
SRASS - a Semantic Relevance Axiom Selection System

Geoff Sutcliffe?
?University of Miami, USA
geoff@cs.miami.edu

Abstract

This paper describes the design, implementation, and testing of a system for selecting necessary axioms from a large
set also containing superfluous axioms, to obtain a proof of a conjecture. The selection is determined by semantics of the
axioms and conjecture, ordered heuristically by a syntactic relevance measure. The system is able to solve many problems
that cannot be solved alone by the underlying conventional automated reasoning system.

1 Introduction

In recent years the ability of systems to reason over large theories – theories in which there are many functors and pred-
icates, many axioms of which typically only a few are required for the proof of a theorem, and many theorems to be
proved from the same set of axioms – has become more important. Large theory problems are becoming more prevalent
as large knowledge bases, e.g., ontologies and large mathematical knowledge bases, are translated into forms suitable for
automated reasoning, and mechanical generation of automated reasoning problems becomes more common. This work
addresses the issue of selecting necessary axioms, from a large set also containing superfluous axioms, to obtain a proof
of a conjecture. It is based on the idea in Petr Pudlak’s PhD research, which he attributes to Jiřı́ Vyskočil. In contrast to
existing work that selects axioms based on syntactic characteristics, this work uses semantics to guide the selection.

2 Semantic Relevance Axiom Selection

M0

C

A1
M1

M2

M0

A2
A3

C

A1
M1

M0

C

A1
M1

M2

M0

A2

C

The selection starts with an empty set of selected axioms. At each iteration the
process looks for a model of the selected axioms and the negation of the conjec-
ture. If no such model exists then the conjecture is a logical consequence of the
selected axioms. If such a model exists then an unselected axiom that is false
in the model is moved to the set of selected axioms. The newly selected axiom
excludes the model (and possibly other models) from the models of the selected
axioms and negated conjecture, eventually leading to the situation where there
are no models of the selected axioms and the negated conjecture. The figure
shows the idea. The plane represents the space of interpretations, the rectan-
gle encompasses the models of the conjectureC, and an oval encompasses the
models of the corresponding axiomAi. In the first iteration, when the set of
selected axioms is empty, the modelM0 of the negation of the conjecture,¬C,
is found. That leads to the selection of the axiomA1, which is false in the model. Iteratively, the modelM1 of {A1,¬C}
is found, leading to the selection ofA2, the modelM2 of {A1, A2,¬C} is found, leading to the selection ofA3, at which
point there is no model of{A1, A2, A3,¬C}, proving thatC is a logical consequence of{A1, A2, A3}. In the last part of
the figure this is seen by the intersection of the axiom ovals lying within the conjecture rectangle.

Example: Consider the simple propositional problem, to prove the conjectureC = b from the axiomsE1 = a | b,
E2 = b ⇒ a, E3 = (¬a & (b | c)) | (a & ¬b & ¬c). andE4 = b | (a ⇔ c). The conjectureC can be proved fromE3 and
E4, i.e.,E1 andE2 are superfluous. The following table shows a possible sequence of models and selected axioms. Note
how E1, E2, andE3 are true in the first model, so onlyE4 can be selected.E1 andE3 are false in the second model, but
E1 is found first.E2 is true in every model of¬C, and thus can never be selected. If the model{a,¬b, c} had been used
in the second iteration, thenE3 would have been selected, leading to immediate success.

Selected set Model Axiom
1 { } {a,¬b,¬c} E4 = b | (a ⇔ c)
2 {E4} {¬a,¬b,¬c} E1 = a | b
3 {E1, E4} {a,¬b, c} E3 = (¬a & (b | c)) | (a & ¬b & ¬c)
4 {E1, E3, E4} - -

The basic process can be extended to improve performance, and to cope with practical issues that arise in implemen-
tation. Initial Proof Attempt: An initial proof attempt may be made using conventional automated reasoning. If this is
successful then no further processing is required.Relevance Ordering: A syntactic relevance score is used to order the
axioms in decreasing order of potential usefulness, to increase the chances of selecting a useful axiom, and selecting it early
in each iteration.Efficient Termination: The absence of a model of the selected axioms and negated conjecture can be
more efficiently established by testing for unsatisfiability (although these two are logically the same, different techniques
may be used to establish the two conditions),Greedy Termination: Selection of the last axiom may be greedily achieved
by looking for an unselected axiom whose negation can be proved from the selected axioms and negated conjecture.In-
complete Models:In practice, the model might be able to interpret only the symbols in the selected axioms and negated
conjecture. If no unselected axiom can be evaluated as false in the model, then look for an unselected axiom that cannot be
evaluated as true in the model (anot-trueaxiom).Model Inadequacy: In practice, it might not be possible to find a model
even if one exists. If no model is found, then look for an unselected axiom that iscounter satisfiablewith respect to the
selected axioms and negated conjecture. If no model is found, and no unselected axiom is counter satisfiable with respect
to the selected axioms and negated conjecture, then select the axiom that has the highest syntactic relevance.Aggressive
Selection: An axiom for which there is at least one model of the selected axioms, the conjecture, and the negation of
that axiom, can be preferred over an axiom that is true in every model of the selected axioms and the conjecture.Batch
Selection: In order to make faster progress it is possible to select multiple axioms at each iteration.Limited Selection:
The number of unselected axioms that is considered by each method can be limited, to give higher priority to axioms with
higher syntactic relevance.Final Proof Attempt: When the axiom selection process terminates, a final proof attempt is
made using conventional automated reasoning, to build a proof.

3 Results

The process described has been implemented as the systemSRASS. The various tests required by the process are all imple-
mented using conventional automated reasoning systems. The implementation is in C, built on top of theJJParser library
of TPTP compliant functions, and using theSystemOnTPTP harness for calling the component automated reasoning
systems. For testing,SRASS was configured conservatively: no Initial Proof Attempts were made, Greedy Termination
and Aggressive Selection were disabled, and no Batch Selection or Limited Selection was used. The automated reasoning
systems used were: E 0.99 to test for provability and unsatisfiability, EP 0.99 to find proofs, FMDarwin 1.3g to build
models, Paradox 2.0b to test for satisfiability and counter satisfiability, and SPASS 2.2 to further test for satisfiability and
counter satisfiability. The testing was done on a 2.8GHz Intel Xeon computer with 1GB memory, and running Linux 2.6.
An overall CPU limit of 600s was imposed.

Good results were produced on several problem sets, selecting only problems that E 0.99 cannot solve in 20s – 31 modal
logic LCL problems, 25 MizarSETproblems, and 20 NASASWVproblems. Thus there are 76 problems (selected from the
495 in the original sets). EP finds proofs for 14 problems, and E establishes theoremhood for a further 11.SRASS finds
proofs for 52 problems, and establishes theoremhood for a further 13.SRASS and EP both find proofs for 9 problems,
and SRASS is faster than EP in 6 of these 9 cases.SRASS and E both establish theoremhood for 15 problems (including
the cases where both find proofs), and SRASS is faster than E in 12 of these 15 cases, often by an order of magnitude. The
syntactic relevance ordering is a key to the success ofSRASS. Without syntactic relevance orderingSRASS solves only
42 of the problems (compared to the 65 solved with syntactic relevance ordering), and without syntactic relevance ordering
the times taken are consistently much higher. Aggressive selection, on the other hand, is of less utility –SRASS solves 63
of the problems with aggressive selection enabled. However there are some cases where use of aggressive selection results
in fewer axioms being selected.SRASS was also tested in the conservative configuration on three other problem sets:
13 of Art Quaife’sSET problems, 9 human-style arithmeticNUMproblems, and 161 software component retrievalSWC
problems. These tests give less impressive results, withSRASS and EP solving similar numbers of problems, although
not always the same problems.

SRASS was tested in a less conservative configuration on the MPTP Challenge problems. The challenge is divided
into two divisions: the bushy division, and the chainy division, each of which has 252 problems.SRASS was configured
to make an Initial Proof Attempt with a CPU limit of 30s, to Batch Select 3 axioms in each iteration, and to have a Limited
Selection from the 10 most syntactically relevant axioms in each iteration. An overall CPU limit of 300s was imposed.
The testing aimed only to establish theoremhood for each problem, without proofs being found. In the bushy division, E
establishes theoremhood for 141 problems, andSRASS establishes theoremhood for 171.SRASS and E both establish
theoremhood for 138 problems, E establishes theoremhood for 3 problems thatSRASS does not, andSRASS establishes
theoremhood for 33 problems for E does not. In the chainly division, E establishes theoremhood for 91 problems, and
SRASS establishes theoremhood for 127.SRASS and E both establish theoremhood for 83 problems, E establishes
theoremhood for 8 problems thatSRASS does not, andSRASS establishes theoremhood for 44 problems for E does not.

