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Abstract

Deep inference is a proof theoretical methodology that generalizes the traditional notion of inference of the sequent
calculus. Deep inference provides more freedom in design ofdeductive systems and a rich combinatoric analysis of
proofs. In particular, construction of exponentially shorter analytic proofs becomes possible, but with the cost of a greater
nondeterminism than in the sequent calculus. In this paper,we report on our on going work on proof search with deep
inference deductive systems. We argue that, by exploiting an interaction and depth scheme in the logical expressions, the
nondeterminism in proof search can be reduced without losing the shorter proofs and breaking proof theoretical properties.

Introduction
Deep inference (Guglielmi, 2007) is a proof theoretical methodology that generalizes the traditional notion of inference
of the sequent calculus. In contrast to the sequent calculus, the deductive systems with deep inference do not rely on the
notion of main connective and permit the application of the inference rules at any depth inside logical expressions. Deep
inference provides a rich combinatoric analysis of the logic begin studied (see, e.g.,(Brünnler, 2003; Straßburger,2003))
and makes it possible to design deductive systems that are provably not designable in a standard sequent calculus1.

Availability of deep inference provides shorter proofs than in the sequent calculus. For example, for the case of classical
logic, there is a class of theorems, called the Statman’s tautologies, for which the size of proofs in the sequent calculus
grows exponentially over the size of the theorems. However,over the same class, there are deep inference proofs that grow
polynomially (Guglielmi, 2004). This is because applicability of the inference rules at any depth inside logical expressions
makes it possible to start the construction of a proof by manipulating and annihilating subformulae without any prior
branching. However, because inference rules can be appliedin many more ways, this results in a greater nondeterminism
which increases the breadth of the search space rather quickly.

In this paper, we report on our on going work on reducing nondeterminism while searching for proofs in deep inference
deductive systems, building on the ideas presented in (Kahramanoğulları, 2006). We argue that, by exploiting an interaction
and depth scheme in the logical expressions, the nondeterminism in proof search can be reduced without losing the shorter
proofs and without breaking proof theoretical properties.We present these ideas on a classical logic system and argue that
they generalize to other deep inference systems for other logics.

Interaction and Depth against Nondeterminism
There are infinitely many atomic formulae, denoted bya, b, c. . . The negation of a formula is denoted by·̄. A context,
denoted as inS{ }, is a formula with a hole that does not appear in the scope of negation. The formulaR is asubformula
of S{R} andS{ } is itscontext. The systemKSg for classical logic (Brünnler, 2003) is the system consisting of the rules

S{tt}
ai↓ ,

S(a ∨ ā)

S((R ∨ U) ∧ T )
s ,
S((R ∧ T ) ∨ U)

S{ff}
w↓ ,

S{R}

S(R ∨ R)
c↓ .

S{R}

The rules of the systemKSg are calledatomic interaction, switch, weakening, andcontratction, respectively.∧ and
∨ are associative and commutative.ff is the unit for the∨ and tt is the unit for the∧. We also impose the equalities
(tt ∨ tt) = tt and(ff ∧ ff) = ff. A derivation∆ is a finite chain of instances of the inference rules. The topmost formula in
a derivation, if present, is called thepremise of the derivation, and the bottommost formula is called itsconclusion. Deep
inference systems follow a common scheme where the context management of the commutative operators is performed
by the switch rule. All the deep inference systems for linearlogic (Straßburger, 2003), classical logic (Brünnler, 2003),
systemsBV (Guglielmi, 2007), andNEL (Straßburger, 2003), and modal logics follow this scheme.

We consider the subformulae which are in a disjunction relation as interacting formulae, whereas those formula in a
conjunction relation as non-interacting formula. For example, when we consider the formulaa∨b∨(ā∧ b̄), a is interacting
with b, ā, andb̄, whereas̄a is interacting witha andb, but it is not interacting with̄b. We redesign the switch rule, in such
a way that this rule can be applied only in those ways which promote the interaction between dual atoms: The notation

1For more information on deep inference, see http://alessio.guglielmi.name/res/cos/index.html.



at R denotes the set of atoms appearing in formula R. The rulelazy interaction switch lis is the rule obtained by imposing
the following restriction on the rule switch; formulaU is not a disjunction andat R ∩ at Ū 6= ∅.

In (Kahramanoğulları, 2006), we have shown that switch rule can be replaced with the rule lazy interaction switch
in systemKSg without losing completeness. The completeness proof uses atechnique closely related to cut-elimination.
Thus, this modification in systemKSg, results in reduction of the breadth of the search space without losing shorter proofs
and proof theoretic cleanliness. However, although checking the condition of the rulelis can be performed in linear time,
in proof search applying this check on all the subformulae can become computationally expensive. In order to see this on
an example, consider the following formula:a∨ b∨ (ā∧ b̄∧ (c∨ d∨ (c̄∧ d̄∧ (e∨ f ∨ (ē∧ f̄))))). To this formula, switch
rule can be applied in 42 different ways, and the rulelis can be applied in 14 different ways. Thus, the condition of the rule
lis must be performed for all the 42 potential rule instances.

When we consider the interaction scheme mentioned above as agraph, where interacting atoms are connected by nodes,
we make the following observation: By applying the inference rules to subformulae that consist of atoms in close proximity
with respect to number of connecting arcs, we are able to construct shorter proofs. When we carry this observation to
syntactic level, this notion of being close proximity corresponds to the subformulae at the deepest positions. Thus, by
introducing a plausible notion of ”deepest” inference thatis complete, we can reduce the nondeterminism further in a way
that is orthogonal and complementary to that of the rulelis.

We have the following definition: An instance of the rule switch is an instance of the ruledeepest switch, denoted by
ds, if the formulaR is not a conjunction. Let systemKSgd be the system obtained by replacing the rules in systemKSg

with the ruleds.

Theorem 0.1 Systems KSg and KSgd are equivalent, that is, they prove the same formulae.

The proof of this theorem uses the decomposition of theKSg proofs into phases where different rules are applied, and
then permutation of the instances of the rules, that are not instances of the ruleds, over the other rule instances.

An interesting question here is if it is possible to combine the ideas from the ruleds andlis: An instance of the rule
switch is an instance of the ruledeepest lazy interaction switch, denoted bydis, if the formulaR is not a conjunction,
formulaU is not a disjunction, andat R ∩ at Ū 6= ∅. Let systemKSgid be the system obtained by replacing the rules in
systemKSg with the ruledis.

Theorem 0.2 Systems KSg and KSgd are equivalent, that is, they prove the same formulae.

The ruledis does not only reduce the nondeterminism in proof search further, but also reduces the cost of performing
the check of the condition, because the notion of deepest switch forces the substructuresR to be smaller subformulae.

We also conjecture that by means of a procedure for cut elimination, we can also eliminate the associativity and
commutativity of conjunction, in a way which reduces nondeterminism in proof search without loosing shorter proofs.

Discussion
In (Guglielmi, 2004), Guglielmi has shown that for a class ofclassical tautologies called Statman’s tautologies, deepin-
ference provides an exponential speed up in contrast to the sequent calculus proofs. The restrictions imposed by the rules
above preserve the shortest proofs of (Guglielmi, 2004). Wehave been experimenting with the Maude language for im-
plementing deep inference deductive systems as term rewriting systems, including those discussed above. An extensive
comparison of these implementations and proof complexity analysis are included in on going work. Other deep infer-
ence systems and a deep inference system for the logic of bunched implications (O’Hearn and Pym, 1999) are potential
applications of the ideas above for future work.
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