
Implementing Tractable Temporal Logics

Lan Zhang! Clare Dixon!

! Department of Computer Science,
University of Liverpool
Liverpool, L69 7ZF, UK

{lan,clare,ullrich}@csc.liv.ac.uk

Ullrich Hustadt! ∗

1 Introduction
In (Dixon, Fisher, and Konev, 2006) a fragment of propositional linear-time logic (PLTL), called PLTL-X A, has been
defined. It is sufficiently expressive to capture Büchi automata (Büchi, 1962) using formulae in PLTL with boolean XOR
operators. The formulae are of polynomial size in the size of the Büchi automata captured. The satisfiability problem is
of polynomial complexity. The paper also defined a tractable temporal resolution calculus for PLTL-X A. This calculus
provides an efficient theorem proving method for this fragment as well as providing an alternative way to check the
emptiness of Büchi automata.

In this abstract we present the prover XA (XOR clauses representing Automata), an implementation of the calculus
of (Dixon, Fisher, and Konev, 2006). We compare our system with TRP++, a full PLTL resolution theorem prover, and
then present our conclusions.

2 The Temporal Logic PLTL-XA

The temporal logic PLTL-XA (Dixon, Fisher, and Konev, 2006) is a sub-class of PLTL (Gabbay, Pnueli, Shelah, and Stavi,
1980) and is defined via a normal form, called SNFXA (Dixon, Fisher, and Konev, 2006), shown in Figure 1. All clauses are
implicitly in the scope of the temporal operator (‘always’). One key aspect of PLTL-XA is that the set P of propositions
over which formulae are constructed, is partitioned into two disjoint sets, S = {q 1 . . . qn} and L = {l1 . . . ln}. We can
use S and L to represent states and labels of Büchi automata respectively. Also, in addition to the standard boolean and
temporal connectives, the signature of the language of PLTL-XA includes the boolean XOR operator ‘⊕’. Its semantics is
defined in the standard way, i.e., ϕ1 ⊕ · · ·⊕ ϕm is true (at a particular moment in time) iff exactly one ϕ j , 1 ≤ j ≤ m is
true (at that moment in time). We call N a set of SNFXA clauses iff (a) N contains only clauses of the form (1) to (6) in
Figure 1, (b)N contains at most one sometime clause and exactly one initial clause, (c) for every q i ∈ S and every lj ∈ L
there is at most one clause of the form (qi ∧ lj) ⇒ !(qi1 ∨ . . . ∨ qir ) inN , and (d) if true⇒ ¬qi ∨ ¬lj is inN for some
qi ∈ S and some lj ∈ L, then (qi ∧ lj) ⇒ !(qi1 ∨ . . . ∨ qir ) is not inN .

Figure 2 shows a sound and complete resolution calculus (Dixon, Fisher, and Konev, 2006) for SNFX A. Angled
brackets 〈. . .〉 around a premise indicate that the conclusion of the rule replaces that premise in the clause set. Further,
since the number of SNFXA clauses which can be formed over the finite set P of propositional variables is finite, we can
guarantee termination of proof conducted by this calculus. In addition, Dixon, Fisher, and Konev (2006) establish that a
Büchi automaton has an accepting run if and only if the PLTL-XA formula corresponding to it is satisfiable.

1. start ⇒ (qi1 ∨ . . . ∨ qik) (initial) 4. true⇒ ♦(qi1 ∨ . . . ∨ qis) (sometime)

2. (qi ∧ lj) ⇒ !(qi1 ∨ . . . ∨ qir ) (step) 5. true⇒ q1 ⊕ q2 ⊕ . . . ⊕ qn (XOR-S)

3. true ⇒ Rc (universal) 6. true⇒ l1 ⊕ l2 ⊕ . . . ⊕ lm (XOR-L)

Here qik , qir , qis ∈ S, k, r, s ≥ 0, m, n ≥ 1 and lj ∈ L, and where Rc must be one of ¬qi, or (¬qi ∨ ¬lj).

Figure 1: Types of SNFXA clauses
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Figure 2: The resolution calculus CPLTL−XA for PLTL-XA

3 Evaluation of XA
XA implements the resolution calculus described in Section 2 and is implemented in Java. To test and evaluate XA we
have used a collection of PLTL-XA formulae corresponding to Büchi automata with the number of states varying between
3 and 500. We have compared XA to TRP++ (Hustadt and Konev, 2004), a clausal resolution-based prover for full PLTL,
on this collection of PLTL-XA formulae. As the language used by TRP++ does not include the XOR operator, an XOR
clause with n propositions has to be represented by 1 + n(n−1)

2 universal clauses for the purpose of applying TRP++ to a
PLTL-XA formula. Therefore, in all our tests, the input to TRP++ is bigger than the input to XA. In all our experiments,
XA requires fewer inference steps than TRP++. The difference in the number of inference steps is greater than what might
be expected simply based on the difference in the number of input clauses. The reason is that our calculus utilises the
XOR clauses within the resolution rules themselves and the restricted format of clauses means that the conclusion of all
resolution rules subsumes one or more of the parents. This keeps both the number of clauses generated small and the
clause set at any moment small, which makes the process of theorem proving efficient and succinct.

4 Conclusions and Future Work
The comparison between XA and TRP++ shows the advantage of this calculus: XA’s search space is polynomial, on
the other hand, TRP++’s search space is exponential. Note, however XA is specialised for a fragment of PLTL whereas
TRP++ is more general and therefore can deal with a larger class of formulae.

The original calculus has recently been extended (Dixon, Fisher, and Konev, 2007). It allows more than two XOR
clauses as well as a set of ‘normal’ non-XOR propositions and is therefore able to capture a wider range of problems
than PLTL-XA. Further, the complexity of the calculus is still polynomial if the number of non-XOR proposition is low.
Adapting our system to the calculus (Dixon, Fisher, and Konev, 2007) is future work.
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