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Abstract

Compiled Labelled Deductive Systems (CLDS) provide a uniform logical framework where families of different logics
can be given a uniform proof system and semantics. A variety of applications of this framework have been proposed so
far ranging from extensions of classical logics (e.g. normal modal logics and multi-modal logics) to non-classical logics
such as resource and substructural loogics. Labelled natural deduction proof systems have been developed and proved to
be a generalization of existing proof systems for each of these logics. This extended abstract gives a brief presentation of
the CLDS framework and outlines how it can be applied to develop a labeled tableau system for Hybrid Logic.

1 Introduction

Labelled Deductive Systems (LDS) were introduced by Gabbay (6) as a unifying framwork for different families of logics.
Logics within a given family have often similar syntax and similar sets of proof rules: they differ mainly on their seman-
tic properties. LDS formalization of these logics provide a way of defining uniform proof systems where the semantic
properties are syntactically captured by a labeling algebra and handled alongside with the object level formulae. Labelled
deductive systems, based on a propositional language, for families of modal, conditional, resource logics and access con-
trol logics, have been well investigated(1; 2; 3; 4; 5). A Compiled Labelled Deductive Systems (CLDS),builds upon the
LDS framework in that it provides similar labeled deductive proof system approach, but also provides a model theoretical
semantic approach, based on a compilation technique into first-order semantics, that is uniformly applicable to any (first-
order axiomatizable) logic. The compilation technique can be also adapted to provide an associated automated theorem
prover for any of these logics. In most of the previous applications, the CLDS proof system has been presented using
natural deduction. This extended abstract shows in some detail how uniform tableau systems can be developed within the
CLDS framework looking in particular at the case of Hybrid Logic.

Building upon the main features of a LDS framework (6), in a CLDS the semantic features of a given logic are expressed
syntactically by means of alabelling algebrathat define properties overlabels(i.e. terms of a labelling languageLL). A
CLDS theory, calledconfiguration, consists of a set ofdeclarative unitsand adiagram. Declarative units are of the form
α :λ, whereα is a wff from a given languageLP andλ is a label, whereas adiagramis a set of ground relational properties
over labels. By varying the properties of the labelling algebra different logics belonging to a given family of logics can be
captured within the same CLDS framework. For example, in the family of Hybrid Logics, labels may be related by a binary
relationR, analogous to an accessibilty relation, or by the equality relation. Different properties of theR relation capture
different logics. In the family of resource logics, labels represent resources and the labelling algebra includes an operation
for combining resources as well as a relation for comparing different resource combinations. The proof system of a CLDS
manipulates configurations: it includes rules for deriving new declarative units and new diagram’s elements. The semantics
is, instead, defined in terms of a first-order axiomatization of the given logic, that extends the given labelling algebra. In
almost all previous applications of the CLDS framework the proof system has been presented using a natural deduction
style, in which each step derives a configurationC’ from a given (or previously derived) configurationC. The framework
has been applied to various Modal Logics, including Conditional Logics(1) and Access Control Logic(2), where labels
represent accessible worlds of a Kripke-like diagram, and resource logics (5; 9), where labels represent resources. It
has also been deployed in the context of clausal abduction(12), where the proof technique was based on resolution and
labels were sets of abducibles. These investigations have shown that main advantages of a CLDS framework are that (i) it
facilitates auniformpresentation of logics belonging to the same family (i.e. different logics within the same family can be
captured by appropriately changing the labelling algebra), (ii) its first-order based semantics facilitates the implementation
of sound theorem provers for the logic in question; and finally (iii) it enables the investigation of completely new logics.
The next section gives an overview of CLDS and exemplifies the method by applying it to Hybrid Logic and using, instead,
a tableau proof system.



2 CLDS – Overview of Application to Hybrid Logic

The basic syntactic entities of a CLDS aredeclarative units, of the formformula:label, in which formulas are written in
a formula languageLP and labels in alabelling languageLL, andR-literals as atomic formulae written in the relational
signature of the given labelling languageLL

1 A configurationis a set of declarative units and adiagram is a set ofR-
literals. Theproof rulesallow reasoning over declarative units only,R-literals only, or reasoning between both kinds
of information. The proof system could be defined to be natural deduction, tableau or others such as sequent calculus.
The labelling algebrais a first order theory written inLL and defines properties of the relational signature ofLL. The
semantics is defined in terms of anextended labelling algebra, which is usually a set of first order axiom schema written
in an extended labelling languageL+

L , which defines the semantic meanings of sentences in the object language. This
algebra makes use of atranslation functionthat maps configurations into first order theories written inL+

L .
The above notions are illustrated via a brief description ofHCLDS, a CLDS for Hybrid Logic. Hybrid Logic, as

described by Blackburn in (7), is about “internalising labels”; certain propositions, callednominals, are used to name
possible worlds. For instance the formulap : i ∧3i is a formula in Hybrid Logic, wherep is a (standard) proposition and
i is a nominal, which can be manipulated using appropriate proof rules. Rules that apply to this formula can be used to
derive the formulasp : i, 3i, i : c, p : c, wherec is a nominal new to the derivation. Other operators of Hybrid Logic (10)
can also be captured withinHCLDS, but are omitted here for brevity.

In HCLDS, the languageLP consists of propositions, various operators, such as the modal3 and thetransfer operator
@, and nominal atoms of the formNi, wherei is a label. This has also been proposed in (8). The idea is that a nominal
atom captures the notion of a nominal in Hybrid Logic and the transfer operator captures the notion of internalisation of
labels. The labelling language is a first-order language with equality and the binary predicateR, corresponding to modal
world accessibility. Aconfigurationmight be for instance the set of declarative units{p : i, Ni : j, @j¬p : k}. Using
appropriate proof rules, the new declarative unit¬p : j andR-literal i = j can be derived from the given one, then using
p : i andi = j the declarative unitp : j and then⊥ can be derived, showing that the initial configuration is inconsistent.
The labelling algebra includes the substitutivity properties of equality, so that, for example,R(i, i) can be derived from
R(i, fp(i)) andi = fp(i). The configuration tableau given above is, respectively, translated into the first order formulas
{[p]∗(i), [Ni]∗(j) and[@j¬p]∗(k), in which [p]∗ and[Ni]∗ are predicates derived from the propositionsp andNi.

Monadic predicates of the form[α]∗, whereα belongs toLP , belong to the extended labelling language. The extended
labelling algebra appropriate for the above formulas includes, for example, the first order axiom schema (1) to (4) below.
More general schema (5), (6) and (7) are included for illustration, wherefp(x) names the new accessible world introduced
by the3-elimination rule.

(1) ∀x(Ni(x) → i = x)
(2) ∀x([α]∗(i) ∧ i = x → [α]∗(x))
(3) ∀x([@jα]∗(x) → [α]∗(j))
(4) ∀x([¬@jα]∗(x) → [¬α]∗(j))
(5) ∀x([¬α]∗(x) → ¬[α]∗(x))

(6) ∀x([α ∧ β]∗(x) → [α]∗(x) ∧ [β]∗(x))
(7) ∀x([¬(α ∧ β)]∗(x) → [¬α]∗(x) ∨ [¬β]∗(x))
(8) ∀x([3p]∗(x) → R(x, fp(x)) ∧ [p]∗(fp))
(9) ∀x, y([¬3α]∗(x) ∧R(x, y) → [α]∗(y))

From these, together with the labelling algebra and the translated configuration above, it is easy to derive a contra-
diction. The schema in the extended labelling algebra give meaning to the translated formulas. For instance, (3) gives
meaning to the transfer operator. Depending on the exact type of Hybrid Logic used, the corresponding rule in Hybrid
logic is either¬i :@jp ⇐⇒ j :p or¬i :j :p ⇐⇒ ¬j :p, for nominalsi andj.

In a tableau system it is normal to restrict rules to beanalytic, which means that new formulas in the tableau are only
introduced if they are proper sub-formulas or negations of proper sub-formulas of formulas in the trunk of the tableau,
which is the initial set of formulas from which the tableau is developed. Accordingly, the semantic schema in the extended
labelling algebra areconfiguration relative, meaning that they are restricted to include only analytic instances. (This
contrasts with the stance taken for natural deduction CLDSs, in which such a restriction is not necessarily made.)

The semantics of a CLDS is defined in terms of its first order translation and the first order semantic and syntactic
entailment relations denoted by|= and` respectively. The translation of a configurationC is written asTr(C) and consists
of the translation of each item in the configuration. The extended labelling algebra, calledA+

C , consists of the labelling
algebra and one instance of the appropriate semantic schema for each non-atomic formula in the configuration and for
each proper sub-formula in the configuration. The exact set of formulas in the extended labelling algebra depends on the
configuration. For example, if a configuration consists of the declarative unit¬p ∧ q :0, there will be schema instances for
p ∧ q and¬p in the extended labelling algebra (p andq are atomic).

LetC andC′ be two configurations, then semantic entailment between configurations in a CLDS is defined byC |=CLDS

C′ if, and only if,A+
C ∪ Tr(C) |= Tr(C′)For a tableau-based CLDS entailment is made with respect to refutations and is

amended toC |=CLDS ⊥ if, and only if,A+
C ∪ Tr(C) |= ⊥)The soundness requirement for a CLDS then requires first to

1The first modal CLDS used just one relation calledR, which gave rise to the terminologyR-literal.



show the property that if a configuration tableau formed from a configurationC closes, then the translationTr(C) can be
made to close using the extended labelling algebraA+

C . This property and the soundness of first order logic can be used to
conclude thatTr(C)∪A+

C |= ⊥ and then the definition of entailment gives the desired resultC |=CLDS ⊥. Of these steps,
only the proof of closure is specialised to the particular CLDS.

The completeness of a tableau-based CLDS is also shown through its translation and the method follows the saturated-
tableau approach. (For natural deduction-based CLDS the method used follows the Henkin approach.) If a configuration
C is such that it cannot be closed, i.e. after all possible rules have been applied to all branches of the tableau there remains
at least one branchB still open, then a (Herbrand) model forC in the extended labelling language can be extracted fromB,
which will show thatA+

C ∪ Tr(C) 6|= ⊥ and hence thatC 6`TH ⊥.
In the case that a CLDS is claimed to implement a known logicL, then it needs also to be shown that the implementation

is faithful toL. That is, that it has exactly the same theorems asL. This is called thecorrespondence propertyand can be
shown to hold in various ways depending on the particular CLDS and the presentation ofL.

Figure 1 shows a tableau derivation usingHCLDS of the formula3p :w from the configuration{3Ni :w, p : i}. The
first 5 steps are fairly standard. Line 6 makes uses the rule (Nom), which captures the property of a nominalNi, whereby
it is true only at the label it names, in this casei. Line 7 makes use of equality substitution.

1 3Ni :w Given (w is an arbitrary label)
2 p : i Given
3 ¬3p :w Negated goal
4 R(w, fNi

(w)) (3), 1
5 Ni :fNi

(w) (3), 1

6 i = fNi
(w) (Nom), 5

7 p :fNi
(w) (=sub),2,6

8 ¬p :fNi
(w) (¬3), 3

9 ⊥ (Close), 7, 8

Figure 1: ExampleHCLDS derivation

3 Future Work

The outline application of CLDS to Hybrid Logic given in Section 2 can be completed to give a sound and complete CLDS
which corresponds to Hybrid Logic. Current investigations are focused on two aspects; (i) how to exploit the additional
expressiveness in CLDS achieved by the Hybrid operators, and (ii) how the tableau formulation enables decidability results
to be incorporated into CLDS, as is achieved in (11).
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