
The Language EC+

Robert Craven and Marek Sergot

Department of Computing,
Imperial College London,
180 Queen’s Gate,
London SW7 2BZ

{rac101,mjs}@doc.ic.ac.uk

Abstract

We present EC+, a reasoning system closely based on the action language C+ of Giunchiglia et al. (2004).
Linguistically, EC+ is a subset of C+, retaining the graphical semantics of the latter whilst restricting somewhat
the syntax of permissible causal laws. However, the implementation of EC+ is entirely new, using a logic
program inspired by the Event Calculus in order to compute the answers to individual queries in an efficent way,
depending only on information relevant to the query. There are substantial gains in efficiency, as well as the
advantages afforded by a ‘trace’ mechanism for calculating the reasons for fluents’ holding. The relationship
between EC+ and the Event Calculus allows us to see the former as an updated version of the latter, providing
new language features and a semantics of labelled transition-systems.

The action language C+ of Giunchiglia et al. (2004) is used to specify how properties of systems change over
time, and has built-in, high-level support for features of domains such as the ramifications of actions, the default
effects of actions, non-determinism, multi-valued fluents, and a nuanced control over inertia. Another very
useful feature of the language is semantic: sets of laws of C+, known as ‘action descriptions’, define labelled
transition-systems, graphical structures which provide a bridge to many other formalisms in Computing and AI.
(We have exploited this bridge in other work, performing model-checking on finite-state machines defined using
C+ action descriptions.)

An implementation exists (the system CCALC1) which finds runs of given length through those transition-
systems, based on an underlying algorithm of propositional satisfaction. Typically, the user specifies a number
of actions which are to occur at given times in a run, and fluents which must be true at given times; CCALC
then finds the set of runs which are consistent with the information supplied. A severe disadvantage of the
way in which the current implementation of C+ depends on propositional SAT-solvers is that, to answer queries
about whether a given fluent is true at a given state along a run, CCALC must construct the entire run, in effect
answering every single query which could be posed about the run.

We present EC+, an alternative implementation route for C+ which removes the mechanism of propositional
satisfaction, replacing it with a logic program which only considers information relevant to the value of the fluent
which the user is querying. EC+ does not need to construct the entire run to answer an individual query, but
looks only at those actions and fluents which may have affected the value of the fluent in which the user is
interested. The approach is inspired by the Event Calculus (see Kowalski and Sergot (1986)): EC+ comprises,
in addition to the laws of the particular action description, a number of common axioms whose form is closely
related to the Event Calculus.

Syntactically, EC+ is a subset of C+, restricting the form of laws allowed in action descriptions. The restric-
tions are mostly designed to exclude the possibility of non-determinism in our systems; aside from that exclusion,
most other features of C+ are retained, ensuring that EC+ is an expressive formalism capable of representing
many standard domains in AI and knowledge representation. The semantics of EC+ action descriptions are just
the same as for C+: we still have the highly useful labelled transition-systems.

When working with EC+, the user typically supplies information about an initial state of the system, and
about which actions have occurred at which times of a run. Then queries can be made, of what the value of
a given (multi-valued) fluent is at any time along the run. The logic program at the heart of EC+ checks to
see whether actions have been performed which are relevant to the determination of the fluent’s value, looks at
the possiblity of a value for the fluent carrying through by inertia, and considers whether the fluent will take
a specified default value. The system we have written in PROLOG also performs preliminary checks on the
consistency of action descriptions and information about a run which the user supplies.

Further features of our system for EC+ include a trace facility, which provides an explanation of why a
given fluent takes the value it does at a given time. For instance, if a detonated fluent is true, the system may
explain that this has been so for the last five time-steps, because five steps ago, an explode action occurred, whose

1See http://www.cs.utexas.edu/users/tag/cc/.



preconditions were that the trip wire was connected and the bomb correctly made; if desired, the trace may add
that the wire was connected because we connected it two steps previously, and so on. These causal explanations
can be given to an arbitrary degree of nesting, as far back in the past as is desired and possible.

One way of seeing EC+ is as an alternative implementation route for C+, exploiting the features of a top-
down, logic-programming approach which considers only the information relevant to the determination of the
value of a fluent. Yet our work can also be seen as an updated version of the Event Calculus, providing a
graphical semantics to a version of that formalism which includes intuitive support for ramifications, multi-
valued signatures, and a precise formulation of interactions amongst different forms of default and inertia. This
also means that EC+ forms part of a much larger project of connecting and comparing different formalisms for
reasoning about action and change.

References
E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories. Artificial

Intelligence, 153:49–104, 2004.

R.A. Kowalski and M.J. Sergot. A logic-based calculus of events. New Generation Computing, 4:67–95, 1986.


