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Abstract

Automatically proving that (infinite-state) software programs satisfy a specification is an important task, but has proved
very difficult. Thus, in order to obtain techniques that work with reasonable speed and without user guidance, researchers
have typically targeted restricted classes of language features, programming idioms and properties. We have designed
a system in which several of these specialised techniques can be used together in proving that a program is correct;
this is done without breaking modularity by propagating information between the analyses, expressed as formulae of
an expressive common logic. In this way, we can verify programs which, because they use diverse language features
and idioms, are difficult or impossible to prove using any one individual technique. Our system is implemented in the
experimental tooHECTOR

1 Overview

Automatically proving that (infinite-state) software programs satisfy their behavioural specifications has been a goal of
computer science for many years, and is of both practical and mathematical interest. Software is more pervasive and safety-
critical than ever, and conventional testing techniques continue to miss significant flaws. To this end, many algorithms have
been developed for reasoning about the sets of states a program may reach.

However, proving program correctness has proved very difficult. One issue we mention is that adding transitive closure
to logics tends to make reasoning very difficult, yet some kind of transitive closure reasoning is needed to account for
linked data structures such as linked lists and trees. Thus, in order to obtain techniques that work with reasonable speed
and with an acceptable level of user guidance, researchers have typically targeted restricted programming languages (or
certain programming idioms) and/or restricted kinds of behavioural properties. For example, some systems deal only with
numerical relationships between simple variables, some only with the topology of linked data structures in the heap, and
some consider only the way that Java-style objects access each others’ fields. Abstract Interpretation [4] is arguably the
dominant methodology for the development of such analysers.

We have designed a system in which several of these specialised techniques can be used together in proving that a
program is correct. In this way, we can verify programs which, because they use diverse language features and idioms, are
difficult or impossible to prove using any one individual technique. To make this possible, we allow the various analysers
to exchange information about possible program states as they run. This information is expressed using formulae of a
common logic, which includes arithmetic, transitive closure and first order quantification, but no second order constructs.
By structuring our system this way, we allow the analysers to cooperate but do not break modularity: the writer of a new
analyser only has to make his software understand the common logic, and it can then automatically work together with
the existing software. Our work can be seen as being similar to the open product operator [3] (which inspired us) and
the well-known Nelson-Oppen method [5]; but we allow arbitrary constraints from an expressive logic to be propagated,
rather than merely simple queries or equalities.

The formal basis for our system was developed in [1], and our H®tTOR [2] provides an experimental im-
plementation. HECTOR analyses heap-manipulating imperative programs with recursion, and can be used online at
http://www.doc.ic.ac.uk/"nac103/hector/

2 Example

Figure 1 showsHECTOR running on a program manipulating linked lists of integers, and in particular the statement
y.next := x . Each abstract program state (inner box) contains constraints from three analysers: (right to left)

1. Predicate abstractionses a postcondition generator and a first order theorem prover to track the status of a vector of
(user chosen) predicates. Arithmetic is handled properly but transitive closure formulae are treated as uninterpreted
predicates.
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Figure 1:HECTORUSes a combination of three analysers to scrutinise the statgmert := x  in a program manip-
ulating linked lists of integers.

2. Three-valued shape analy$gj represents sets of heaps as models of three-valued logic, exp&itingnary nodes
and the third truth valuanknownto generalise from a number of concrete heaps to the general “shape” they follow.
It can perform transitive closure (reachability) reasoning about data structures, but ignores the integer data fields.

3. Constant propagatiodiscovers variables which take a constant integer value through parts of the program; it is very
shallow but runs very quickly.

In the figure, the three-valued shape analyser (which cannot handle arithmetic) propagates the following formula
containing reachability information:

VX (allocd(node X) — (reachabl¢ X) — (reachablg(X) VvV z = X))) 1)
where the subscript 1 means “in the previous state’raadhablé X) is shorthand for the transitive closure formula
allocd(node X) A (X = headV TCy4 g [allocd(node A) A allocd(node B) A nex{A) = B] (head X))

and then the predicate abstraction analyser (which can reason about arithmetic but not reachability) makes use of (1) to
obtain the necessary results.
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