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1 Introduction

Model checking is a widely used automatic method for system verification. Verification of even moderately large systems
can be difficult due to an exponential growth in the number of states with the number of components. This phenomenon
is known as state space explosion. Many systems, however, consist of clusters of sets of identical (up to process id)
components, resulting in symmetry of the underlying state space. If this symmetry can be detected it can often be exploited
to reduce the cost of model checking sufficiently to allow for full verification.

We describe what is meant for a model checker to be explicit state or symbolic, timed or probabilistic, and illustrate
these terms via an overview of four of the most widely used model checkers: SpiN, SMV, PrisMm and UPPAAL.

We then show, via a simple example, how symmetry reduction can be helpful to reduce the cost of model checking in
the explicit state case, and describe two problems associated with symmetry reduced model checking, namely symmetry
detection and the orbit problem. We show how we have addressed these problems with our own symmetry detection and
reduction tools for SPiN: SymmExtractor and TopSpIN, and discuss the problems associated with symmetry reduction
methods in the symbolic case.

2 Popular Model Checkers

Errors in software development often appear at the design stage, yet are not detected until the final testing stage. The later
errors are found, the more expensive they are to correct. Model checking allows us to find errors very early on by building
small logical models of a system which can be automatically checked. Model checking is most commonly used to verify
finite state concurrent systems, like those associated with intricate communications protocols and sequential circuits.

All model checkers require a specification of a system, together with the requirements (properties to be checked).
The model checker then creates a graph-like structure (usually a Kripke structure or Markov chain) which is checked for
property correctness. If the property under consideration does not hold, a counter-example is provided. Explicit state
model checkers typically use automata theoretic techniques to search the state-space (a Kripke structure combining the
states of the original model with those of the property to be checked). In symbolic model checking the underlying model
is expressed as a boolean formula which is stored as a reduced, ordered binary decision diagram (an ROBDD).

There are many commonly used model checkers (see (8) for references). The choice of model checker depends on
the type of system behaviour to be analysed. SPIN and SMV are the most widely used explicit state and symbolic model
checkers respectively which can be used to model behaviour of systems for which interleaving properties rather than timing
aspects are of interest. If one is interested in modelling timing aspects, the real time symbolic model checker UPPAAL (in
which models are expressed as timed automata) can be used. In order to capture the behaviour of complex, probabilistic
protocols the symbolic model checker PrisM can be used to check quantitative properties, such as latency or QoS attributes.

3 Symmetry Reduction for Model checking

Symmetry reduction is a technique for tackling state space explosion. Consider the Kripke structure for a 2-component
mutual exclusion protocol illustrated in Figure 1 (where N,T and C denote non-critical, trying and critical and state (N,T)
(say) is the state in which components 1 and 2 are in the non-critical and trying states respectively). The Kripke structure
clearly exhibits symmetry between the components. For example states (N, T") and (7', N) are identical, from a graphical
point of view (we could impose one onto the other by reflecting about a line running vertically through the middle of the
structure). Symmetry reduction in model checking involves replacing sets of symmetrically equivalent states in a model
M by a single representative, rep(s), from each equivalence class (orbit). The resulting Kripke structure M’ is called a
quotient structure. Providing a property ¢ is invariant under the symmetry used, ¢ |= M if and only if ¢ = M’.



Figure 1: Kripke structure for 2-component mutual exclusion

Structures are reduced with respect to a group of symmetries G (specifically a group of automorphisms of the Kripke
structure). In the n-component mutual exclusion protocol, G is the group consisting of all permutations of the set of ids
{1,2,...,n}. In this case we say that our system is fully symmetric.

The idea is to not build the original model, but to build the quotient structure on-the-fly using knowledge of the group G.
In explicit state model checking, instead of backtracking only when a state s is reached that has been reached previously,
we now backtrack if rep(s) has been reached previously. Two of the most difficult problems associated with symmetry
reduction are therefore to statically identify G, and to evaluate rep(s) for any state s. In most cases the lexicographically
smallest element of the orbit containing s is chosen as rep(s). Calculating rep(s) in this way is known as the constructive
orbit problem, and is N P-hard (2).

‘We have developed tools SymmExtractor (4) and TopSPIN (5) to allow us to perform automatic symmetry detection and
reduction respectively. SymmExtractor extracts a graphical representation known as the static channel diagram SC D(P)
from a Promela specification P and uses the graph automorphism program saucy (3) to extract the automorphism group
of SCD(P). We then obtain G from this group.TopSPIN uses group theoretic results to solve the orbit problem efficiently
for certain classes of group (for example, when the group can be decomposed into a product of smaller groups — a likely
scenario when model checking systems consisting of clusters of sets of identical components).

Other existing implementations of symmetry reduction methods for explicit state model checking often rely on the
existence of full symmetry identified by the user. A specific data type (scalarset) can be used to label states that can be
permuted. Symmetry reduction is harder in the symbolic case as the BDD required to store the orbit relation is prohibitively
large. As a consequence, symmetry reduction for symbolic probabilistic model checking is similarly thwarted — although
we have had some success implementing symmetry reduction for PrisM (6) by extending an approcah based on generic
representatives (7). In current work we are investigating the application of symmetry reduction methods to explicit state
probabilistic model checkers, such as LiQuor (1).
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