
A Rational Reconstruction of a System for

Experimental Mathematics

Jacques Carette1, William M. Farmer1, and Volker Sorge2

1Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

{carette,wmfarmer}@mcmaster.ca
http://www.cas.mcmaster.ca{˜carette,˜wmfarmer}

2School of Computer Science, University of Birmingham, UK,
V.Sorge@cs.bham.ac.uk, http://www.cs.bham.ac.uk/˜vxs

Over the last decade several environments and formalisms for the combina-
tion and integration of mathematical software systems have been proposed. Many
of these systems aim at a traditional automated theorem proving approach, in
which a given conjecture is to be proved or refuted by the cooperation of different
reasoning engines. However, they offer little support for experimental mathemat-
ics in which new conjectures are constructed by an interleaved process of model
computation, model inspection, property conjecture and verification. In partic-
ular, despite some previous research in that direction, there are currently no
systems available that provide, in an easy to use environment, the flexible com-
bination of diverse reasoning system in a plug-and-play fashion via a high level
specification of experiments.

[2, 3] presents an integration of more than a dozen different reasoning systems
— first order theorem provers, SAT solvers, SMT solvers, model generators,
computer algebra, and machine learning systems — in a general bootstrapping
algorithm to generate novel theorems in the specialised algebraic domain of
quasigroups and loops. While the integration leads to provably correct results,
the integration itself was achieved in an ad-hoc manner, i.e., systems where
combined and recombined in an experimental fashion with a set of purpose built
bridges that not only perform syntax translations but also semantic filtering.

In recent work we have started a rational reconstruction of the system, in
order to expose the general principles behind the combination and communica-
tions of the single systems. We use the framework for trustable communication
between mathematics systems that was put forth in [1]. It employs the concept
of biform theories that enable the combined formalisation of the axiomatic and
algorithmic theory behind the generation process. These should ultimately be
used in the design of a flexible environment for experimental mathematics that
enables a user to specify complex experiments on a high level without the need
of detailed knowledge of the underlying logical relations and the particularities
of the integrated systems.

In a first stage we concentrate on an interesting sub-process of the bootstrap-
ping algorithm, namely the generation of isotopy invariants for loops. A loop is
a simple algebraic structure with a single operation — generally non-associative
— and isotopy is an equivalence relation, which is a generalisation of isomor-



2 Carette, Farmer, Sorge

phism. The basic idea of our procedure is to find identities (i.e., universally
quantified equations) that hold for some loop, by first generating identities and
then checking, which identity has a loop of small, but non-trivial size satisfying
it, using a model generator. All identities for which a loop exists are then trans-
formed into derived identities, by extending the factors of the original identity
systematically using two additional operations defined on the loop. All derived
identities for which we can prove, by means of a first order automated theorem
prover, that they are invariant under isotopy are universal identities. Note that,
for each universal identity, we show that it is an invariant under isotopy inde-
pendently of the size of a loop. We can therefore reuse these universal identities
in different classifications. Consequently, we collect universal identities in a pool
of confirmed isotopy invariants, and these are used in other steps of the larger
process. We can view the generation of isotopy invariants as a sequence of single
computational processes as displayed in the figure below. Each process accom-
plishes a different function in the overall computational process, e.g., is a source
of equations, transforms expressions, or filters with respect to different criteria.

Find
Model
of size n

Sink/Source Filter

Generate
Equation

Source Filter

Rewrite
Equation

Prove
Invariant

Filter

Store
Invariant

Yes Yes
Find
Nontrivial
Model

Yes

Transformation

For each module, we have a background (biform) theory that expresses the
language and axioms necessary to describe the rules (and thus the inputs and
outputs) encapsulated in that module. Using appropriate translations and inter-
pretations, we can set up a communication channel (a connection in the language
of [1]). We have worked out detailed formal specifications for each process and
their communications. Following [1] we abstract out the details of the idiosyn-
cratic syntax of each of the systems. We use a uniform abstract syntax (in this
case, we need 4 separate languages, each embedded in the other) for the specifi-
cation. This allows us to abstract out the tedious engineering of transformations
in and out of the actual systems. On the other hand, any transformation beyond
trivial parsing and pretty-printing are explicitly specified. It turns out that it is
surprisingly difficult to separate the syntactic, semantic, and algorithmic level
of the current implementation.

References

1. J. Carette, W. M. Farmer, and J. Wajs. Trustable communication between mathe-
matical systems. In Proc. of Calculemus 2003, pages 58–68, 2003.

2. S. Colton, A. Meier, V. Sorge, and R. McCasland. Automatic generation of classifi-
cation theorems for finite algebras. In Proc. of IJCAR 2004, volume 3097 of LNAI,
pages 400–414. Springer Verlag, 2004.

3. V. Sorge, A. Meier, R. McCasland, and S. Colton. Automatic construction and
verification of isotopy invariants. In Proc. of IJCAR 2006, volume 4130 of LNAI,
pages 36–51. Springer Verlag, 2006.


