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Abstract

LEO-II, a resolution based theorem prover for classical higher-order logic, is currently being developed in a one year
research project at the University of Cambridge, UK, with support from Saarland University, Germany. We briefly discuss
the main objectives of the project.

1 Motivation

Automatic theorem provers (ATPs) based on the resolution principle, such as Vampire, E, and SPASS, have reached a
high degree of sophistication. They can often find long proofs even for problems having thousands of axioms. However,
they are limited to first-order logic. Higher-order logic extends first-order logic with lambda notation for functions and
with function and predicate variables. It supports reasoning in set theory, using the obvious representation of sets by
predicates. Higher-order logic is a natural language for expressing mathematics, and it is also ideal for formal verification.
Moving from first-order to higher-order logic requires a more complicated proof calculus, but it often allows much simpler
problem statements. Higher-order logic’s built-in support for functions and sets often leads to shorter proofs. Conversely,
elementary identities (such as the distributive law for union and intersection) turn into difficult problems when expressed
in first-order form.

The LEO-II project develops a standalone, resolution-based higher-order theorem prover that is designed for fruitful
cooperation with specialist provers for first-order and propositional logic. The idea is to combine the strenghts of the
different systems. On the other hand, LEO-II itself, as an external reasoner, wants to support interactive proof assistants
such as Isabelle/HOL, HOL, and OMEGA by efficiently automating subproblems and thereby reducing the interaction
effort (costs). LEO-II is implemented in Objective CAML andits problem representation language is HOTPTP (1).

2 Research Objectives in the LEO-II Project

Logic and Calculus LEO-II is a theorem prover for classical higher-order logic, i.e., Church’s simple type theory (6),
which is a logic built on top of the simply typedλ-calculus. The target semantics is Henkin semantics (8) in which the
Boolean and functional extensionality principles are valid and thus have to be addressed (4). LEO-II’s calculus extends
and refines the extensional higher-order resolution calculus of its predecessor LEO (2; 3). The aim is to step towards
higher-order ordered paramodulation and superposition and to use (partial) term orderings in order to prune the search
space. LEO-II will priorily operate on essentially higher-order clauses with the goal to quickly reduce them to essentially
first-order ones. Ideally, the set of essentially first-order clauses is continuously growing until it eventually becomes
efficiently refutable by an off the shelf automated first-order prover LEO-II collaborates with. Hence, we are interested
in term orderings that characterize how “higher-order” a term actually is and, e.g, how much Boolean and functional
extensionality reasoning presumably is required for reduction into essentially first-order or propositional arguments.

Another key interest in the project is to study how the cut-simulation effect (5) can be minimized. For this reason, LEO-
II supports primitive equality instead of Leibniz equalityand provides built-in extensionality rules instead of working with
extensionality axioms.

Perfectly Shared Term Representation and Term Indexing Operations on terms in LEO-II are supported by term
indexing. Key features of LEO-II’s term indexing are the representation of terms in a perfectly shared graph structure and
the indexing of various structural properties, such as the occurrence of subterms and their position.

Term sharing is a technique which is widely employed in first-order theorem proving (10; 11; 13), where syntactically
equal terms are represented by a single instance. For LEO-II, we have adapted this technique to the higher-order case. We
use de Bruijn-notation (7) to avoid blurring of syntacticalequality byα-conversion.



A shared representation of terms has multiple benefits. The most obvious is the instant identification ofall occurrences
of a term or subterm structure. Furthermore, it allows an equality test of syntactic structures at constant cost, which allows
the pruning of structural recursion over terms early in manyoperations. Finally, it allows for tabling of term properties at
reasonable cost, as the extra effort spent on term analysis is compensated by the reusability of the results.

The indexing approach of LEO-II, which is employed, e.g., todetermine candidate clauses for extensional resolution
and subsumption, has a strong focus on structural aspects. It differs in this respect from the approach by Pientka (9), which
is based on a discrimination tree and which allows for perfect filtering on the basis of higher order pattern unification. In
contrast, we are particularly interested also in more relaxed search criteria, such as subterm occurrences or head symbols.

Architecture and Strategies Automation of higher-order logic, whether resolution-based or not, is comparably poorly
investigated. This particularly holds for the question about suitable system architectures and search strategies. InLEO-
II’s context this question becomes even more relevant because of the idea to fruitfully collaborate with theory specific
reasoning specialists. In LEO, an agent-based architecture has been employed to support such a collaboration underneath
an extended (wrt. to extensionality aspects) set of supportsearch strategy. In LEO-II we currently reinvestigate these and
other options in order to come up with a good solution that takes all novel aspects (e.g., the termindexing support and the
modified calculus) into account.

Interactive and Automatic Modes The standard mode of LEO-II is fully automatic, just as for first-order provers like
Vampire, E, or Spass. However, LEO-II also supports an interactive mode in which resolution proofs can be developed
by the user step by step in a simple command line interpreter.The interaction flavor thereby is similar to standard proof
assistants; in fact, in interactive mode, LEO-IIis a proof assistant for classical higher-order logic based onthe extensional
higher-order resolution calculus. The interactive mode serves different purposes: (i) it supports debugging of the calculus
rules and the search strategies during system development,(ii) it can be used to illustrate the calculus of LEO-II to experts
in the field, and (iii) it will later be used for teaching extensional higher-order resolution to students.

Proof Objects Since LEO-II wants to support interactive proof assistantssuch as Isabelle/HOL, HOL, and OMEGA, we
consider the generation of proof objects as very important and, hence, LEO-II provides proof objects and slightly sacrifices
efficiency for it. These proof objects provide enough information so that they can later be inspected and verified in these
proof assistants.

Evaluation As soon as the implementation has sufficiently progressed wewill demonstrate and evaluate LEO-II’s use-
fulness and performance on problems from different domainsincluding hardware- and software verification problems,
mathematics (e.g. set theory), and logical puzzles.

3 State of Development

In the current prototype of LEO-II the datastructures, the term index framework, the calculus layer, the basic system
architecture, and the command line interpreter are sufficiently developed so that interactive proof development is feasible.
Furthermore, a first, simple search strategy for proof automation is provided so that some simple higher-order theorems
can already be automatically proved. Even though this strategy does not use sophisticated term orderings it can prove these
theorems much faster than the predessor LEO — this is a promising first result. LEO-II already provides full support for
analyzing the term index and for computing statistical datasuch as the average sharing rate. This is not only useful for the
further development of LEO-II but also as a tool for analyzing structural aspects of arbitrary data that can be represented
in HOTPTP syntax and read in to LEO-II. (The LEO-II system canbe demonstrated at the workshop.)
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