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Abstract

LEO-II, a resolution based theorem prover for classicahbiegorder logic, is currently being developed in a one year
research project at the University of Cambridge, UK, withmart from Saarland University, Germany. We briefly discuss
the main objectives of the project.

1 Motivation

Automatic theorem provers (ATPs) based on the resolutiarciple, such as Vampire, E, and SPASS, have reached a
high degree of sophistication. They can often find long pg@en for problems having thousands of axioms. However,
they are limited to first-order logic. Higher-order logictemds first-order logic with lambda notation for functiomsla
with function and predicate variables. It supports reaspiin set theory, using the obvious representation of sets by
predicates. Higher-order logic is a natural language fpressing mathematics, and it is also ideal for formal vexifom.
Moving from first-order to higher-order logic requires a maepmplicated proof calculus, but it often allows much sienpl
problem statements. Higher-order logic’s built-in suggor functions and sets often leads to shorter proofs. Cahg
elementary identities (such as the distributive law foroardnd intersection) turn into difficult problems when exgsed

in first-order form.

The LEO-II project develops a standalone, resolution-thésgher-order theorem prover that is designed for fruitful
cooperation with specialist provers for first-order andpmsitional logic. The idea is to combine the strenghts of the
different systems. On the other hand, LEO-II itself, as aemmal reasoner, wants to support interactive proof asusst
such as Isabelle/HOL, HOL, and OMEGA by efficiently automgtsubproblems and thereby reducing the interaction
effort (costs). LEO-II is implemented in Objective CAML aitd problem representation language is HOTPTP (1).

2 Research Objectivesin the LEO-I1 Project

Logic and Calculus LEO-II is a theorem prover for classical higher-order logie., Church’s simple type theory (6),
which is a logic built on top of the simply typettcalculus. The target semantics is Henkin semantics (8)hiciwthe
Boolean and functional extensionality principles ared/alnd thus have to be addressed (4). LEO-II's calculus estend
and refines the extensional higher-order resolution cadcaf its predecessor LEO (2; 3). The aim is to step towards
higher-order ordered paramodulation and superpositiontaruse (partial) term orderings in order to prune the search
space. LEO-II will priorily operate on essentially highender clauses with the goal to quickly reduce them to essignti
first-order ones. ldeally, the set of essentially first-ordauses is continuously growing until it eventually be@sm
efficiently refutable by an off the shelf automated first@rgrover LEO-II collaborates with. Hence, we are intergste
in term orderings that characterize how “higher-order” mnt@ctually is and, e.g, how much Boolean and functional
extensionality reasoning presumably is required for rédoénto essentially first-order or propositional argurtsen

Another key interest in the project is to study how the cuttdation effect (5) can be minimized. For this reason, LEO-
Il supports primitive equality instead of Leibniz equalétyd provides built-in extensionality rules instead of wogkwith
extensionality axioms.

Perfectly Shared Term Representation and Term Indexing Operations on terms in LEO-II are supported by term
indexing. Key features of LEO-II's term indexing are thenegentation of terms in a perfectly shared graph structude a
the indexing of various structural properties, such as ttoeirence of subterms and their position.

Term sharing is a technique which is widely employed in finster theorem proving (10; 11; 13), where syntactically
equal terms are represented by a single instance. For LE@ have adapted this technique to the higher-order case. We
use de Bruijn-notation (7) to avoid blurring of syntactieguality bya-conversion.



A shared representation of terms has multiple benefits. Tdw abvious is the instant identificationaf occurrences
of a term or subterm structure. Furthermore, it allows araétyutest of syntactic structures at constant cost, whildwe
the pruning of structural recursion over terms early in mapgrations. Finally, it allows for tabling of term propesiat
reasonable cost, as the extra effort spent on term anadysisipensated by the reusability of the results.

The indexing approach of LEO-II, which is employed, e.g.dé&bermine candidate clauses for extensional resolution
and subsumption, has a strong focus on structural aspedifeis in this respect from the approach by Pientka (9)icivh
is based on a discrimination tree and which allows for peffitering on the basis of higher order pattern unificatiam. |
contrast, we are particularly interested also in more edlasearch criteria, such as subterm occurrences or headsymb

Architecture and Strategies Automation of higher-order logic, whether resolution-®@sr not, is comparably poorly
investigated. This particularly holds for the question @tiguitable system architectures and search strategid=@n

II's context this question becomes even more relevant tsecafithe idea to fruitfully collaborate with theory specific
reasoning specialists. In LEO, an agent-based architebas been employed to support such a collaboration undbrnea
an extended (wrt. to extensionality aspects) set of sugeatch strategy. In LEO-II we currently reinvestigate ¢hasd
other options in order to come up with a good solution thagsaddl novel aspects (e.g., the termindexing support and the
modified calculus) into account.

Interactive and Automatic Modes The standard mode of LEO-II is fully automatic, just as fostfiorder provers like
Vampire, E, or Spass. However, LEO-II also supports an attére mode in which resolution proofs can be developed
by the user step by step in a simple command line interprétes.interaction flavor thereby is similar to standard proof
assistants; in fact, in interactive mode, LEQdh proof assistant for classical higher-order logic basethemxtensional
higher-order resolution calculus. The interactive modeesedifferent purposes: (i) it supports debugging of tHeuas
rules and the search strategies during system develop(ieihGan be used to illustrate the calculus of LEO-II to ex{s

in the field, and (iii) it will later be used for teaching exséonal higher-order resolution to students.

Proof Objects Since LEO-II wants to support interactive proof assistantsh as Isabelle/HOL, HOL, and OMEGA, we
consider the generation of proof objects as very importadt hence, LEO-II provides proof objects and slightly Sas
efficiency for it. These proof objects provide enough infation so that they can later be inspected and verified in these
proof assistants.

Evaluation As soon as the implementation has sufficiently progressedilwdemonstrate and evaluate LEO-II's use-
fulness and performance on problems from different dommidlsiding hardware- and software verification problems,
mathematics (e.g. set theory), and logical puzzles.

3 Stateof Development

In the current prototype of LEO-II the datastructures, thert index framework, the calculus layer, the basic system
architecture, and the command line interpreter are suffilyieleveloped so that interactive proof development isifde.
Furthermore, a first, simple search strategy for proof aatam is provided so that some simple higher-order theorems
can already be automatically proved. Even though thisegiyedoes not use sophisticated term orderings it can pregeth
theorems much faster than the predessor LEO — this is a piropfisst result. LEO-II already provides full support for
analyzing the term index and for computing statistical daizh as the average sharing rate. This is not only usefuhéor t
further development of LEO-II but also as a tool for analgzstructural aspects of arbitrary data that can be repredent
in HOTPTP syntax and read in to LEO-II. (The LEO-II system bardemonstrated at the workshop.)
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