Prediction using Machine Learned Constraint Satisfadtimygrams

John Charnley Simon Coltori
jwcO04@loc.ic. ac. uk sgc@loc.ic. ac. uk

* Department of Computing, Imperial College, 180 Queen'sGlabndon, SW7 2AZ

1 Overview

Prediction is a well-researched area for Machine Learnpgieations. In these tasks, the aim is to predict the vatue f
some unseen characteristic based upon the values of atkar,characteristics for a given example. Machine learnasy
been extensively applied to these types of tasks by autogtite derivation of a predictive function or a set of preigiest
rules. This predictive function can then be applied to neanegles to estimate attribute values. Many techniques have
been turned to this purpose. Inductive Logic ProgrammibB)Y(Muggleton (1999)), for instance, represents thelattes

of given examples in first order logic and uses techniquels aadnverse resolution to derive a set of first-order logiesu
which can be used to logically deduce an attribute value fodiner attributes. Artificial Neural Networks (Lippmann
(1987)) can be trained to predict attribute values. A netrésqonfigured with interconnecting perceptron nodes aed th
weights associated with these nodes are adjusted to impredéctive accuracy over a training set. The learned astefa
in this case is a neural net able to predict one attributeevdhecision Trees can predict attribute values by considein
some stepwise order, the values of other attributes. Onkadetf learning a decision tree is to apply the ID3 algoritham a
implemented in the ¢c4.5 decision tree learning programii@ui(1993)). The learned artefact is essentially a cortjonc

of implications which can be applied to a given example tajmtehe value for a single attribute. Each of these methods
can be characterised by the specific ways they represeraghkgthe artefact they learn and how they learn it.

We consider here another type of predictive artefact tagrailith another method of learning. The artefact we learn is
a constraint satisfaction (CS) program, typically usedsfuving CS problems. A CS problem consists of a set of vaembl
{z1,22,...,2,}, @ set of domains of values the variables can take and a sensfraints specifying which values the
variables can take simultaneously. A solution to a CS prakifean assignment of values to each of the variables from
their domains such that no constraints are broken. They fidespread use in science and industry. CS solvers allow
users to specify CS problems in a particular syntax as CSranagjand then search for solutions to the problem using a
configurable search approach. We have adapted a CS proglemsed for prediction. By encoding attributes as variables
and machine learning appropriate constraints we obtairedigtive CS program. Given a new example for prediction,
we add the values of all known attributes as variable valuestraints to the predictive CS program. A CS solver can
then determine allowable values, i.e. predictions, forngwn attributes. We machine learn constraints by congideri
combinations of attribute values, olassifications By comparing how training examples fall into these clasatfons
we can make conjectures about how different classificatietege to one-another and, through this, derive predictive
relationships between the relative values of differenthaites, which we then encode as constraints. In additian@s
solver and machine learner, we use a SAT solver to filter @bnies, improving the efficiency of our CS programs.

We believe our approach has some benefits over the approaehdiscussed above. Firstly, each of the above pro-
cesses produces an artefact for predicting only one atéribfia given example. This means that should the user wish
to predict for another attribute, they need not re-train & peedictor. By contrast, our learned CS programs can ptedic
for any unknown attributes as it includes constraints ledmwith respect to all considered classifications. In addjtive
believe our learned CS program may be more resistant tomgissicorrupted data. This additional robustness is vatiabl
as many real-world applications encounter instances dfimdsor corrupted data.

2 Approach and I mplementation

Each investigation involves a number of training exampligés various attributes for which values are known. The maehi
learning component of our system considers, using bruteefearious combinations of attributes and their possialees.

It is computationally infeasible to consider all possibéerbinations of all possible attribute values. Conseqyentt
place a limit upon the maximum number of attributes and \&hoebe considered. We refer to such combinations as
classificationas they effectively partition any given set of examples tato sets, those that exhibit those values and those
that do not. We then consider the example sets to which eashifitation applies. Where one classificatidii§ always a
subset of another) then we conjecture that an example will always exhibit gttel if it exhibits the former,i.ed — B.

This methodology replicates a subset of the functionalfithhe HR machine learning system (Colton (2002)) but is more
efficient, as it is tailored to the specific task. The conjeesidetermined in this manner form the basis for the comgtrai



we introduce into the CS program for prediction. We filtergbeconjectures in an attempt to find a set of maximally
general conjectures. That is, we attempt to show whethenamyconjecture can be deduced from existing conjectures.
The most efficient method we have found to do this is to use asg@iMer, in our case Minisat (Een and Sorensson (2003)).
We pass the negated conjecture together with all previongctures as background to the SAT solver. If the resulting
SAT problem cannot be satisfied then we discard the new cmgcAs our search method is always from general to
specific classifications such filtering should result in maadly general conjectures. In an effort to reduce overmriittive
have introduced a mechanism to relax the production of ctujes by considering, also, those conjectures where only a
percentage of the classifications overlap. We refer to thssear-conjecturesWe believe that including more relaxed
constraints may allow for better predictive accuracy.

We produce a CS program using the method first consideredficgng general first-order logic problems by expressing
them as CS problems (Charnley and Colton (2006)). For eadhude we introduce one or more CS problem variables.
For example, binary attributes would be expressed usinghoraey variable and multi-valued attributes are eithetesta
as binary variables or represented as finite domain vagabBlee conjectures are then translated into constraintgalse
syntax of the CS solver, in our case Minion (Gent et al. (2DOBr instance, a conjecture over three binary variables,
A — B A C, which states that botf8 and C' should be true whenevet is, could be translated into the constraint
rei fyimply(sum([z1, 22],2), x0), wherez0, 1 andz2 are binary variables representing the values of attribdte®
andC respectively. This constraint ensures thdtandx2 are both 1 in any solution of the CS program wheftkeis 1.

We construct a CS program by combining the definition of thebfem variables and the constraints generated from the
conjectures we have machine learned. This CS program casdzbta make predictions by introducing, for each new
case, constraints representing values of the attributdsbtase. A CS solver then gives possible values for thibatitis

we would like predicted. In the example above, if we have a egample for whichA is true then the CS solver would
only ever find solutions for whictB and C' were both true, therefore predicting their values. Sinylaf the example
shows eithe3 or C false then the solver would predidtto also be false.

3 Experimentsand Future Direction

Our preliminary studies have used the moral reasoning eitasThis dataset primarily concerns the prediction of the
guilt or otherwise of suspects based upon various factseotéise. The machine learned CS program we generate is able
to make predictions for any attribute. This would not be gadssusing any of the methods we described earlier where,
traditionally, we would learn a single predictor solely fqrilt. If we wanted, for instance, to have decision treeg dbl
predict for each attribute then we would need to machinenleae for each and select the appropriate tree as required. As
noted earlier, we believe that the machine learned CS pnogrdibits robustness to missing data. If we consider a &ghrn
decision tree, it’s ability to predict depends on the avality of information to choose at each branch. The decisier

is rendered useless if any of this information is missingiswould not be the case for a learned CS program, where
supplementary constraints may well be able to form a prigtiéh the absence of some data.

We have, currently, implemented the system as describegealide have fully automated the production of constraint
programs according to our method, including near conjestubut we have yet to do detailed testing on the predictive
accuracy of the approach. We envisage a key aspect of oumefunork will be in determining how we best select
the conjectures to apply from those we have machine learfibid. could encompass using metrics obtained during the
machine learning phase, such as the relative sizes of thsifitation sets onearnesf conjectures. We also need to
investigate how we interepret the results of the CS solvérriming a prediction. We could increase the sophisticalipn
for instance, considering how many constraints an exannigigers to give some notion of strength to the predictione Th
representation we have chosen provides at least the legehofilarity required to encode a similar decision tree joted
and, we believe, more. We should, hopefully, be able to gaaet least as good predictive accuracy whilst gaining the
additional benefits we have outlined.

References

J Charnley and S Colton. Expressing general problems as.G8RSP Modelling Workshop at ECA1006.

S Colton.Automated Theory Formation in Pure Mathemati€gringer-Verlag, 2002.

N. Een and N. Sorensson. An extensible sat-solvegdtisfiability Worksho003.

I. P. Gent, C. Jefferson, and I. Miguel. MINION a fast, scédabonstraint solver. lProceedings of the 17th ECAI006.
R. P. Lippmann. An introduction to computing with neuralnéEEE ASSP Magazinpages 4-22, 1987.

S. Muggleton. Inductive Logic Programming. MiT Encyclopedia of the Cognitive ScienckBT Press, 1999.

J.R. Quinlan.C4.5: Programs for Machine Learninglorgan Kauffman, 1993.

1UCI Repository of machine learning databases, www.icsedai~mlearn/MLRepository.html



