
A Common Semantic Basis for BDI Languages∗

Louise A. Dennis⋆ Rafael H. Bordini† Berndt Farwer†

Michael Fisher⋆
⋆Department of Computer Science, University of Liverpool†Department of Computer Science, University of Durham

As the concept of an ‘agent’ becomes more popular, so the variety of programming languages based upon this concept
increases. Theseagent-basedprogramming languages range from minimal extensions of JAVA through to logic-based
languages for ‘intelligent’ agents (Bordini et al. (2005a)). In our work, we are particularly concerned (at least initially)
with approaches based onrational agent theories, primarily theBDI theorydeveloped by Rao and Georgeff (1995). Such
languages not only incorporate the autonomous behaviour required for the agent concept, but also provide sophisticated
mechanisms for instigating, controlling, and reasoning about such behaviours.

Though programming languages based on the BDI approach (letus call theseBDI languages) are increasingly popular,
there are several problems, for example:

1. there aretoomany languages;

2. many of the languages are similar, yet subtly different – this makes it difficult for developers to learn more than one
language, as they are not based on agreed notions/definitions; further, such differences make it difficult to identify
precisely the general mechanisms and to transfer new techniques between languages; and

3. in spite of the fact that many BDI languages have logical semantics and utilise logical mechanisms, formal verifica-
tion tools are rare.

This last aspect is particularly important, since BDI approaches are increasingly used in complex, critical applications such
as space exploration (Muscettola et al. (1998); Clancey et al. (2003); Sierhuis (2006)).

In our work1 we are attempting to design an intermediate language (called AIL– Agent Infrastructure Layer) for BDI-
style programming languages. There are several motivations for this, including:

• providing a common semantic basis for a number of BDI languages, thus clarifying issues and aiding further pro-
gramming language development;

• supporting formal verification by developing amodel-checkeroptimised for checking AIL programs – existing BDI
languages can have compilers for AIL so as to take advantage of its associated model-checker; and

• providing, potentially, a high-level virtual machine for efficient and portable implementation.

Rather than attempting to cover all BDI languages from the start, we have initially tackled some of the most popular.
Thus, we have principally referred to the variant of AgentSpeak (Rao (1996)) used inJason(Bordini et al. (2005b)) and
3APL (Dastani et al. (2005)) when designing the semantics for the AIL, but have also taken Jadex (Pokahr et al. (2005))
and (Concurrent) METATEM (Fisher (2005)) into account.

The current design for AIL, in the form of an extensive operational semantics, can be found in Dennis (2007) and
a discussion in Dennis et al. (2007). In order to model a particular language in AIL it will be necessary to create an
AIL compiler for that language. Sometimes it will prove possible to map only fragments of a given language into AIL.
Our expectation is that large and useful fragments of most BDI-style agent programming languages will be translatable.
In order to accommodate the main features of the primary BDI languages, AIL has some components with overlapping
functionality.

In order to provide this semantics we needed to characterisethe shared concepts of beliefs, goals, actions, and plans
as well as accounting for common variations such as the use ofevents and deed stacks. Thus, our semantics develops a
complex data structure to represent intentions associating events (which include outstanding goals) with stacks of deeds
(which include belief updates) to be performed. A generalised notion of a plan is developed to operate on this data structure
which captures many of the notions of plans available in the literature.

We have designed AIL aiming, in future work, not only to be able to accommodate a variety of languages but also
to account for future developments of the existing languages. For example, most languages currently concentrate on

∗Work supported by EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liverpool).
1Seehttp://www.csc.liv.ac.uk/∼michael/mcapl06for details.



individual agents, so it is likely that those languages willbe extended to include constructs to support the social level of
multi-agent systems, particularly the notion of “organisations”. AIL is therefore being designed with simple constructs
which allow it to model many of the most obvious developmentsin this area. AIL’s social organisations are currently based
on METATEM’s groups which flexibly allow the concepts of organisationand role to be captured (Fisher and Kakoudakis
(1999)). The treatment of groups of agents as agents in theirown right also provides a natural mechanism for introducing
concepts of modularity into agent programs.

In the short term, planned work revolves around the implementation of AIL (in JAVA ) and the provision of compilers for,
at least, significant fragments of AgentSpeak and 3APL. In the longer term, the correctness of these compilers needs to be
addressed and verification tools for AIL developed. In particular, we aim to use and extend the JPF model-checker (Visser
et al. (2000)) so that AIL classes are treated as internal classes of JPF which should provide for efficient verification of
agent programs written in various BDI languages.

References

Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah Seghrouchni, editors.Multi-Agent Programming:
Languages, Platforms and Applications. Number 15 in Multiagent Systems, Artificial Societies, andSimulated Organi-
zations. Springer-Verlag, 2005a.

Rafael H. Bordini, Jomi F. Ḧubner, and Renata Vieira.Jason and the golden fleece of agent-oriented programming. In
Bordini et al. (2005a), chapter 1, pages 3–37.

William J. Clancey, Maarten Sierhuis, Charis Kaskiris, andRon van Hoof. Advantages of Brahms for Specifying and Im-
plementing a Multiagent Human-Robotic Exploration System. In Proc. 16th International Florida Artificial Intelligence
Research Society Conference (FLAIRS), pages 7–11. AAAI Press, 2003. ISBN 1-57735-177-0.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Programming multi-agent systems in 3APL. In
Bordini et al. (2005a), chapter 2, pages 39–67.

Louise A. Dennis. Agent Infrastructure Layer (AIL): Designand Operational Semantics v1.0. Technical Report ULCS-07-
001, Department of Computer Science, University of Liverpool, 2007. Available fromhttp://www.csc.liv.ac.uk/ research/
techreports/.

Louise A. Dennis, Rafael H. Bordini, Berndt Farwer, MichaelFisher, and Mike Wooldridge. A common semantic basis
for BDI languages. InProgramming Multi-Agent Systems (ProMAS ’07), 2007. To Appear.

M. Fisher. METATEM: The story so far. InProc. 3rd International Workshop on Programming Multiagent Systems
(ProMAS), volume 3862 ofLNAI, pages 3–22. Springer, 2005.

M. Fisher and T. Kakoudakis. Flexible Agent Grouping in Executable Temporal Logic. InProc. 12th International
Symposium on Languages for Intensional Programming (ISLIP). World Scientific Press, 1999.

N. Muscettola, P. Pandurang Nayak, Barney Pell, and Brian Williams. Remote Agent: To Boldly Go Where No AI System
Has Gone Before.Artificial Intelligence, 103(1-2):5–48, 1998.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf.A Flexible BDI Architecture Supporting Extensibility. In
Proc. IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT), pages 379–385, 9 2005.

A. S. Rao and M. Georgeff. BDI Agents: from theory to practice. In Proc. 1st International Conference on Multi-Agent
Systems (ICMAS), pages 312–319, San Francisco, CA, June 1995.

Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. InProc. 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW), volume 1038 ofLNCS, pages 42–55.
Springer, 1996.

Maarten Sierhuis. Multiagent Modeling and Simulation in Human-Robot Mission Operations. (Seehttp:// ic.arc.nasa.gov/
ic/publications), 2006.

Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model checking programs. InProceedings of the
Fifteenth International Conference on Automated SoftwareEngineering (ASE’00), 11-15 September, Grenoble, France,
pages 3–12. IEEE Computer Society, 2000.


