments of theorem prover output. By
a similar scheme we generate system texts (i.e., proof fragments) by calling out to other systems. When the proof script
is processed by Proof General, the output of different systems can be checked and cached into the master document. As
Eclipse already provides an integration platform for tools, Proof General Eclipse is a natural place to implement this idea.

References
David Aspinall. Proof General: A generic tool for proof development. In S. Graf and M. Schwartzbach, editors, Tools and

Algorithms for the Construction and Analysis of Systems, LNCS 1785, pages 38–42. Springer, 2000.

David Aspinall, Christoph Lüth, and Burkhart Wolff. Assisted proof document authoring. In Michael Kohlhase, editor,
Mathematical Knowledge Management MKM 2005, LNAI 3863, pages 65– 80. Springer, 2006.

Jia Meng and Lawrence C. Paulson. Experiments on supporting interactive proof using resolution. In David A. Basin and
Michal Rusinowitch, editors, IJCAR, volume 3097 of LNCS, pages 372–384. Springer, 2004.

Natarajan Shankar. Combining theorem proving and model checking through symbolic analysis. In Catuscia Palamidessi,
editor, CONCUR, volume 1877 of LNCS, pages 1–16. Springer, 2000.


