
Prediction using Machine Learned Constraint SatisfactionPrograms

John Charnley⋆

jwc04@doc.ic.ac.uk
Simon Colton⋆

sgc@doc.ic.ac.uk

⋆ Department of Computing, Imperial College, 180 Queen’s Gate, London, SW7 2AZ

1 Overview
Prediction is a well-researched area for Machine Learning applications. In these tasks, the aim is to predict the value for
some unseen characteristic based upon the values of other, seen, characteristics for a given example. Machine learninghas
been extensively applied to these types of tasks by automating the derivation of a predictive function or a set of predictive
rules. This predictive function can then be applied to new examples to estimate attribute values. Many techniques have
been turned to this purpose. Inductive Logic Programming (ILP) (Muggleton (1999)), for instance, represents the attributes
of given examples in first order logic and uses techniques such as inverse resolution to derive a set of first-order logic rules
which can be used to logically deduce an attribute value fromother attributes. Artificial Neural Networks (Lippmann
(1987)) can be trained to predict attribute values. A net is pre-configured with interconnecting perceptron nodes and the
weights associated with these nodes are adjusted to improvepredictive accuracy over a training set. The learned artefact
in this case is a neural net able to predict one attribute value. Decision Trees can predict attribute values by considering, in
some stepwise order, the values of other attributes. One method of learning a decision tree is to apply the ID3 algorithm as
implemented in the c4.5 decision tree learning program (Quinlan (1993)). The learned artefact is essentially a conjunction
of implications which can be applied to a given example to predict the value for a single attribute. Each of these methods
can be characterised by the specific ways they represent the task, the artefact they learn and how they learn it.

We consider here another type of predictive artefact together with another method of learning. The artefact we learn is
a constraint satisfaction (CS) program, typically used forsolving CS problems. A CS problem consists of a set of variables
{x1, x2, . . ., xn}, a set of domains of values the variables can take and a set of constraints specifying which values the
variables can take simultaneously. A solution to a CS problem is an assignment of values to each of the variables from
their domains such that no constraints are broken. They find widespread use in science and industry. CS solvers allow
users to specify CS problems in a particular syntax as CS programs and then search for solutions to the problem using a
configurable search approach. We have adapted a CS program tobe used for prediction. By encoding attributes as variables
and machine learning appropriate constraints we obtain a predictive CS program. Given a new example for prediction,
we add the values of all known attributes as variable value constraints to the predictive CS program. A CS solver can
then determine allowable values, i.e. predictions, for unknown attributes. We machine learn constraints by considering
combinations of attribute values, orclassifications. By comparing how training examples fall into these classifications
we can make conjectures about how different classificationsrelate to one-another and, through this, derive predictive
relationships between the relative values of different attributes, which we then encode as constraints. In addition toa CS
solver and machine learner, we use a SAT solver to filter conjectures, improving the efficiency of our CS programs.

We believe our approach has some benefits over the approacheswe discussed above. Firstly, each of the above pro-
cesses produces an artefact for predicting only one attribute of a given example. This means that should the user wish
to predict for another attribute, they need not re-train a new predictor. By contrast, our learned CS programs can predict
for any unknown attributes as it includes constraints learned with respect to all considered classifications. In addition, we
believe our learned CS program may be more resistant to missing or corrupted data. This additional robustness is valuable
as many real-world applications encounter instances of missing or corrupted data.

2 Approach and Implementation
Each investigation involves a number of training examples with various attributes for which values are known. The machine
learning component of our system considers, using brute-force, various combinations of attributes and their possiblevalues.
It is computationally infeasible to consider all possible combinations of all possible attribute values. Consequently, we
place a limit upon the maximum number of attributes and values to be considered. We refer to such combinations as
classificationas they effectively partition any given set of examples intotwo sets, those that exhibit those values and those
that do not. We then consider the example sets to which each classification applies. Where one classification (A) is always a
subset of another (B) then we conjecture that an example will always exhibit the latter if it exhibits the former, i.e.A → B.
This methodology replicates a subset of the functionality of the HR machine learning system (Colton (2002)) but is more
efficient, as it is tailored to the specific task. The conjectures determined in this manner form the basis for the constraints



we introduce into the CS program for prediction. We filter these conjectures in an attempt to find a set of maximally
general conjectures. That is, we attempt to show whether anynew conjecture can be deduced from existing conjectures.
The most efficient method we have found to do this is to use a SATsolver, in our case Minisat (Een and Sorensson (2003)).
We pass the negated conjecture together with all previous conjectures as background to the SAT solver. If the resulting
SAT problem cannot be satisfied then we discard the new conjecture. As our search method is always from general to
specific classifications such filtering should result in maximally general conjectures. In an effort to reduce over-fitting we
have introduced a mechanism to relax the production of conjectures by considering, also, those conjectures where only a
percentage of the classifications overlap. We refer to theseasnear-conjectures. We believe that including more relaxed
constraints may allow for better predictive accuracy.

We produce a CS program using the method first considered for solving general first-order logic problems by expressing
them as CS problems (Charnley and Colton (2006)). For each attribute we introduce one or more CS problem variables.
For example, binary attributes would be expressed using onebinary variable and multi-valued attributes are either scaled
as binary variables or represented as finite domain variables. The conjectures are then translated into constraints using the
syntax of the CS solver, in our case Minion (Gent et al. (2006)). For instance, a conjecture over three binary variables,
A → B ∧ C, which states that bothB andC should be true wheneverA is, could be translated into the constraint
reifyimply(sum([x1, x2], 2), x0), wherex0, x1 andx2 are binary variables representing the values of attributesA, B

andC respectively. This constraint ensures thatx1 andx2 are both 1 in any solution of the CS program wherex0 is 1.
We construct a CS program by combining the definition of the problem variables and the constraints generated from the
conjectures we have machine learned. This CS program can be used to make predictions by introducing, for each new
case, constraints representing values of the attributes ofthat case. A CS solver then gives possible values for the attributes
we would like predicted. In the example above, if we have a newexample for whichA is true then the CS solver would
only ever find solutions for whichB andC were both true, therefore predicting their values. Similarly, if the example
shows eitherB or C false then the solver would predictA to also be false.

3 Experiments and Future Direction
Our preliminary studies have used the moral reasoning dataset 1. This dataset primarily concerns the prediction of the
guilt or otherwise of suspects based upon various facts of the case. The machine learned CS program we generate is able
to make predictions for any attribute. This would not be possible using any of the methods we described earlier where,
traditionally, we would learn a single predictor solely forguilt. If we wanted, for instance, to have decision trees able to
predict for each attribute then we would need to machine learn one for each and select the appropriate tree as required. As
noted earlier, we believe that the machine learned CS program exhibits robustness to missing data. If we consider a learned
decision tree, it’s ability to predict depends on the availability of information to choose at each branch. The decisiontree
is rendered useless if any of this information is missing. This would not be the case for a learned CS program, where
supplementary constraints may well be able to form a prediction in the absence of some data.

We have, currently, implemented the system as described above. We have fully automated the production of constraint
programs according to our method, including near conjectures, but we have yet to do detailed testing on the predictive
accuracy of the approach. We envisage a key aspect of our further work will be in determining how we best select
the conjectures to apply from those we have machine learned.This could encompass using metrics obtained during the
machine learning phase, such as the relative sizes of the classification sets ornearnessof conjectures. We also need to
investigate how we interepret the results of the CS solver informing a prediction. We could increase the sophisticationby,
for instance, considering how many constraints an example triggers to give some notion of strength to the prediction. The
representation we have chosen provides at least the level ofgranularity required to encode a similar decision tree predictor
and, we believe, more. We should, hopefully, be able to generate at least as good predictive accuracy whilst gaining the
additional benefits we have outlined.

References

J Charnley and S Colton. Expressing general problems as CSPs. In CSP Modelling Workshop at ECAI, 2006.

S Colton.Automated Theory Formation in Pure Mathematics. Springer-Verlag, 2002.

N. Een and N. Sorensson. An extensible sat-solver. InSatisfiability Workshop, 2003.

I. P. Gent, C. Jefferson, and I. Miguel. MINION a fast, scalable, constraint solver. InProceedings of the 17th ECAI, 2006.

R. P. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine, pages 4–22, 1987.

S. Muggleton. Inductive Logic Programming. InMIT Encyclopedia of the Cognitive Sciences. MIT Press, 1999.

J.R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.
1UCI Repository of machine learning databases, www.ics.uci.edu/∼mlearn/MLRepository.html


