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Abstract. The application of Inductive Logic Programming to scientific datasets
has been highly successful. Such applications have led to breakthroughs in the do-
main of interest and have driven the development of ILP systems. The application of
AI techniques to mathematical discovery tasks, however, has largely involved com-
puter algebra systems and theorem provers rather than machine learning systems.
We discuss here the application of the HR and Progol machine learning programs
to discovery tasks in mathematics. While Progol is an established ILP system, HR
has historically not been described as an ILP system. However, many applications
of HR have required the production of first order hypotheses given data expressed
in a Prolog-style manner, and the core functionality of HR can be expressed in ILP
terminology. In (Colton, 2003), we presented the first partial description of HR as
an ILP system, and we build on this work to provide a full description here. HR
performs a novel ILP routine called Automated Theory Formation, which combines
inductive and deductive reasoning to form clausal theories consisting of classification
rules and association rules. HR generates definitions using a set of production rules,
interprets the definitions as classification rules, then uses the success sets of the
definitions to induce hypotheses from which it extracts association rules. It uses
third party theorem provers and model generators to check whether the association
rules are entailed by a set of user supplied axioms.

HR has been applied successfully to a number of predictive, descriptive and
subgroup discovery tasks in domains of pure mathematics. We survey various appli-
cations of HR which have led to it producing number theory results worthy of journal
publication, graph theory results rivalling those of the highly successful Graffiti
program and algebraic results leading to novel classification theorems. To further
promote mathematics as a challenge domain for ILP systems, we present the first
application of Progol to an algebraic domain – we use Progol to find algebraic
properties of quasigroups, semigroups and magmas (groupoids) of varying sizes
which differentiate pairs of non-isomorphic objects. This development is particu-
larly interesting because algebraic domains have been an important proving ground
for both deduction systems and constraint solvers. We believe that AI programs
written for discovery tasks will need to simultaneously employ a variety of reasoning
techniques such as induction, abduction, deduction, calculation and invention. We
argue that mathematics is not only a challenging domain for the application of ILP
systems, but that mathematics could be a good domain in which to develop a new
generation of systems which integrate various reasoning techniques.

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

mlj04.tex; 2/03/2006; 17:03; p.1



2 Colton and Muggleton

1. Introduction

If one were to take mathematics textbooks as indicating how mathe-
matical theories are constructed, it would appear that the process is
highly structured: definitions are made, then conjectures involving the
definitions are found and proved. However, this belies the fact that
mathematics evolves in a much more organic way. In particular, it
would appear that mathematics is produced in an entirely deductive
way. While deduction and the notion of truth sets mathematics apart
from other sciences, inductive techniques are also very important in
the development of mathematical theories. Often, looking at particular
examples or counterexamples to a theorem and generalising a property
found for all of them leads to the outline of a proof. Moreover, many
theorems, including famous theorems such as Fermat’s Last Theorem
and open questions such as Goldbach’s conjecture (that every even
number greater than 2 is the sum of two primes), were found induc-
tively by looking at examples and generalising results. Indeed, some
mathematical geniuses such as Ramanujan have made entire careers
out of an ability to notice patterns in mathematical data (coupled with
fine analytical abilities to be able to prove that such patterns are not
coincidences).

The application of machine learning techniques to scientific datasets
has been highly successful. Inductive Logic Programming has been a
particularly useful method for scientific discovery due to the ease of
interpreting the first order hypotheses in the context of the domain of
interest. Such applications have led to breakthroughs in those domains
of interest and have also driven the development of ILP systems. The
application of AI techniques to mathematical discovery tasks, however,
has largely involved computer algebra systems, theorem provers and
ad-hoc systems for generating concepts and conjectures. Such ad-hoc
systems have included the AM system (Lenat, 1982) which worked in
set theory and number theory, the GT system (Epstein, 1988) which
worked in graph theory, the IL system (Sims and Bresina, 1989) which
worked with number types such as Conway numbers (Conway, 1976),
and the Graffiti program (Fajtlowicz, 1988), which has produced scores
of conjectures in graph theory that have gained the attention of graph
theorists worldwide.

General purpose machine learning systems have rarely been used for
discovery tasks in mathematics. We discuss here the application of the
HR (Colton, 2002b) and Progol (Muggleton, 1995) machine learning
programs to discovery tasks in mathematics. We aim to show that
mathematics is a challenging domain for the use of learning systems
such as Inductive Logic Programming, and we hope to promote the

mlj04.tex; 2/03/2006; 17:03; p.2



Mathematical Applications of ILP 3

usage of inductive tools for mathematical discovery tasks. While Progol
is an established ILP system, HR has historically not been described
as an ILP system. However, many applications of HR have required
the production of first order hypotheses about data and background
knowledge expressed in a Prolog-style manner, and the core function-
ality of HR can be expressed in ILP terminology. In (Colton, 2003),
we presented the first partial description of HR as an ILP system, and
we build on this work to provide a full description here. HR performs
a novel ILP routine called automated theory formation (ATF), which
combines inductive and deductive reasoning to form clausal theories
consisting of classification rules and association rules. HR generates
definitions using a set of production rules, interprets the definitions
as classification rules, then uses the success sets of the definitions to
induce hypotheses from which it extracts association rules. It uses third
party theorem provers and model generators to check whether the as-
sociation rules are entailed by a set of user supplied axioms. Moreover,
it measures the value of each definition and drives a heuristic search by
choosing the best definitions to build new ones from.

HR has been applied successfully to a number of predictive, descrip-
tive and subgroup discovery tasks in domains of pure mathematics. We
provide a detailed survey of applications of HR which have led to it
producing number theory results worthy of journal publication; graph
theory results rivalling those of the highly successful Graffiti program
(Fajtlowicz, 1988); and algebraic results leading to novel classification
theorems and challenge problems for automated theorem provers. We
have also applied the ATF algorithm to the enhancement of AI tech-
niques such as constraint solving and theorem proving, with much
success.

We believe the key to HR’s success lies in three areas. Firstly, the
production rules have been developed over a number of years to enable
HR to construct important concepts in mathematics. While not neces-
sarily mimicking mathematicians, the production rules have proven to
be highly general by constructing many important, existing concepts
and many interesting new concepts for which they were not originally
conceived. Secondly, HR’s ability to induce conjectures from the data
alone means that it can construct empirically plausible but non-trivial
to prove hypotheses about the data. The history of mathematics is
littered with theories born out of an analysis of a seemingly unexplain-
able pattern. Thirdly, HR’s ability to call upon third party software
means that we can draw upon the wealth of research into other areas
of mathematical reasoning. This has greatly enhanced HR’s power and
flexibility.
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4 Colton and Muggleton

Whether other ILP techniques and machine learning approaches in
general can be as successful as ATF in mathematics is an interesting
open question. To further promote pure mathematics as a challenging
domain for ILP systems, we present the first application of Progol to
an algebraic domain – we use Progol to find properties of quasigroups,
semigroups and magmas of varying sizes which differentiate pairs of
non-isomorphic objects. This development is particularly interesting
because algebraic domains have been an important proving ground
for both deduction systems and constraint solvers. We believe that
AI programs written for discovery tasks will need to simultaneously
employ a variety of reasoning techniques such as induction, abduction,
deduction, calculation and invention. Moreover, we argue that math-
ematics is not only a challenging domain for the application of ILP
systems, but that mathematics could be a good domain in which to
develop a new generation of systems which integrate various reasoning
techniques.

In section 2, we describe the Automated Theory Formation routine
and its implementation in the HR system. We include details of input
to and output from the system, how knowledge is represented and how
theory formation steps are used to build up the theory. In section 3, we
provide more details of how HR forms new definitions from old ones,
and we provide a partial characterisation of the space of definitions
it searches. In section 4, we describe recent developments which have
enabled HR to work with noisy and incomplete data. In section 5, we
describe various search strategies available to HR, and we describe how
HR evaluates the worth of the definitions it produces. In section 6, we
describe three successful applications of HR to mathematical discovery,
and in section 7, we discuss how Automated Theory Formation has been
used to enhance other AI techniques. Finally, in section 8, we compare
HR to other ILP systems and provide details of an application using
Progol to solve a set of algebraic discrimination problems. We conclude
by further promoting mathematics as a worthy domain for machine
learning applications, and we discuss future directions for this work.

2. Automated Theory Formation

We describe here how HR forms a theory using the Automated Theory
Formation (ATF) algorithm. To do so, in section 2.1, we discuss the
inputs to and outputs from the system. In section 2.2, we describe how
knowledge is represented within the system. In section 2.3, we describe
how theory formation steps add knowledge to the theory. We will use
a session in number theory as a running example. In sections 3, 4 and
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5, we expand on three important aspects of the ATF algorithm and its
implementation.

2.1. Input and Output

The knowledge input to HR consists of information in one of five
different formats. Firstly, the user can supply some constants, which
may represent different objects such as integers, graphs, groups, etc.
Secondly, the user can supply some predicates which describe these
constants. For instance, in number theory, background predicates may
include a test of whether one number divides another. Thirdly, the
user may supply a set of axioms, which are taken to be true hypotheses
relating some of the predicates in the background knowledge. During
theory formation, attempts will be made by an automated theorem
prover to determine whether certain association rules are entailed by
these axioms. Hence, the axioms are given in the language of the the-
orem prover being employed, which is usually Otter, a state of the art
resolution prover (McCune, 1990). The predicate names in the axioms
must match with those in the background knowledge. Fourthly, for pre-
dictive tasks, the user may supply a classification of a set of examples,
to be used in an evaluation function during theory formation. Finally,
the program runs as an any-time algorithm by default, but the user
may also supply termination conditions, which are often application
specific.

The background predicates and constants are usually supplied in one
background theory file, and the axioms in another, so that the same
axioms can be used with different background files. The classification
of examples and the specification of termination conditions is done on-
screen. The background theory and axiom files for a number theory
session are given in figure 1. We see that the user has supplied the
constants 1 to 10 and four background predicates. The first of these
is the predicate of being an integer, which provides typing information
for the constants appearing in the theory. The other three background
predicates are: (i) leq(I,L), which states that integer L is less than
or equal to integer I (ii) divisor(I,D), which states that integer D
is a divisor of integer I and (iii) multiply(I,A,B) stating that A * B
= I . Note that typing information for each variable in each predicate
is required, which is why the background file contains lines such as
leq(I,L) -> integer(L). The axioms in the integer.hra file are ob-
vious relationships between the predicates supplied in the background
file. For instance, the line:

all a b c (multiply(a,b,c) <-> multiply(b,a,c)).
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6 Colton and Muggleton

integer.hrd (background theory)

int001

integer(I)

integer(1).integer(2).integer(3).integer(4).integer(5).

integer(6).integer(7).integer(8).integer(9).integer(10).

int002

leq(I,L)

leq(I,L) -> integer(I)

leq(I,L) -> integer(L)

leq(1,1).leq(2,1).leq(2,2).leq(3,1).leq(3,2).leq(3,3).

leq(4,1).leq(4,2).leq(4,3).leq(4,4). ... leq(10,10).

int003

divisor(I,D)

divisor(I,D) -> integer(I)

divisor(I,D) -> integer(D)

divisor(1,1).divisor(2,1).divisor(2,2).divisor(3,1).divisor(3,3).

divisor(4,1).divisor(4,2).divisor(4,4). ... divisor(10,10).

int004

multiply(I,A,B)

multiply(I,A,B) -> integer(I)

multiply(I,A,B) -> integer(A)

multiply(I,A,B) -> integer(B)

multiply(1,1,1).multiply(2,1,2).multiply(2,2,1).

multiply(3,1,3).multiply(3,3,1).multiply(4,1,4).

multiply(4,2,2).multiply(4,4,1). ... multiply(10,10,1).

integer.hra (axioms in Otter format)

all a (divisor(a,a)).

all a (leq(a,a)).

all a b (divisor(a,b) -> leq(a,b)).

all a b (leq(a,b) & leq(b,a) <-> a=b).

all a b c (multiply(a,b,c) -> divisor(a,b)).

all a b c (multiply(a,b,c) -> divisor(a,c)).

all a b c (multiply(a,b,c) <-> multiply(b,a,c)).

Figure 1. Example input files for number theory
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portrays the axiom that multiplication is commutative.
All five types of information are optional to some extent. In partic-

ular, in algebraic domains such as group or ring theory, the user may
supply just the axioms of the domain, and provide no constants or back-
ground predicates. In this case, HR extracts the predicates used to state
the axioms into the background knowledge file, and uses the MACE
model generator (McCune, 1994) to generate a single model satisfying
the axioms. MACE, which uses the same input syntax as Otter, will be
used repeatedly during theory formation to disprove various false hy-
potheses made by HR, and this will lead to more constants being added
to the theory. Alternatively, the user may supply no axioms, and only
background predicates and constants. In this case, the system would
not be able to prove anything, unless the user provided axioms during
theory formation, as responses to requests from HR. Note that predi-
cates in the background knowledge file may call third party software, in
particular computer algebra systems like Maple (Abell and Braselton,
1994) and Gap (Gap, 2000), or hard-coded functions inside HR. For
details of the integration of HR and computer algebra packages, see
(Colton, 2002d).

The output from HR is voluminous and varied. Of particular impor-
tance, however, is the theory consisting of a set of classification rules
and a set of association rules1 that HR produces. Each classification
rule is expressed as a predicate definition, i.e., a disjunction of program
clauses with the same head predicate. Each program clause in the
definition is range restricted2 and of the form:

conceptC(X1, . . . , Xn)← p1(A1,1, . . . , A1,n1) ∧ . . . ∧ pm(Am,1, . . . , Am,nm)

where C is a unique identification number, each Xi is a variable, and
each Ai,j may be a constant or a variable which may or may not be
the same as a head variable. Body literals may be negated, and there
are further restrictions so that each definition can be interpreted as
a classification rule, as described in section 3. Association rules are
expressed as range restricted clauses of the form:

q0(X1, . . . , Xn)← q1(A1,1, . . . , A1,n1) ∧ . . . ∧ qm(Am,1, . . . , Am,nm)

where the Xi and each Ai,j are variables as before, and each qk is either
a predicate supplied in the background theory file or is one invented by
HR. Each body literal may be negated, and the head literal may also
be negated.

1 Note that the definition of association rules used here is different from that used
in data mining applications.

2 A range restricted clause is such that every term in the head literal is found in
at least one body literal.
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8 Colton and Muggleton

# User Given Classification Predicates
concept1(X) :- integer(X).
concept2(X,Y) :- integer(X), integer(Y), leq(X,Y)).
concept3(X,Y) :- integer(X), integer(Y), divisor(X,Y).
concept4(X,Y,Z) :- integer(X), integer(Y), integer(Z),
multiply(X,Y,Z).

# Invented Counting Predicates
count1(X,N) :- findall(Y,(integer(Y),divisor(X,Y)),A),
length(A,N).

# Invented Classification Predicates
concept5(X,Y) :- integer(X), integer(Y), multiply(X,Y,Y).
categorisation: [1][4][9][2,3,5,6,7,8,10]

concept6(X) :- integer(X), integer(Y), multiply(X,Y,Y).
categorisation: [1,4,9][2,3,5,6,7,8,10]

concept7(X,N) :- integer(X), integer(N), count1(X,N).
categorisation: [1][2,3,5,7][4,9][6,8,10]

concept8(X) :- integer(X), count1(X,2).
categorisation: [2,3,5,7][1,4,6,8,9,10]

# Unproved Association Rules
\+ count1(X,2) :- integer(X), integer(Y), multiply(X,Y,Y).
\+ multiply(X,Y,Y) :- integer(X), integer(Y), count1(X,2).

Figure 2. An example output file in number theory

For a non-mathematical example of classification and association
rules, one can imagine HR producing these two clauses when forming
a theory about animals3:

concept17(X)← mammal(X), number of legs(X, 2)

class(X, fish)← has gills(X), produces eggs(X)

The first of these is a classification rule, which HR uses to subgroup
objects in the theory – in this case mammals with 2 legs. The second of
these is an association rule, which HR presents to the user as potentially
useful information about the domain – in this case that an animal is a
fish if it has gills and produces eggs.

3 For example using the background theory to the animals dataset supplied with
distributions of the Progol program (Muggleton, 1995).
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For a mathematical example, an output file for a short, illustrative,
number theory session is given in figure 2. HR has many modes for its
output and – dependent on the application at hand – it can produce
more information than that presented in figure 2. However, the clausal
information is usually the most important, and we have presented the
clausal theory in a Prolog style for clarity. The first four definitions are
those given in the input file. Note that HR has added the variable typing
information to them, so that it is clear, for instance, in concept2/2
that both variables are integers. This is important information for HR,
and in every clause for each classification rule HR produces, there are
typing predicates for every variable in the body or head. Following the
user-given definitions in the output file, we see that HR has invented
a new predicate, called count1/2 which counts the number of divisors
of an integer (the τ function in number theory). The first classification
rule it has introduced is concept5/2, which checks whether the second
variable is the square root of the first variable. The next definition
provides a boolean classification into square numbers and non-squares.
Following this, concept7/2 uses count1 to count the number of divi-
sors of an integer (there seems to be redundancy here, but count1/2
can be used in other definitions – in fact it is used in concept8).
Finally, concept8/1 provides a classification into prime and non-prime
numbers, because prime numbers have exactly two divisors.

In the output file, each classification rule is followed by the way in
which the rule is interpreted to categorise the constants (which, in this
case, are the integers 1 to 10). More details about this are given in
section 3. After the classification predicates, the program has listed the
unproved association rules it has found so far. The first of these states
that if an integer is a square number (i.e., integers X for which there
is some Y such that multiply(X,Y,Y)), then it will not be a prime
number. The second states that if an integer is a prime number then it
cannot be a square number. While both of these are in fact true, they
are listed as unproved in the output file, because Otter could not prove
them. This is actually because no attempt was made to use Otter, as
rules containing counting predicates are usually beyond the scope of
what Otter can prove.

2.2. Representation of Knowledge

HR is implemented in Java and so is an object oriented program. Each
theory constituent (definition, association rule, etc.) occupies an object
of the appropriate class. For clarity, we will use the more abstract notion
of frames (Brachman and Levesque, 1985), as objects can be seen as
frames, and this allows us to easily describe the components of the
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10 Colton and Muggleton

theories that HR produces. The first slot in each frame contains clausal
information, so HR effectively builds up a clausal theory embedded
within a frame representation. There are three types of frame:

• Constant frames. The first slot in these frames contains a single
ground formula of the form type(constant), where type is the name
of a unary predicate which has appeared in the background theory and
constant is a constant which has either appeared in the background
theory or has been generated by the theory formation process. Each
constant will appear in a single constant frame, and hence will be of
only one type. For instance, in the example session described in section
2.1, there would be a constant frame for each of the numbers 1 to 10,
where the ground formula is integer(1), integer(2), etc.

• Concept frames. The first slot in these frames contains a definition
of the form for classification rules described above. The other slots
contain the results of calculations related to the definition. In partic-
ular, one slot contains the success set of the definition. Another slot
contains the classification of the constants in the theory afforded by
the definition (see section 3.1). At the end of the session in our running
example, there are 8 concept frames, and, for example, the 6th of these
contains a definition with a single clause of the form:

concept6(X)← integer(X) ∧ integer(Y ) ∧multiply(X, Y, Y )

Note that the count1/2 predicate is not stored in a concept frame of
its own. Rather, such invented predicates are stored centrally, as they
may be used by multiple definitions.

• Hypothesis frames. The first slot in a hypothesis frame contains
one or more association rules in the form as described above. The other
slots contain information about the hypothesis. In particular, there is
a slot describing the status of each association rule as either proved,
disproved, or open. Sets of association rules are stored together, rather
than in individual frames, because the whole can usually be interpreted
as more than the sum of the parts. For instance, the two association
rules in figure 2 are stored in the first slot of a single hypothesis frame.
This is because they were derived from a non-existence hypothesis
stating that it is not possible to have an integer which is both square
and prime. This information is also recorded in the hypothesis slot, and
hence the hypothesis can be presented as the following negative clause,
which is easier to understand:

← integer(X), integer(Y ),multiply(X,Y, Y ), count1(X, 2)
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2.3. Theory Formation Steps

Table I. Outline of a theory formation step

Inputs: Typed examples E

Background predicates B

Axioms A

Classification of examples C

Termination conditions T

Outputs: New examples N (in constant frames)

Classification rules R (in concept frames)

Association rules S (in hypothesis frames)

(1) Check T and stop if satisfied

(2) Choose old definition(s) and production rule from the top of the agenda

(3) Generate new definition D from old definition(s), using production rule

(4) Check the consistency of D and if not consistent, then start new step

(5) Calculate the success set of D

(6) If the success set is empty, then

(6.1) derive a non-existence hypothesis

(6.2) extract association rules and add to S

(6.3) attempt to prove/disprove association rules using A

(6.4) if disproved, then add counterexample to N, update success sets and

go to (7), else start a new step

(7) If the success set is a repeat, then

(7.1) derive an equivalence hypothesis

(7.2) extract association rules and add to S

(7.3) attempt to prove/disprove association rules using A

(7.4) if disproved, then add counterexample to N, update success sets and

go to (8), else start new step

(8) Induce rules from implications

(8.1) extract association rules and add to S

(8.2) attempt to prove/disprove association rules using A

(9) Induce rules from near-equivalences and near-implications

(9.1) extract association rules and add to S

(10) Measure the interestingness of D (possibly using C)

(11) Perform more calculations on D and add it to R

(12) Update and order the agenda

HR constructs theories by performing successive theory formation
steps. An individual step may add nothing to the theory, or it may
add a new concept frame, a new hypothesis frame, a new constant
frame, or some combination of these. At the end of the session, various
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12 Colton and Muggleton

routines are used to extract and present information from the frames.
An outline of an individual step is given in table I. After checking
whether the termination conditions have been satisfied, each step starts
by generating a new definition. How to build a new definition from
previous ones is prescribed by an agenda which is ordered according
to a search strategy, as described in section 5. The generation of new
definitions is achieved using a production rule to derive a new definition
from one (or two) old definitions. This process is described in detail
in section 3, but for our current purposes, we can see the kinds of
definitions HR produces in figure 2. The new definition is checked for
inconsistencies, e.g., containing a literal and its negation in the body
of a clause. For example, a definition may be produced of the form:

conceptC(X, Y )← integer(X) ∧ integer(Y ) ∧ leq(X,Y ) ∧ ¬leq(X, Y )

so that conceptC is trivially unsatisfiable. If, like this one, the definition
is not self-consistent, the step is aborted and a new one started.

After the self-consistency check, the success set of the new definition
is calculated. For instance, the success set for definition concept6/1
above would be: {concept6(1), concept6(4), concept6(9)}, because, of
the numbers 1 to 10, only 1, 4 and 9 are square numbers. If the success
set is empty, then this provides evidence for a non-existence hypothesis.
That is, HR induces the hypothesis that the definition is inconsistent
with the axioms of the domain, and generates some association rules to
put into the slot of a new hypothesis frame. The extraction of associa-
tion rules is done by negating a single body literal (which doesn’t type
the variables) and moving it to the head of the rule. In our running
example, HR invented the following definition at the start of a theory
formation step:

concept9(X)← integer(X) ∧ integer(Y ) ∧multiply(X, Y, Y ) ∧ count1(X, 2)

The success set of this definition was empty, so a non-existence hypoth-
esis was induced and a hypothesis frame was added to the theory. In the
first slot were put the two association rules which could be extracted,
which were:

¬multiply(X, Y, Y )← integer(X) ∧ integer(Y ) ∧ count1(X, 2)
¬count1(X, 2)← integer(X) ∧ integer(Y ) ∧multiply(X,Y, Y )

For each rule extracted, an attempt to prove that it is entailed by the
axioms is undertaken, by passing Otter the axioms and the statement
of the rule. If the attempt fails, then HR tries to find a counterexample
to disprove the rule. In algebraic domains, this is done using MACE,
but in number theory, HR generates integers up to a limit to try as
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counterexamples. If a counterexample is found, a new constant frame
is constructed for it and added to the theory. The success set for every
definition is then re-calculated in light of the new constant. This can
be done if the user has supplied information about calculations for
background predicates (e.g., by supplying Maple code). If no extracted
rule is disproved, then the step ends and a new one starts.

If the new success set is not empty, then it is compared to those
for every other definition in the theory, and if an exact repeat is found
(up to renaming of the head predicate), then an equivalence hypothesis
is made. A new hypothesis frame is constructed, and association rules
based on the equivalence are added to the first slot. These are derived
by making the body of the old definition imply a single (non-typing)
literal from the body of the new definition, and vice versa. For example,
if these two definitions were hypothesised to be equivalent:
conceptold(X,Y )← p(X) ∧ q(Y ) ∧ r(X, Y )
conceptnew(X, Y )← p(X) ∧ q(Y ) ∧ s(X, X, Y )
then these association rules would be extracted:
r(X,Y )← p(X) ∧ q(Y ) ∧ s(X, X, Y )
s(X,X, Y )← p(X) ∧ q(Y ) ∧ r(X, Y )
In terms of proving and disproving, these association rules are dealt
with in the same way as those from non-existence hypotheses. HR also
extracts prime implicates by systematically generating larger subsets
of the body literals and attempting to use Otter to prove that the
subset implies the goal. HR stops when it finds such a subset, as this
is guaranteed to be a prime implicate. For more details of this pro-
cess, see (Colton, 2002c). More sophisticated techniques for extracting
prime implicates are available (Jackson, 1992), but we have not yet
implemented them.

If the success set is not empty, and not a repeat, then the new
definition will be added to the theory inside a concept frame. Before
this happens, attempts to derive some association rules from the new
definition are made. In particular, the success set of each definition in
the theory is checked, and if it is a proper subset or proper superset
of the success set for the new definition (up to renaming of the head
predicate), then an appropriate implication hypothesis is made. A set
of association rules are extracted from any implication found and at-
tempts to prove/disprove them are made as before. As described in
section 4, at this stage, HR also attempts to make conjectures which
are nearly true, i.e., they have a small set of counterexamples.

A new concept frame is added to the theory, with the new definition
in the first slot. Theory formation steps end with various calculations
being performed using the definition, its success set and details of the

mlj04.tex; 2/03/2006; 17:03; p.13



14 Colton and Muggleton

construction process, with the results put into the slots of the new
concept frame. The calculations are largely undertaken to give an as-
sessment of the ‘interestingness’ of the definition, as prescribed by the
user with a weighted sum of measures, as described in section 5. At
the end of the step, all possible ways of developing the new definition
are added to the agenda. The agenda is then ordered in terms of the
interestingness of the definitions, and the prescription for the next step
is taken from the top and carried out. The agenda is ordered according
to the search strategy being employed, as described in section 5.

3. Searching for Definitions

To recap, in the ATF algorithm, a clausal theory is formed when frames
which embed classification and association rules are added to the theory
via theory formation steps. The inductive mechanism is fairly straight-
forward: the success set of each newly generated definition is checked
to see whether (a) it is empty, or (b) it is a repeat. In either case, a
hypothesis is made, and association rules are extracted. If neither (a)
nor (b) is true, the new definition is added to the theory and interpreted
as a classification rule, and association rules are sought, again using
the success set of the definition. Clearly, the nature of the definitions
produced by HR dictates the contents of both the classification rules
and the association rules produced.

Exactly how HR forms a definition at the start of each step is
determined by a triple:

〈 Production Rule, Definitions, Parameterisation 〉
where Production Rule is the name of a general technique for construct-
ing new definitions from old ones, Definitions is a set containing the
identification numbers of one or two old definitions from which the new
one will be built, and Parameterisation specifies fine details about how
Production Rule will make a new definition from Definitions. When
HR updates the agenda by adding ways to develop a new definition, it
generates all possible parameterisations for each of the production rules
with respect to the new definition, and puts appropriate triples onto the
agenda. How parameterisations are generated, and how the production
rules actually operate, is carefully controlled so that HR searches for
definitions within a well defined, fairly constrained, space. We describe
below how each definition is interpreted as a classification rule and we
provide a partial characterisation of HR’s search space. Following this,
we describe the production rules which HR uses to search within this
space.
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HR currently has 16 production rules, which are either nullary,
unary or binary . Unary rules take a single old definition and produce
a new one, whereas binary rules take two old definitions and produce a
new one from them. HR’s single nullary rule produces new definitions
without reference to any old definition. The production rules are not
meant to be an exhaustive set, and the addition of a new production
rule will lead to an improvement of the ATF algorithm underlying HR.
We describe them in a rationalised way, namely as ways of taking one
(or two) clausal definitions and producing a new clausal definition. This
way of describing them enables comparison with other ILP systems and
is a more formal approach than we have previously used. The imple-
mentation of HR differs from this rationalised description somewhat. In
particular, in many cases, the definitions produced by HR are written
and stored in full first order logic, whereas in the description below, we
reduce them to logic programs using standard rewriting rules. Also, HR
produces the success set for these definitions independently from the
definitions. That is, the examples satisfying a definition are generated
using only the examples of the old concepts, i.e., with no reference
to the new definition. This has potential for mismatches between the
definition and the examples of a concept. We believe there are no such
inconsistencies in HR as they are easy to detect because they result
in many incorrect conjectures being formed. HR generates the success
sets independently, because it has no underlying Prolog interpreter – a
situation we hope to change, as discussed in section 9.

For brevity, in the description of the production rules, we assume
that each old definition that HR builds new ones from contains a single
clause. Note, however, that the procedures scale up to full definitions in
obvious ways. For more details about the production rules, see (Colton
et al., 2000a) or chapter 6 of (Colton, 2002b).

3.1. A Partial Characterisation of HR’s Search Space

Definition 1. fully typed program clauses
Suppose we have been given typing information about every constant
in a theory, for instance the unary predicate integer(4) in the input
file of figure 1. We call these predicates the typing predicates, and we
assume that each constant has only one type. A program clause C
with variables X1, . . . , Xm (either in the body or the head) is called
fully typed if each Xi appears in a single non-negated typing predicate
in the body of C. We say that the type of a variable is this single
predicate. A definition is fully typed if each clause is fully typed and
corresponding head variables in each clause are of the same type. Given
a fully typed definition, D, with head predicate p(Y1, . . . , Ym) then we
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16 Colton and Muggleton

call the set of constants which satisfy the typing predicate for Y1 the
objects of interest for D.

Definition 2. 1-connectedness
Suppose C is a program clause of the form:

p(X1, . . . , Xm)← q1(Y11, . . . , Y1n1), . . . , ql(Yl1, . . . , Ylnl
)

where each Xi is a variable and each Yij may be a variable or a ground
term. Then, a variable V which appears in a literal in the body of C is
said to be 1-connected if it satisfies the following recursive definition:

• V = X1 or
• ∃ i, j, k such that j 6= k, Yij = V and Yik = X1 or
• ∃ i, j, k such that j 6= k, Yij = V and Yik is a 1-connected variable.

In English, this says that V is 1-connected if V is X1, or V appears in
a body literal with X1, or V appears in a body literal with a variable
which appears in a body literal with X1, etc. Hence there is a chain of
variables which connect V to X1 where the links in the chain are made
by two variables being found in the same body literal.

If every variable in either the body or head of C is 1-connected, we
say that C is 1-connected. Definitions which contain only 1-connected
clauses are similarly called 1-connected. As with fully typed defini-
tions, 1-connected definitions are a specialisation of range-restricted
definitions. The notion of 1-connectedness clearly generalises to the
notion of n-connectedness, and clauses can be both 1-connected and
2-connected at the same time, etc. Our main interest is in 1-connected
clauses, but we occasionally use the general notion of n-connectedness
when describing how HR forms concepts.

Example 1.
Consider this definition, where p and q are typing predicates:

conceptC(X, Y )← p(X) ∧ q(Y ) ∧ p(Z), r(X,Y ) ∧ s(Y, Z)

This is clearly fully typed, because p(X), q(Y ) and p(Z) provide typing
information. It is also 1-connected, because Y is in a body literal with
X (variable number 1 in the head), hence Y is 1-connected and Z is in
a body literal with Y , which is 1-connected.
Definition 3. classifying function
Suppose we have a fully typed definition, D, of arity n, with head
predicate p and success set S. Then, given a constant, o, from the
objects of interest for D, the following specifies the classifying function
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for D:

f(o) =




∅ if n = 1 & p(o) /∈ S;
{∅} if n = 1 & p(o) ∈ S;
{(t1, . . . , tn−1) : p(o, t1, . . . , tn−1) ∈ S} if n > 1.

We build the classification afforded by D by taking each pair of objects
of interest, o1 and o2 and putting them in the same class if f(o1) =
f(o2).
Example 2.
As an example classification, we look at concept7 in figure 2, which is
a definition with head predicate of arity 2. It represents the number
theory function τ , which counts the number of divisors of an integer.
The success set for this is:

{(1, 1), (2, 2), (3, 2), (4, 3), (5, 2), (6, 4), (7, 2), (8, 4), (9, 3), (10, 4)}
hence f(1) = {(1)}, and for the numbers 2, 3, 5 and 7, f outputs {(2)},
for the numbers 4 and 9, f outputs {(3)}, and for the numbers 6, 8
and 10, f outputs {(4)}. Hence the classification afforded by concept7
is: [1][2,3,5,7][4,9][6,8,10], as shown in figure 2.

Theorem 1.
Suppose we are given a fully typed definition, D, with a non-empty
success set, and where each head variable appears in at least two distinct
body literals. If D is not 1-connected, then there is a literal L in the
body of some clause C of D such that L can be removed from C without
altering the classification afforded by D.

Proof.
Note that the restriction to definitions where all head variables appear
in at least two distinct body variables means that removing a literal
cannot remove all reference to a head variable in the body (which
would make calculating the success set impossible). Given that D is
not 1-connected, then there must be a clause C ′ with a body literal L′
containing only constants or variables which are not 1-connected. This
is because, if one of the terms in L′ was 1-connected, then by definition
they would all be. As there is no connection between the first variable
in the head of C ′ and any variable in L′, the values that those variables
take in the success set for C ′ will be completely independent of the
value taken by the first head variable. This means that the classifying
function for D will be independent of these variables, and hence we can
take C and L in the theorem statement to be C ′ and L′ respectively. 2

HR is designed to search a space of function free, fully typed, 1-connected
definitions where each head variable appears in at least two distinct
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18 Colton and Muggleton

body literals. The variable typing is important for HR’s efficiency:
given an old definition to build from, for each production rule, HR
can tell from the typing predicates alone which parameterisations will
produce a definition where a variable is assigned two types (and hence
not satisfiable, because each constant is of a single type). Such pa-
rameterisations are not put on the agenda. Also, when checking for
repeat success sets, HR uses variable typing information to rule out
repeats quickly. More importantly, in light of theorem 1, the set of 1-
connected definitions is a minimal set with respect to the classifications
afforded by them. That is, with this language bias, assuming that the
user supplies appropriate background definitions, HR avoids building
definitions which are guaranteed to have a literal which is redundant
in the generation of the classification. As the main reason HR forms
definitions is to interpret them as classification rules, it is important
to know that it searches within this minimal set (although we do not
claim that it searches all of this space).

3.2. Nullary Production Rules

3.2.1. The Entity-Disjunct Production Rule
This production rule is parameterised by a list of constants from the
domain, and produces definitions with a clause for each constant. Each
clause has a head predicate of arity one, and a single body literal that
states that the variable in the head is equal to the constant. For in-
stance, if the parameterisation was {dog, cat}, the definition produced
would be:

conceptnew(X)← equals(X, dog)
conceptnew(X)← equals(X, cat)

This rule was implemented in order for HR to be able to undertake non-
theorem correcting methods as described in section 4, and is not used
during normal theory formation. It is employed only on occasions when
the correction methods require definitions such as conceptnew above.

3.3. Unary Production Rules

There are nine unary production rules, which take a single old definition
and produce a new one from it. Six of these, namely the Exists, Match,
Size, Split, LinearConstraint and Equals rules apply to generic domains.
The Embed-algebra, Embed-graph, and Record rules, however, are
more specific to domains of mathematics: algebra, graph theory and
number theory respectively.
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3.3.1. The Exists Production Rule
Each parameterisation for this production rule is a list of integers
[k1, . . . , kn]. The rule takes a copy of the old clause for the new one
and then removes variables from the head predicate in each position
ki. The variables are not removed from body literals. For example if
it used the parameterisation [2,3], then HR would turn conceptold into
conceptnew as follows:

conceptold(X,Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z)
conceptnew(X)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z)

HR generates parameterisations so that the first variable in the head
predicate is never removed. This ensures 1-connectedness of conceptnew,
given 1-connectedness of conceptold.

3.3.2. The Match and Equals Production Rules
The Match rule takes an old definition and alters variable naming in
the head predicate so that some of the variables become the same. The
same change is applied where the variables appear in the body. Given
an old definition of arity n, then the parameters are a list of n integers,
with the i-th integer specifying which variable number the i-th variable
should be changed to. For example, suppose we started again with
conceptold above. If this was passed through the match production rule
with parameterisation [1,2,2], then the first variable would be replaced
by the first variable (hence no change). The second variable would
be replaced by the second variable, and the third variable would be
replaced by the second variable. Hence this would produce the following
definition:

conceptnew(X, Y, Y )← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Y )

However, there is redundancy in having two Y variables in the head,
so the second one is removed, giving us the final definition:

conceptnew(X, Y )← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Y )

When repeated variables are removed like this, the latter one is al-
ways taken, thus the first variable endures, ensuring that the definition
produced has the 1-connectedness property.

The Equals production rule is very similar to the Match rule. It takes
the same parameterisations as Match, but rather than homogenising
variables to force their equality, it simply adds on appropriate equality
predicates to the end of the old definition. Hence, given the old concept
and parameterisation above, the definition that Equals would produce
is:

conceptnew(X,Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z), equals(Y,Z)
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Clearly, such constructions do not alter the 1-connectedness of the
definition.

3.3.3. The Split Production Rule
This takes a single old definition and instantiates variables to constants
in the new definition, removing literals which end up with no variables
in them and removing constants from the head literal. The parameter-
isations are pairs of lists, with the first list corresponding to variable
positions in the head, and the second list containing the constants to
which the variables will be instantiated. For instance, if HR started
with conceptold as above, and parameterisation [[2, 3], [dog, cat]], the
new definition generated would be:
conceptnew(X)← p(X) ∧ s(X, dog, cat),
because q(dog) and r(cat) would be removed, as they contain no vari-
ables. Parameterisations are generated so that the first head variable
is never instantiated, to ensure 1-connectedness. Also, HR does not
generate parameterisations which would instantiate variables of one
type to constants of a different type.

3.3.4. The Size Production Rule
This takes a single old definition and a parameterisation which consists
of a list of integers [i1, . . . , in] representing argument positions in the
head predicate. This production rule removes the variables from the
head in the positions specified by the parameters and adds in a new
variable of type integer at the end of the head predicate. Furthermore,
if it has not already been invented, HR invents a new predicate of the
form countid, where id is a unique identification number. This counts
the number of distinct tuples of constants in the success set of the old
definition. The tuples are constructed by taking the i1-st, i2-nd etc.
variable from each ground formula in the success set of the old defi-
nition. We use the standard Prolog findall/2 and length/2 predicates
to represent the invented predicate. For example, suppose HR started
with conceptold above, and the parameterisation [2, 3]. It would first
invent this predicate:
countC(X, N)← findall((Y,Z), (q(Y )∧r(Z), s(X,Y, Z)), A)∧ length(A, N)

Note that every literal in the body of the old definition which contains
a 2 or 3-connected variable appears in the findall predicate (due to the
[2,3] parameterisation). The new definition would then be generated
as:
conceptnew(X, N)← p(X) ∧ integer(N) ∧ countC(X,N)
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Parameterisations are never generated which include the first variable,
so it is not removed. As the first variable will also appear in the counting
predicate, 1-connectedness is guaranteed.

3.3.5. The Linear-Constraint Production Rule
This production rule works only with definitions where two variables in
the head are typed as integers. The parameterisations dictate which two
integer variables to look at and how to relate them. The relations it is
allowed to impose are linear constraints, namely equality (which makes
the Equals production rule redundant, so that the Linear-Constraint
rule can be seen as a generalisation of Equals), less than, greater than,
less-than-or-equal-to or greater-than-or-equal-to. For instance, given
the parameterisation of {(2,3), less-than}, and the old definition above,
the new definition would be:

conceptnew(X, Y, Z)← p(X)∧q(Y )∧r(Z)∧s(X, Y, Z), less than(Y, Z)

It is possible to get the same functionality by supplying background
predicates representing such relationships and waiting for HR to com-
pose these concepts with the relevant ones in the theory. However,
imposing such constraints is a core functionality of theory formation
in most scientific domains, mathematics in particular. Hence we chose
to gain more control over the introduction of such constraints by im-
plementing the Linear-Constraint rule, rather than relying on the user
to add certain predicates to the background knowledge. This situation
is true of a number of production rules, and each rule has been care-
fully chosen for implementation given the benefits of having certain
functionalities always available.

3.3.6. The Embed-Algebra and Embed Graph Production Rules
The Embed-Algebra rule was implemented specifically for an applica-
tion in algebraic domains, where we wanted HR to invent sub-algebra
concepts. It takes a particular element type (for instance, central ele-
ments which commute with all others), and produces a definition which
discriminates between algebras where the set of elements satisfy par-
ticular axioms sets supplied by the user. For instance, in group theory,
this rule can be used to invent the concept of groups for which the
central elements themselves form a (sub)group. HR would notice that
this is true of all groups and re-discover the theorem that the centre
of a group forms a subgroup. Such sub-algebra concepts are difficult to
describe in a first order manner, so we omit discussion of that here.

The Embed-Graph production rule imposes a graphical structure on
the variables of a definition such that constants become the nodes of the
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graph and any two related by the definition are joined by an edge in the
graph. This can be used in any domain, but was specifically designed
for use in graph theory. Inspired by the work described in (Steel, 1999),
we used it to produce cross domain theories, where graphs are found
embedded in concepts from number theory or algebraic domains such
as group theory. For instance, we have used HR to invent concepts
such as ‘divisor graphs’, where each integer is represented as a graph,
with the nodes of the graph being its divisors. Nodes are joined if one
divides the other. For some theorems about the planar nature of such
graphs, see the appendix of (Colton, 2002b). As with Embed-Graph,
such concepts are not easily represented in a first-order fashion, so we
omit details here.

3.3.7. The Record Production Rule
This production rule was implemented in order to enhance HR’s abil-
ity in the application to generating integer sequences as described in
section 6.1. A particularly common form of sequence construction is to
take a numerical function and record which integers produce a larger
output integer for the function than all smaller numbers. For instance,
a set of numbers known as highly composite integers are such that they
have more divisors than any smaller number. Note that this concept was
discovered by Ramanujan, and re-invented by the AM program (Lenat,
1982). Given definitions which describe a function taking an integer to
another integer, the Record production rule is able to produce a new
definition which can be used to construct such record sequences. Again,
details of representing this in a first order fashion are omitted.

3.4. Binary Production Rules

There are six binary production rules, which take a pair of old defi-
nitions and produce a new definition. The Compose, Disjunct, Forall
and Negate rules are generic, whereas the Arithmetic and NumRelation
rules are more specific to domains requiring the use of arithmetic and
inequalities.

3.4.1. The Compose Production Rule
This production rule takes two definitions, and for each pair of clauses
C1 and C2 – one from each definition – it produces the body of a new
clause by changing the variable names in the body of C2, conjoining
all the altered literals in C2 to the literals in the body of C1 and
removing any duplicate literals. A head is then constructed which is
used to turn each body into a clause, with the disjunction of these new
clauses forming the new definition. How the head is constructed and the
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variable names are altered is specified by the parameterisation, which
is a list containing integers or a dash sign. If the number of variables in
the head of C1 is f and if a number, n, appears in the parameterisation
at position p < f , then the n-th variable in the head of C2 will be set
to the variable name of the p-th variable in the head of C1 wherever
it appears in C2. If a number, n, appears in the parameterisation at
position p >= f , then the variable name of the n-th variable in the
head of C2 will be set to a unique variable name Un which is not found
anywhere in C1. A dash in the parameterisation at position q indicates
that the head variable at position q in C1 will not occur in any of the
literals imported from the body of C2. The variables in the head of the
new clause are taken to be the variables from the head of C1 followed
by the unique new variable names Ui described above.

As an example, suppose we start with two definitions containing
only a single clause each:

conceptold1(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X,Y, Z)
conceptold2(A,B, C)← r(A) ∧ q(B) ∧ p(C) ∧ t(A,B, C)

Suppose further that the Compose production rule was told to use pa-
rameterisation [−, 1, 0, 2], then the variables in the body of conceptold2

would first be altered. In particular, the number 1 appears in position
number 1 (counting from zero), in the parameterisation. Hence variable
number 1 in the head of conceptold2, namely B, will be set to variable
number 1 in the head of conceptold1, namely Y . Similarly, A will be
set to Z. Variable C is set to a new variable name not appearing
anywhere in conceptold1, for instance, V . This means the altered version
of conceptold2 becomes:

conceptold2′(Z, Y, V )← r(Z) ∧ q(Y ) ∧ p(V ) ∧ t(Z, Y, V )

The head of the new clause takes the variables from conceptold1 and
the new variable, V , and the body is taken as the conjunction of the
literals from conceptold1 and conceptold2′ thus:

conceptnew(X, Y, Z, V )←
p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z) ∧ r(Z) ∧ q(Y ) ∧ p(V ) ∧ t(Z, Y, V )

Repeat literals are discarded, leaving the final clause as:

conceptnew(X, Y, Z, V )←
p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z) ∧ p(V ) ∧ t(Z, Y, V )

Note that the parameterisations are generated so that the new def-
inition does not have typing conflicts, i.e., once repeated literals have
been removed, each variable is still typed by a single predicate. The
generated definitions are 1-connected as the originals were 1-connected.
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3.4.2. The Disjunct Production Rule
In this case, both definitions must be of the same arity and the variables
in the head predicates of each definition must be of the same type. Then
the production rule simply adds the clauses of the first definition to the
clauses of the second definition. The combined definition expresses two
ways in which the definition can be satisfied, hence it represents a
disjunction.

3.4.3. The Negate Production Rule
The negate rule takes the same kind of parameterisations as for the
compose rule, with the restriction that the arity of C2 is less than or
equal to the arity for C1. This means that the head of the new definition
will be the same as the head for C1. We use full first order logic to
express an intermediate definition produced by the production rule,
then derive a logic program representation of the definition. The Negate
production rule re-names variables in C2 like the compose production
rule, then it removes any re-named literals from C2 which appear in
the body of C1. It then conjoins the negation of the entire conjunction
of the literals remaining in the body of C2 to those of C1. From this,
it extracts definite clauses using standard re-write rules.

For example, suppose we start with these old definitions:

conceptold1(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X,Y, Z) ∧ t(X,Y )
conceptold2(A,B, C)← r(A) ∧ q(B) ∧ p(C) ∧ u(A, B,C), v(A,B)

Suppose also that we are using the parameterisation [2,1,0]. Then the
negate rule would first alter conceptold2 as for the compose rule:

conceptold2′(Z, Y, X)← r(Z) ∧ q(Y ) ∧ p(X) ∧ u(Z, Y, X) ∧ v(Z, Y )

and remove any literals appearing also in the body of conceptold1,
namely p(X), q(Y ) and r(Z). It would then negate what is left of
the body conjunction, and add this to the body of C1. Using the head
from C1, it would construct this (first order) intermediate definition:

conceptnew(X, Y, Z)←
p(X) ∧ q(Y ) ∧ r(Z) ∧ s(X, Y, Z) ∧ t(X, Y ) ∧ ¬(u(Z, Y,X) ∧ v(Z, Y ))

This is re-written to the final new definition with two clauses:

conceptnew(X, Y, Z)← p(X)∧q(Y )∧r(Z)∧s(X, Y, Z)∧t(X, Y )∧¬u(Z, Y,X)
conceptnew(X,Y, Z)← p(X)∧ q(Y )∧ r(Z)∧ s(X, Y, Z)∧ t(X, Y )∧¬v(Z, Y )

3.4.4. The Forall Production Rule
With the same restrictions on the parameterisations for the negate rule,
the forall production rule goes through the same routine of renaming
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variables and removing repeated literals as the negate rule, to produce
a conjunction of literals, L. It then constructs an implication statement
by taking the non-typing literals from the body of C1 and making these
imply the conjunction L. This conjunction is then conjoined to the
conjunction of the typing literals from C1 to produce the body of an
intermediate definition. For example, using the same old definitions as
for the negate rule, the intermediate (first order) definition produced
would be:

conceptnew(X, Y, Z)←
p(X)∧q(Y )∧r(Z)∧((s(X, Y, Z)∧t(X,Y ))→ (u(Z, Y, X)∧v(Z, Y )))

Through re-writing, this can be expressed as the following clausal def-
inition:

conceptnew(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ u(Z, Y, X) ∧ v(Z, Y )
conceptnew(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ ¬s(X,Y, Z)
conceptnew(X, Y, Z)← p(X) ∧ q(Y ) ∧ r(Z) ∧ ¬t(X, Y )

3.4.5. The Arithmetic and NumRelation Production Rules
These production rules enable HR to work more competently with
integers, and as such are useful not only to mathematical domains, but
scientific domains in general. The Arithmetic rule takes two function
definitions, both of which output an integer given a generic constant
in the domain. The new definition it produces performs arithmetic
with the output from the two functions, such as adding/multiplying
them, subtracting one from the other, etc. It also has more number-
theoretic ways of combining two functions, such as taking the Dirichlet
convolution. The parameters tell it exactly how to combine the output
from the two functions. For instance, given these two old definitions
which output integers,

conceptold1(X,Y )← p(X, Y ).
conceptold2(X, Y )← q(X,Y ).

and the parameterisation {plus}, the Arithmetic rule would produce
this new definition:

conceptnew(X, Y )← p(X,A), q(X,B), Y is A + B.

(Note the use of Sicstus-Prolog style arithmetic).
The NumRelation production rule performs similarly, but rather

than using arithmetic on the function outputs, it imposes a constraint
such as one being less than the other. For instance, given the two old
concepts above, and the parameterisation {less than}, the NumRela-
tion rule would produce this definition:
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conceptnew(X)← p(X, A), q(X, B), A < B.

Note that the arity of the new definition is 1. These production rules
have been used to good effect in the graph theory application described
in section 6.2.

4. Handling Noisy and Incomplete Data

In most scientific domains, a hypothesis which is 99% supported by
the data is 100% interesting. In mathematical domains, however, such
a hypothesis would be 100% false. For this reason, and the fact that
mathematical data rarely contains errors or omissions, historically the
ATF algorithm has had no capacity to deal with noisy data. That is,
HR would only make conjectures if there were no counterexamples in
the data it had available. However, we have recently added some func-
tionality to enable HR to empirically produce association rules which
are not fully supported by the data. We implemented this in order to
enable ATF to be applied to data from domains of science other than
mathematics. Another motivation came from the PhD project of Alison
Pease – discussed more in section 7.2 – which addresses the question of
how to fix faulty hypotheses using methods inspired by the philosophy
of mathematics described in (Lakatos, 1976).

At part (9) in the theory formation step portrayed in section 2.3, af-
ter it has checked for implications between the definitions in the theory
and the new definition, HR looks at each old definition and determines
whether it is ‘nearly equivalent’ to the new definition. Two definitions
are nearly equivalent if the success set of one differs in only a few places
with the success set of the other. This is done by taking each object of
interest, O, in the domain, finding the entries in the success set of the
old concept where O is the first argument and comparing these against
a similar collection from the success set of the new concept. If the sets
differ, then the definitions differ for O, and the user specifies a low
percentage of objects which are allowed to differ before the definitions
are no longer counted as nearly equivalent. In practice, unfortunately,
this simple calculation for near-equivalence often doesn’t suffice. This
is because many of the objects of interest have empty sets, i.e., they
are not present in any of the success set entries. This means that the
majority of objects of interest are nearly equivalent with respect to
the definitions, but it may be that the objects with non-empty sets
extracted from the success sets differ greatly. As these are usually the
more interesting cases, we allow the user to specify that the calculation
of the percentage for near-equivalence matching is made with respect
only to the non-empty objects. Near implications, where the success
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of the old concept is a subset/superset of the new concept with a few
exceptions, are similarly sought at part (9) of the ATF algorithm. For
any near conjectures found, association rules are extracted in the same
way as for normal conjectures. However, HR uses the implication and
equivalence frames to store the fact that these association rules have
known counterexamples.

Even though they have counterexamples (and hence no attempts to
prove or disprove them are made), these near conjectures may still be
of interest. In our running example, for instance, HR might next invent
the concept of odd numbers, using the divisor predicate:

concept9(X)← integer(X) ∧ ¬divisor(X, 2)

On the invention of this definition, HR would make the near-implication
hypothesis that all prime numbers are odd. The number 2 is a coun-
terexample to this, but the association rule may still be of interest to
the user. Moreover, if so instructed, HR can ‘fix’ such faulty hypotheses
by excluding the counterexamples from the definition. This is done
using the EntityDisjunct and Negate production rules to construct a
concept with the definition stating that the object of interest is not
equal to one of the counterexamples, then composing this concept with
the concept on the left hand side of the implication. For instance, HR
might invent the concept of integers which are not equal to 2 using the
EntityDisjunct and Negate rules, then compose this with the concept of
prime numbers to produce the concept of prime numbers which are not
the number two. The implication generation mechanism then makes
the ‘full’ implication that primes except two are odd.

Such fixing of conjectures is part of a project to use abductive meth-
ods prescribed in (Lakatos, 1976) to enhance the ATF algorithm. For
instance, one such method is to attempt to find a definition already in
the theory which covers the counterexamples (and possibly some more
constants), then exclude this definition from the hypothesis statement.
This is similar to the techniques described as strategic withdrawal by
Lakatos. Details of the Lakatos project are given in (Colton and Pease,
2003) and (Colton and Pease, 2004).

5. Search Strategies

Theory formation is driven by theory formation steps which attempt
to define a new concept using production rules. Similar to many AI
systems, HR suffers from a combinatorial explosion. To enable HR to
effectively search the space of definitions, we have implemented numer-
ous search strategies. HR maintains an agenda of triples portraying
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which production rule will be used with which parameterisation to turn
which old definitions into new ones. For instance, referring back to the
output from an illustrative session in figure 2, the agenda would have
been:

〈[concept4], match, [1, 2, 2]〉
〈[concept5], exists, [2]〉
〈[concept3], size, [2]〉

〈[concept7], split, [[2], [2]]〉
and these steps would have produced concepts 5, 6, 7 and 8 respectively.
For instance, if carrying out the first step, HR would apply the match
production rule to concept 4 (multiplication) with parameterisation
[1,2,2], producing concept 5 (perfect squares and their square roots).
See section 3.3.2 for details of how this construction would occur.

How the agenda is sorted dictates the search strategy that HR
employs. After a new concept frame has been added to the theory
at stage 9.0 of the ATF algorithm, HR must decide how to develop
the concept in future, if at all. Every possible agenda item involving
the concept is determined, involving each production rule, and every
possible parameterisation of that rule, and – in the case of production
rules which make new definitions from two old ones – every possible
partner concept. HR has a number of search strategies which enable
it order the agenda. These are either simple, reactive or best-first, as
described below. The user also specifies a depth limit on the search,
which has a substantial effect on the search that HR carries out. In
particular, given a limit, L, HR will not put steps onto the agenda
if the resulting definition would have been generated by more than L
theory formation steps.

5.1. Simple Search Strategies

HR can perform an exhaustive breadth-first search, where new def-
initions are put on the bottom of the agenda and are not used in
theory formation steps until all previous definitions have been used.
Similarly, it can employ a depth-first search where new definitions are
put on the top of the agenda. In this case, the depth limit is important
to stop HR pursuing a single path and producing highly specialised
definitions. HR can also employ a random search where an entry in the
agenda is chosen randomly and carried out. Finally, HR can employ a
tiered search strategy where the user specifies a tier number for each
production rule. Theory formation steps involving production rules on
the lowest tier are carried out greedily before any steps on higher tiers
are carried out. This strategy is often used to ensure that unary rules
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are applied before binary rules, which tend to dominate the search
otherwise (as there are more possibilities for employing them). This
strategy has proved highly effective in many applications.

5.2. Reactive Search Strategies

HR has a Java interpreter implemented which can execute scripts con-
taining cut-down Java code. At various points during each theory for-
mation step, HR checks each ‘reaction script’ which the user has sup-
plied. Each script includes preconditions that must match with what
has just happened in the theory formation step. If the preconditions
are met, then the Java script is carried out. This can be used to flag
occurrences of a particular type of definition or association rule, or
more importantly, to add theory formation steps to the agenda so
that the search can react to a bespoke situation. For instance, such a
reactive search accounts for how HR fixes faulty theorems as described
in section 4 above: when HR produces a near-conjecture, a reaction
script catches this and puts appropriate steps on the top of the agenda
which, when carried out, causes the theory formation to produce the
fixed conjecture.

In addition to being able to customise the way in which HR reacts to
events such as the invention of concepts of a particular nature, HR has
a few such reactions built in. In particular, when being asked to solve a
predictive learning task4 with a binary classification, HR has the ability
to look at each newly defined concept and determine whether there is
a fast-track way to solve the problem. This forward look-ahead mech-
anism can efficiently determine whether a solution lies 2 and in some
cases, 3 steps away in the search space. This is particularly useful if
there is such a solution which can be constructed with a small number of
steps, as the solution is quickly found. However, if the solutions require
more than around 6 theory formation steps, this method can reduce
efficiency. We employed the forward look-ahead mechanism when using
HR to learn the definitions of some common integer sequences. We
found that HR’s efficiency was dramatically improved when using this
strategy, as reported in (Colton et al., 2000a).

5.3. Best-first Search Strategies

HR has much functionality for performing a best-first search. After
each theory formation step, every concept is assessed and an ordering
on them imposed so that the best concept comes first in the ordering.
The agenda is then re-sorted according to this ordering. The value of a

4 How HR is applied in this manner is described in (Colton et al., 2000a).

mlj04.tex; 2/03/2006; 17:03; p.29



30 Colton and Muggleton

concept is assessed using a set of measures of interestingness, some of
which are described below. In one mode, the user can specify a weighted
sum for the evaluation function. In another mode, the user can specify
that HR takes the best of a set of measures to evaluate the concept, and
similarly they can specify that HR takes the worst of a set of measures.

HR currently has 27 measures of interestingness. Some of these are
generic measures which can be employed for general descriptive induc-
tion tasks. However, nearly half are application specific, and were devel-
oped in order for HR to more effectively search for definitions/association
rules of a particular type – usually of the type that solves a particular
problem. We describe below fifteen of the most important and useful
measures of interestingness, categorised into (a) measures which eval-
uate intrinsic properties of concepts (b) measures which look at how
the theory has been developing (c) measures which evaluate a concept
relative to the others in the theory (d) measures which use the conjec-
tures that a concept is involved in, and (e) measures related to learning
tasks. For more details of some the initial measures we implemented
in HR, see chapters 9 and 10 of (Colton, 2002b). For a discussion of
the general notion of interestingness in automated mathematics, see
(Colton et al., 2000c).

5.3.1. Intrinsic Measures
• Applicability
The applicability of a definition is calculated as the proportion of ob-
jects of interest (constants true of the typing predicate for the first head
variable in at least one definition) which are found in the success set of
the definition. Applicability can give an impression of generality: too
high and the definition may be overly-general, and too low might mean
the definition is over-specialised.

• Comprehensibility
The comprehensibility of a concept is calculated as the reciprocal of the
number of production rule steps which went into building the concept.
This gives a rough estimation of how comprehensible the definition will
be. Other measures based on the clausal definition would perhaps be
more precise. Ordinarily, the user would be interested in more com-
prehensible definitions, but there have been applications where this
measure has been given a negative weight in the weighted sum, to
encourage more complicated concepts to be further developed (Colton
and Sutcliffe, 2002).

• Parsimony
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Similar to the applicability, the parsimony of a definition is calculated
as the reciprocal of the number of elements in the success set multiplied
by the arity of the definition. When describing concepts in terms of the
tuples which satisfy their definition, more parsimonious concepts have
more succinct descriptions.

• Variety
This measure looks at the classification of the objects of interest af-
forded by the definition, as described in section 3.1. It simply records
the number of different classes in the classification, with definitions
having more classes scoring higher. We have found that weighting this
measure positively in the weighted sum can lead to larger areas of the
search space being explored, as it avoids developing concepts which
categorise most of the constants in the same class.

5.3.2. Developmental Measures

• Development Steps
The Development Steps measure records how many production rule
steps a definition has been involved in, which gives an indication of
how much it has been developed. Giving this a negative weight in the
weighted sum enables search strategies where every concept – new or
old – is given the same amount of attention. This is different to a
simple breadth first or depth first search, where certain concepts may
remain neglected for long periods of time. We have found that using this
measure encourages the formation of complex definitions from across
the search space, rather than complex definitions from a single part
of the space, which is the result of a depth first search. Such complex
definitions lead to complicated theorems, which was the desired result
of the application described in section 7.1.

• Productivity
This measures the proportion of theory formation steps the concept has
been used in which have successfully produced a new concept. Concepts
which have been involved in many fruitless steps score badly for this
measure. In applications such as the one described in section 6.1, where
it is desirable to produce high quantities of definitions rather than
association rules, this measure can be used to good effect.

• Highlighting
The user can specify before a theory formation session that a subset of
the background concepts are to be highlighted. These concepts score 1
for the highlighting measure and all the others, including any concepts
generated during theory formation, score 0. This ensures that the high-
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lighted concepts receive as much attention as possible as they will be
developed greedily at the start of the session and they will always be
the first to be combined with any new concept produced.

5.3.3. Relative Measures
• Novelty
The novelty of a definition is based on the classification afforded by it.
Novelty is calculated by evaluating the proportion of other concepts in
the theory which achieve the same classification, and taking it away
from 1. In our experience, when there is no particular application
of theory formation, the more interesting concepts in a domain will
be those scoring high for novelty, because they produce clusterings of
constants which are seemingly more difficult to achieve.

• Parents and children
The parents measure is the average value of the parents of the concept
being evaluated. Similarly, the children measure is the average value
of the children of the concept under consideration. If a concept is
producing high quality children, then this could be a reason to de-
velop it further. Also, the parents measure can be used in conjunction
with the highlighting measure to ensure that any descendants of the
background concepts of interest to the user are developed earlier than
non-descendants.

5.3.4. Theorem-based Measures

• Proof Difficulty
A particular definition may be found in various induced conjectures,
and this set can be used to evaluate the concept. In particular, the
average difficulty of the proved theorems (as assessed by Otter) can
provide such a measure which can be used negatively (so the user
encourages the proving of easier theorems) or positively (if the user
wants to find conjectures which the prover might not be able to prove).

• Surprisingness
The surprisingness of an equivalence or implication conjecture is calcu-
lated as the proportion of concepts which appear in one, but not both of
the construction paths for the two concepts conjectured to be related.
This gives some indication of how unlikely the conjectured relationship
between them is. Concepts can be measured by determining the average
surprisingness of the conjectures they appear in.
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5.3.5. Learning-based Measures
• Invariance and Discrimination
The user is able to specify a labelling of the objects in the domain which
indicates a classification of them, and HR can be used in a predictive
induction way to find a concept which achieves the desired classifica-
tion. The invariance measure calculates the proportion of all pairs of
objects which should be classified as the same by the definition that are
classified together. Similarly, the discrimination measure calculates the
proportion of all pairs of objects which should be classified as different
which are classified as different. Weighting these measures positively
in the weighted sum can lead HR to find good solutions to predictive
learning problems more efficiently. However, we have found that often
the measures don’t improve the situation, because the concepts which
need to be defined along the way don’t score well for the measures
themselves.
• Coverage
As stated above, the user can supply a classification of the objects in the
domain. The aim, however, may not be to find a concept achieving that
classification, but rather a concept which has a definition that is true of
at least one member of each class in the given classification. How well
concepts do with respect to this is measured by the coverage measure: it
evaluates the proportion of classes in the given classification for which
at least one object appears in the success set of the concept being
measured. For instance, in group theory, if the classification of a set of
given groups is by size, then the concept of being Abelian would score
the maximum for coverage, as there is an Abelian group of every size.
Concepts with such good coverage were sought in the application to
reformulating constraint satisfaction problems, as discussed in section
7.3 below.

6. Applications of Automated
Theory Formation to Mathematics

HR has shown some promise for discovery tasks in domains of science
other than mathematics. For instance, in (Colton, 2002a) we show
how HR rediscovers the structural predictor for mutagenesis originally
found by Progol (Srinivasan et al., 1996). However, it has mainly been
applied to fairly ad-hoc tasks in domains of pure mathematics, and
has made some interesting discoveries in each case. We look here at
three applications to central domains of mathematics, namely number
theory, graph theory and finite algebras.
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6.1. Applications to Number Theory

The Encyclopedia of Integer sequences (Sloane, 2000) is a repository
of more than 100,000 sequences such as the prime numbers, square
numbers, the Fibonacci sequence, etc. There is online access to the
database, and various ways of searching the sequences. It is one of the
most popular mathematics sites on the Internet. We set ourselves the
goal of getting HR to invent integer sequences which were not already
found in the Encyclopedia and for HR to give us reasons to believe
that the sequences were interesting enough to be submitted to this
Encyclopedia. We specified this problem for HR as follows: to terminate
after finding a certain number (usually 50-100) of integer sequences
(i.e., boolean classification rules over the set of integers) which were not
in the Encyclopedia. Moreover, we used HR to present any association
rules involving sequence definitions which could not be proved by Otter
(those proved by Otter were usually trivially true).

HR had to be extended to interact with the Encyclopedia, in order
for it to tell whether a sequence was novel. In addition, as described
in (Colton et al., 2000b), we enabled HR to mine the Encyclopedia to
make relationships between the sequences it invented and those already
in the Encyclopedia. This application turned out to be very fruitful:
there are now more than 20 sequences in the Encyclopedia which HR
invented and supplied interesting conjectures for (which we proved). As
an example, using only the background knowledge given in figure 1 for
the integers 1 to 50, HR invented the concept of refactorable numbers,
which are such that the number of divisors is itself a divisor (so, 9 is
refactorable, because this has 3 divisors, and 3 divides 9). In addition,
HR specialised this to define odd refactorable numbers, then made the
implication hypothesis that all odd refactorable numbers are perfect
squares – a fact we proved, along with others, for a journal paper about
refactorable numbers (Colton, 1999). As an epilogue, we were informed
later that, while they were missing from the Encyclopedia, refactorable
numbers had already been invented, although none of HR’s conjectures
about them had been made. We have received no such notification
about the other sequences HR invented.

The application to number theory has been so successful that it
has spawned two spin-off projects. Firstly, the NumbersWithNames
program (Colton and Dennis, 2002) is available online at
(www.doc.ic.ac.uk/~sgc/hr/NumbersWithNames). This performs data-
mining over a subset of around 1000 sequences from the Encyclopedia
– namely those number types which are important enough to have
names such as primes, squares, etc. It is able to make equivalence,
implication and non-existence conjectures about a chosen sequence of
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interest and others from the database. Secondly, the HOMER program
provides a simple interface for mathematicians to employ HR without
knowing about the internal mechanisms. They are allowed to submit a
Maple computer algebra file containing number theory functions, and
HR forms a theory about the functions. It presents any conjectures
which cannot be proven from some simple axioms to the user, who can
interact with the system at runtime to prove/disprove results. More
details about HOMER are available in (Colton and Huczynska, 2003).

6.2. Applications to Graph Theory

The Graffiti program (Fajtlowicz, 1988), written by Siemion Fajtlowicz
and developed by Ermalinda Delavina has been highly successful in
generating graph theory conjectures of real interest to mathematicians
– more than 60 publications have been written proving or disproving
the conjectures it has produced. The format of the conjectures it proves
is fairly simple: that one summation of graph invariants is less than or
equal to another summation. These kinds of conjectures are (a) easy
to understand (b) often difficult to prove and (c) of utilitarian value
as they help to determine bounds on invariants which can improve the
efficiency of algorithms to calculate them. Any new conjectures that
Graffiti produces which pass an initial check from Fajtlowicz are added
to a document called ‘Written on the Wall’, which is distributed to
graph theorists.

In (Mohamadali, 2003), we showed that HR can make similar con-
jectures. We supplied code for the Maple computer algebra package
which was able to calculate the invariants involved in the first 20
conjectures mentioned in Written on the Wall. HR integrated with
Maple to use the output from these functions. It further used the
Arithmetic production rule to add together sets of invariants, and used
the NumRelation production rule to construct definitions describing
graphs where one set of invariants summed to less than another. In
this way, HR successfully re-discovered the first 20 conjectures made
by Graffiti. Moreover, we implemented some further invariants and
enabled HR to use multiplication as well as addition. This produced a
large number of new conjectures. Working in collaboration with Pierre
Hansen and Gilles Caporossi, we have used their AutoGraphix program
(Caporossi and Hansen, 1999) to prove many of these conjectures. It
seems likely that AutoGraphix will be used in a similar way to Otter in
number theory, i.e., as a filter for uninteresting or obvious conjectures.
We are optimistic that using HR and AutoGraphix will lead to novel
and interesting graph theory conjectures, and the system will have as
big an impact as Graffiti.
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6.3. Applications to Algebraic Classification

As witnessed by the completion of the classification of finite simple
groups – described in (Humphreys, 1996) as one of the biggest intel-
lectual achievements of the twentieth century – the classification of
mathematical objects, in particular finite algebraic structures, is of key
importance in mathematics. The first task in algebraic classification is
to count the number of isomorphism classes of a given algebra for a
given size, e.g., to show that there are exactly 5 distinct isomorphism
classes for groups of size 8. In the process of automatically counting
isomorphism classes as described in (Meier et al., 2002), a bottleneck
arose when the system attempted to show that two algebras were non-
isomorphic. In such cases, a more efficient method than exhaustively
looking for isomorphisms is to induce a property that one algebra has
which the other does not share, then show that this is a discriminant,
i.e., prove that, in general, two algebras of the given size could not
be isomorphic if they differed with respect to the property. In work
with Volker Sorge and Andreas Meier, we used HR to determine such
discriminating properties, with an automated theorem prover employed
to prove the fact that they were discriminating.

This application is discussed in more detail in section 8.1, as this is
a predictive induction task, and hence we were able to use Progol for
the same tests. A further application grew out of the residues project,
when we used the discriminating concepts that HR produced to pro-
duce qualitative rather than quantitative classification theorems. As
described in (Colton et al., 2004), we employed a complicated setup
to produce fully verified classification theorems given only the axioms
of the algebra and the size of interest. For instance, given the axioms
of group theory and the size 6, the system produced and verified the
theorem that there are only two isomorphism classes, one of which has
the Abelian property (∀ a, b (a ∗ b = b ∗ a)), and one which has not.

For the smaller cases – where there were only a small number of
isomorphism classes – HR was used in a single session to produce the
entire classification theorem. To do this, we gave HR single example
algebras from each isomorphism class, and asked it to form a theory
until it contained at least one definition which was true of each example
alone. These definitions are then conjectured to be classifying concepts
and the Spass theorem prover (Weidenbach, 1999) was employed to
prove this. As an interesting example, given the background concepts
in group theory of multiplication, identity, inverse and the commutative
product of two elements x and y being x ∗ y ∗ x−1 ∗ y−1, HR was able
to produce the following classification theorem for groups of size eight:
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Groups of order 8 can be classified by their self-inverse elements (ele-
ments x such that x−1 = x). They will either have:

(i) all self inverse elements;
(ii) an element which squares to give a non-self inverse element;
(iii) no self-inverse elements which aren’t also commutators;
(iv) a self inverse element which can be expressed as the product of two
non-commutative elements; or
(v) none of these properties.

For cases where there were more than a few isomorphism classes,
HR was not able to complete the entire classification task in a single
run, as it wasn’t able to find a definition which applied to each single
example alone. We experimented with using C4.5 (Quinlan, 1993) to
produce decision trees, given sets of properties from HR. However, for
reasons given in (Colton et al., 2004), this approach was often sub-
optimal. Instead, we implemented a mechanism for building a decision
tree for classifying the algebras. At each stage, the routine takes a
pair of non-isomorphic algebras A1 and A2 and uses HR to determine
a discriminating property P in a similar fashion to the application
mentioned above. Following this, the system looks at A1 and asks the
MACE model generator to produce another algebra B1 which is not
isomorphic to A1 but which is the same as A1 with respect to property
P . HR is then used to find a discriminating property for A1 and B1,
and the cycle continues. When MACE fails to find new algebras, this
indicates a leaf of the decision tree, and the conjunction of properties
on each branch of the tree is taken as a classifying concept in the clas-
sification theorem. Using this method, we have produced classification
theorems for many algebras of different sizes, including large theorems
such as for the 109 isomorphism classes of size 6 loops and the 1441
isomorphism classes for quasigroups of size 5. For further details, see
(Colton et al., 2004).

7. Applications of Automated Theory
Formation to Artificial Intelligence

In addition to using HR for mathematical discovery tasks, we have
addressed the question of whether Automated Theory Formation can be
used to enhance other AI techniques. HR is a machine learning system,
but it has been used in two applications to automated theorem proving,
as described in sections 7.1 and 7.2, and an application to constraint
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solving, as described in section 7.3. Each of these applications have a
mathematical bias, hence they are suitable for inclusion here.

7.1. Differentiating Automated Theorem Provers

Working with Geoff Sutcliffe, we used HR to generate first order theo-
rems for the TPTP library (Sutcliffe and Suttner, 1998). This library
is used to compare automated theorem provers: given a certain amount
of time for each theorem, how many theorems each prover can prove
is assessed. The task was to generate theorems which differentiate the
theorem provers, i.e., find association rules which can be proved by
some, but not all, of a set of provers. This was a descriptive induction
task, and we ran HR as an any-time algorithm, until it had produced a
certain number of theorems. As described in (Zimmer et al., 2002), we
linked HR to three provers (Bliksem, E, and Spass) via the MathWeb
software bus (Franke and Kohlhase, 1999) and ran HR until it had
produced 12,000 equivalence theorems and each prover had attempted
to prove them. In general, the provers found the theorems easy to prove,
with each proving roughly all but 70 theorems. However, it was an
important result that, for each prover, HR found at least one theorem
which that prover could not prove, but the others could. In other
experiments, we didn’t use the provers, and the time saving enabled
us to produce more than 40,000 syntactically distinct conjectures in 10
minutes. 184 of these were judged by Geoff Sutcliffe to be of sufficient
calibre to be added to the TPTP library. The following is an example
group theory theorem which was added:

∀x, y ((∃ z (z−1 = x∧z∗y = x)∧∃u, v (x∗u = y∧v∗x = u∧v−1 = x))
↔ (∃ a, b (inv(a) = x ∧ a ∗ y = x) ∧ b ∗ y = x ∧ inv(b) = y))

As with the Encyclopedia of Integer Sequences, HR remains the only
computer program to add to this mathematical database.

7.2. Modification of Non-Theorems

Working with Alison Pease, we used HR as part of the TM system
(Colton and Pease, 2004), which takes specifications of non-theorems
and produces modifications, which are similar to the original, but which
have been proven to be true. To do this, TM uses MACE to find
examples which support the given faulty conjecture and similarly to
find examples which falsify the conjecture. These are given, along with
background predicates extracted from the conjecture statement, to
HR, which forms a theory. TM then extracts from HR’s theory any
concept for which the positive examples are a non-empty subset of
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the supporting examples that MACE produced. Each definition of this
nature is used to produce a modification, by adding it as an axiom
and using Otter to try to prove that the conjecture is true given the
additional axiom. For any cases where Otter succeeds, TM has a final
check to see whether the modification makes the conjecture trivially
true and discards these. Any which pass this test are output to the
user as modified theorems.

For example, in the ring theory section of the TPTP library, the
following non-theorem is presented:

The following property, P , holds for all rings:

∀ w, x ((((w ∗ w) ∗ x) ∗ (w ∗ w)) = id)

where id is the additive identity element.

MACE found 7 supporting examples for this, and 6 falsifying exam-
ples. HR produced a single specialisation concept which was true of 3
supporting examples:

@ b, c (b ∗ b = c ∧ b + b 6= c)

Otter then proved that P holds in rings for which HR’s invented prop-
erty also holds. Hence, while TM couldn’t prove the original (faulty)
theorem, it did prove that, in rings for which ∀ x (x∗x = x+x), property
P holds. The specialisation here has an appealing symmetry. Using 9
non-theorems from the TPTP library, and 89 artificially generated non-
theorems, we report in (Colton and Pease, 2004) that HR managed to
find valid modifications for 81 of the 98 non-theorems it was given.

HR’s functionality in this application could be replaced by a predic-
tive induction system, as it is asked to differentiate between supporting
and falsifying examples. We intend to experiment with the Progol sys-
tem to test whether it can be as effective as HR for problems of this
nature. We similarly intend to exchange MACE for a constraint solver.

7.3. Reformulation of Constraint Satisfaction Problems

Working with Ian Miguel and Toby Walsh, we used HR to help refor-
mulate constraint satisfaction problems (CSPs) for finding quasigroups.
CSPs solvers are powerful, general purpose programs for finding as-
signments of values to variables without breaking certain constraints.
Specifying a CSP for efficient search is a highly skilled art, so there
has been much research into automatically reformulating CSPs. One
possibility is to add more constraints. If a new constraint can be shown
to be entailed by the original constraints, it can be added with no loss
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of generality and is called an implied constraint. If no proof is found,
we say the constraint is an induced constraint.

We set ourselves the task of finding both implied and induced con-
straints for a series of quasigroup existence problems. Quasigroups are
algebraic objects which have the latin square property that every el-
ement appears in every row and column of the multiplication table.
There are many open problems concerning the existence of examples
of particular sizes for particular specialisations of the quasigroup ax-
ioms. Many such questions have been solved using constraint solving
and quasigroup completion has become a benchmark set of tests for
constraint solvers.

We saw generating implied constraints as a descriptive induction
task, and ran HR as an any-time algorithm to produce proved asso-
ciation rules which related concepts in the specification of the CSP.
We gave the original specifications to Otter as axioms, so that it could
prove the induced rules. For a special type of quasigroup, known as
QG3-quasigroups, we used a CSP solver to generate some examples of
small quasigroups. This, along with definitions extracted from the CSP
specification, provided the initial data for theory formation sessions. As
an example of one of many interesting theorems HR found (and Otter
proved), we discovered that QG3-quasigroups are anti-Abelian. That
is:

∀x, y (x ∗ y = y ∗ x→ x = y)
Hence, if two elements commute, they must be the same. This became
a powerful implied constraint in the reformulated CSPs.

We approached the problem of generating induced constraints as a
subgroup discovery problem (in the machine learning, rather than the
mathematical, sense). We gave HR a labelling of the solutions found by
the solver, with solutions of the same size labelled the same. Then, using
a heuristic search involving the coverage and applicability measures
discussed is section 5, we made HR prefer definitions which had at
least one positive in every size category (but was not true of all the
quasigroups). We reasoned that, when looking for specialisations, it is
a good idea to look for ones with good coverage over the size categories.
At the end of the session, we ordered the definitions with respect to
the weighted sum of applicability and coverage, and took the best as
induced constraints which specialised the CSP. This enabled us to find
quasigroups of larger sizes. As an example, HR invented a property we
called left-identity symmetry: ∀ a, b (a ∗ b = b → b ∗ a = a). This also
became a powerful constraint in the reformulated CSPs. As discussed
in (Colton and Miguel, 2001), for each of the five types of quasigroup
we looked at, we found a reformulation using HR’s discoveries which
improved efficiency. By combining induced and implied constraints, we
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often achieved a ten times increase in solver efficiency. This meant that
we could find quasigroups with 2 and 3 more elements than we could
with the naive formulation of the CSP. Note that the data for this
application is available here:

www.doc.ic.ac.uk/~sgc/hr/applications/constraint reformulation

8. Comparisons with Other ILP Techniques

Although it has been used for predictive tasks, HR has been designed
to undertake descriptive induction tasks. In this respect, therefore, it
is most similar to the CLAUDIEN (De Raedt and Dehaspe, 1997) and
WARMR (Dehaspe and Toivonen, 1999) programs. These systems spec-
ify a language bias (DLAB and WARMODE respectively) and search
for clauses in this language. This means that fairly arbitrary sets of
predicates can be conjoined in clauses, and similarly arbitrary clauses
can be disjoined in definitions (as long as they specify association
rules passing some criteria of interestingness). In contrast, while we
have characterised the space of definitions HR searches within, each
production rule has been derived from looking at how mathematical
concepts could be formed, as described in chapter 6 of (Colton, 2002b).
Hence, Automated Theory Formation is driven by an underlying goal
of developing the most interesting definitions using possibly interesting
techniques. In terms of search, therefore, HR more closely resembles
predictive ILP algorithms. For instance, a specific to general ILP system
such as Progol (Muggleton, 1995) chooses a clause to generalise because
that clause covers more positive examples than the other clauses (and
no negative examples). So, while there are still language biases, the
emphasis is on building a new clause from a previous one, in much
the same way that HR builds a new definition from a previous one.
Note that an application-based comparison of HR and Progol is given
in (Colton, 2000).

Due to work by Steel et al., (Steel, 1999), HR was extended from
a tool for a single relation database to a relational data mining tool,
so that multiple input files such as those in figure 1, with definitions
relating predicates across files, can be given to HR. However, the data
that HR deals with often differs to that given to other ILP systems.
In particular, HR can be given very small amounts of data, in some
cases just two or three lines describing the axioms of the domain. Also,
due to the precise mathematical definitions which generate data, we
have not worried particularly about dealing with noisy data. In fact,
HR’s abilities to make ‘near-conjectures’ grew from applications to
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non-mathematical data. There are also no concerns about compression
of information as there are in systems such as Progol. This is partly
because HR often starts with very few constants (e.g., there are only
12 groups up to size 8), and also because HR is supplied with axioms,
hence it can prove the correctness of association rules, without having
to worry about overfitting, etc.

The final way in which ATF differs from other ILP algorithms is
in the interplay between induction and deduction. Systems such as
Progol, which use inverse entailment techniques, think of induction
as the inverse of deduction. Hence, every inductive step is taken in
such a way that the resulting hypothesis, along with the background
knowledge, deductively entails the examples. In contrast, HR induces
hypotheses which are supported by the data, but are in no way guar-
anteed to be entailed by the background predicates and/or the axioms.
For this reason, HR interacts with automated reasoning systems, and
is, to the best of our knowledge, the only ILP system to do so. The fact
that HR makes faulty hypotheses actually adds to the richness of the
theories generated, because model generators can be employed to find
counterexamples, which are added to the theory.

8.1. An Application of Progol to Algebraic Discrimination

As described above, we worked with Volker Sorge and Andreas Meier to
integrate HR with their system in an application to classifying residue
classes. These are algebraic structures which were generated in abun-
dance by their system. The task was to put them into isomorphic classes
– a common problem in pure mathematics – which can be achieved by
checking whether pairs of residue classes were isomorphic. Note that
two algebras are in the same isomorphism class if a re-labelling of
the elements of one gives the elements of the other and preserves the
multiplicative structure. When they are isomorphic, it is often not too
time consuming to find the isomorphic map. Unfortunately, when they
aren’t isomorphic, all such maps have to be exhausted, and this can take
a long time. In such cases, it is often more efficient to find a property
which is true of only one example and then prove – using an automated
theorem prover – in general terms that two algebraic structures differing
in this way cannot be isomorphic. The task of finding discriminants was
approached inductively using HR. Each pair of algebras presented HR
with a predictive induction task with two examples and the goal of
finding a property true of only one. Hence we set HR to stop if such
a boolean definition was found, or if 1000 theory formation steps had
been carried out.
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0 1 2 3 4

0 0 3 1 4 2
1 0 0 0 0 0
2 0 2 4 1 3
3 0 4 3 2 1
4 0 1 2 3 4

0 1 2 3 4

0 0 2 4 1 3
1 0 4 3 2 1
2 0 1 2 3 4
3 0 3 1 4 2
4 0 0 0 0 0

Figure 3. The multiplication tables of two non-isomorphic algebraic structures.

HR’s Match, Exists, Forall, and Compose production rules were
used. In classification tasks described in (Colton, 2002b), we have also
used the Size and Split production rules to good effect. However,
these were not used for the residue class application, as they produce
concepts of a numerical nature which are not easily expressible in first
order logic. First order representations were necessary because the
system within which HR worked took its results and proved – using
a first order prover – that the properties HR produced were actually
discriminants.

As described in (Meier et al., 2002), HR was used to discriminate
between 818 pairs of non-isomorphic algebras with 5, 6 and 10 elements,
and was successful for 789 pairs (96%). As an example, consider the
two algebraic structures in figure 3. HR found this property:

∃x (x ∗ x = x ∧ ∀ y (y ∗ y = x⇒ y ∗ y = y))

to be true of the second example, but not the first. This states that there
exists an element, x, which is idempotent (i.e., x∗x = x) such that any
other element which squares to give x is itself idempotent. This means
that there must be an idempotent element which appears only once on
the diagonal. This is element 2 in the second multiplication table in
figure 3. No such element exists for the first multiplication table.

Finding discriminating properties is essentially a predictive learning
task, hence we decided to test whether a standard machine learning
system could similarly learn discriminating properties. As the discrim-
inating ability of the property is to be proved by a first order theorem
prover to follow from the axioms of the domain for the given size, it
is essential that the properties produced are expressible in first order
logic. For this reason, using an Inductive Logic Programming system
was an obvious choice, and we chose the Progol system (Muggleton,
1995). We experimented using the same test set as for HR in (Meier
et al., 2002), consisting of 818 problems. These were for pairs of algebras

mlj04.tex; 2/03/2006; 17:03; p.43



44 Colton and Muggleton

of size 5, 6 or 10, that were either magmas (also known as groupoids)
, quasigroups or semigroups, which have the following axioms:

• Magma: No axioms
• Quasigroup: magmas with the quasigroup axiom:
∀x, y ∃ p, q s.t. x ∗ p = y and q ∗ x = y.

• Semigroup: magmas with the associativity axiom:
∀x, y, z ((x ∗ y) ∗ z = x ∗ (y ∗ z)).

Note that Abelian and non-Abelian cases were also distinguished.
In total, the experiments could be grouped into one of 13 classes,
dependent on the size and axioms of the algebra. To describe the dis-
crimination problems to Progol, we employed 3 background predicates,
as follows:

• algebra/1: specifying that a symbol stands for an algebra.
• element/2: specifying that a symbol stands for an element of an
algebra.
• mult/4: specifying that a triple of elements b, c and d in algebra a
are such that b ∗ c = d in the multiplication table for a.

For each test, two algebras were given, with one chosen arbitrarily as
the positive example, and we described the multiplication table com-
pletely using the mult/4 predicate. The mode declarations for each
test were as follows:

:- modeh(1,positive(+algebra))?
:- modeb(*,mult(+algebra,-element,-element,-element))?
:- modeb(*,not(mult(+algebra,+element,+element,+element)))?

These enable Progol to use negation in the definitions it produces,
which is essential – indeed, as we see later, all but one of the discrim-
inating concepts produced by Progol involved negation. In order to
determine the extra-logical settings for Progol, we experimented until
it could solve the problem of discriminating between two groups of size
6, one of which is Abelian and one of which is not (note that this is not
one of the 818 discrimination problems in the main experiments). The
settings determined in this manner were as follows:

:- set(nodes,2000)?
:- set(inflate,800)?
:- set(c,2)?
:- set(h,100000)?
:- set(r,100000)?
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Table II. Progol and HR Results for 818 Algebraic Discrimination Problems

Size Axioms Number HR Progol Progol Progol

solved solved failed timeout

5 Abelian Magmas 15 14 (93%) 8 (53%) 7 (47%) 0 (0%)

5 Non-abelian Magmas 630 606 (96%) 438 (70%) 192 (30%) 0 (0%)

5 Abelian Quasigroups 3 3 (100%) 3 (100%) 0 (0%) 0 (0%)

5 Non-abelian Quasigroups 91 90 (99%) 85 (93%) 6 (7%) 0 (0%)

5 Non-abelian Semigroups 3 3 (100%) 3 (100%) 0 (0%) 0 (0%)

5 Total 742 716 (96%) 537 (72%) 205 (28%) 0 (0%)

6 Non-abelian Quasigroups 1 1 (100%) 1 (100%) 0 (0%) 0 (0%)

6 Abelian Semigroups 6 6 (100%) 2 (33%) 4 (67%) 0 (0%)

6 Non-abelian Semigroups 28 25 (89%) 18 (64%) 5 (18%) 5 (18%)

6 Total 35 32 (91%) 21 (60%) 9 (26%) 5 (14%)

10 Abelian Magmas 15 15 (100%) 0 (0%) 0 (0%) 15 (100%)

10 Non-abelian Magmas 3 3 (100%) 0 (0%) 0 (0%) 3 (100%)

10 Non-abelian Quasigroups 21 21 (100%) 0 (0%) 0 (0%) 21 (100%)

10 Abelian Semigroups 1 1 (100%) 0 (0%) 0 (0%) 1 (100%)

10 Non-abelian Semigroups 1 1 (100%) 0 (0%) 0 (0%) 1 (100%)

10 Total 41 41 (100%) 0 (0%) 0 (0%) 41 (100%)

All Total 818 789 (96%) 558 (68%) 214 (26%) 46 (6%)

The results from these experiments are given in table II. For an
initial application, the results are very promising: Progol solved 558 of
the 818 discrimination problems (68%) compared to HR which achieved
96%. Unfortunately, for all the 41 tests with algebras of size 10, and
five of size 6, Progol failed to complete its search and either continued
indefinitely (we stopped the program after an hour, and in many cases
it ended prematurely after exhausting a memory resource). Hence it is
likely that Progol will score better if we can determine better settings
for its usage with larger algebras (note that HR is barely affected by
the transition from small to larger algebras, and indeed it solved all 41
cases for size 10).

Progol used only 32 distinct concepts in solving the 558 discrimina-
tion cases for which it succeeded. These are given in the appendix, along
with a mathematical description of their meaning and the number of
cases which they solved. As mentioned above, it is surprising that all
but one of the definitions use negation, with the exception being:

positive(A) :- mult(A,B,B,B).

which states that there is an idempotent element (which squares to
give itself) in the positive example. We also see that each definition in
the appendix can be interpreted as an existence concept, and that the
notions of idempotency and left and right local identities (when left or
right multiplication by an element acts as the identity transformation)
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0 1 2 3 4

0 0 4 3 2 1
1 2 1 0 4 3
2 4 3 2 1 0
3 1 0 4 3 2
4 3 2 1 0 4

0 1 2 3 4

0 0 2 4 1 3
1 4 1 3 0 2
2 3 0 2 4 1
3 2 4 1 3 0
4 1 3 0 2 4

Figure 4. A Discrimination Problem Solved by Progol, but not by HR.

are particularly useful for the discrimination tasks. For instance, the
following concept accounted for 49 successful discriminations:

positive(A) :- mult(A, B, B, C), not(mult(A, C, C, C)).

This is interpreted as the property of an algebra having an element
which squares to give a non-idempotent element. Also, the follow-
ing two concepts accounted for more than a quarter of the successful
discriminations:

positive(A) :- mult(A,B,C,B), not(mult(A,C,B,C)).
positive(A) :- mult(A,B,C,C), not(mult(A,C,B,B)).

The first of these is interpreted as the property of an algebra having
elements B and C such that C is a right identity for B but not vice-
versa. The second is the same with left identity replacing right identity.

Although HR performed significantly better on these tests on aver-
age, Progol found solutions to three problems which HR failed to solve.
In particular, of the 91 non-abelian quasigroups of size 5, HR failed to
solve the discrimination problem for only one pair, given in figure 4.
Progol solved this problem with the following concept:

positive(A) :- mult(A,B,C,D), not(mult(A,D,C,B)).

We see, for example, that elements 0, 1 and 4 in the first algebra of
figure 4 are such that 0∗1 = 4 but 4∗1 6= 0, thus satisfying the concept
definition. Indeed, there are 20 triples of elements which satisfy the
property in the first algebra, but none in the second algebra (this was
checked using Sicstus Prolog and the first order representation of these
algebras as given to Progol). Note that, as portrayed in the appendix,
this concept solves 5 other discrimination problems in the test set.
This concept is certainly in HR’s search space, if it is allowed to use
the negate production rule. However, for the experiments described in
(Meier et al., 2002), we opted not to use this rule, but rather to use the
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forall rule. Using both together can lead to much duplication of effort,
with the same concept being generated once using forall and again
using a negate-exists-negate series of steps. Note that for the later ex-
periments towards constructing qualitative classifications as described
in section 6.3, we used negate instead of forall.

Note that the data set for these discrimination tests is available from
the following site:

www.doc.ic.ac.uk/~sgc/hr/applications/residues

9. Conclusions and Further Work

We have presented pure mathematics as an interesting challenge do-
main for machine learning systems in general and a potential area to
drive the development of Inductive Logic Programming systems. In
particular,

• we highlighted the fact that inductive processes play an important
part of mathematical research, alongside deductive processes;

• we presented a novel ILP algorithm – called Automated Theory For-
mation – and its implementation in the HR system. A rationalisation
of this algorithm was presented fully for the first time in terms of the
manipulation of clausal definitions;

• we described three successful applications of HR to mathematical
discovery tasks, which have led to HR adding to previously human-only
databases and the production of journal publications in the mathemat-
ics literature;

• we described applications of Automated Theory Formation to the
improvement of automated theorem proving and constraint solving
techniques;

• we emphasised that mathematical discovery is not limited either to
Automated Theory Formation as in HR or to descriptive induction. To
do this, we used the Progol system to perform predictive induction in
order to discriminate between pairs of non-isomorphic algebras. To our
knowledge, this is the first application of an ILP system other than HR
to algebraic domains of pure mathematics;

The Automated Theory Formation (ATF) algorithm builds clausal
theories consisting of classification rules and association rules. This
employs concept formation methods to generate definitions from which
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classification rules are derived. The success sets of the definitions are
used to induce non-existence, equivalence and implication hypotheses,
from which association rules are extracted. In addition to these induc-
tive methods, ATF also relies upon deductive methods to prove/disprove
that the association rules are entailed by a set of user supplied axioms.
We discussed the implementation of this algorithm in the HR system,
and characterised the space of definitions that HR searches. HR differs
from other descriptive ILP systems in the way that it searches for
definitions and the way in which it interacts with third party automated
reasoning software.

The production rules that HR uses to form new definitions have
been presented for the first time fully in terms of the manipulation of
logic programs. Given this formal way of looking at HR’s functionality,
it is our intention to write a HR-LITE program, which implements a
less ad-hoc implementation of Automated Theory Formation. This will
work only at the definitional level and interact with Prolog to generate
the success sets of the definitions it produces. Given this expression of
ATF in entirely logic programming terms, we then intend to compare
HR-LITE with the WARMR and CLAUDIEN descriptive induction
programs, both at a qualitative and a quantitative level.

This paper represents the first major description of the Automated
Theory Formation routine and it’s implementation in the HR system
since (Colton, 2002b). In particular, in (Colton, 2002b), we present a
much simpler version of HR, and we make no attempt to describe the
ATF routine in terms of an ILP approach as we do here. Moreover,
the majority of HR’s extra-logical functionality discussed in this paper
has not been described elsewhere. In addition, all the applications sum-
marised here were undertaken after (Colton, 2002b) was written, with
the exception of some of the number theory experiments. We believe
that the application of Progol to algebraic discrimination is also the
first application of a predictive ILP system to a discovery task in such
an algebraic domain.

We aim to continue to improve our model of Automated Theory
Formation. In particular, we are currently equipping HR with abductive
techniques prescribed in (Lakatos, 1976), and modelling advantages of
theory formation within a social setting via a multi-agent version of the
system (Colton and Pease, 2003). We are continuing the application of
HR to mathematical discovery, but we are also applying HR to other
scientific and non-scientific domains, most notably bioinformatics, vi-
sion and music. We are also continuing to study how descriptive ILP
techniques like ATF can be used to enhance other systems such as
theorem provers, constraint solvers and predictive ILP programs. In
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particular, we are studying how descriptive techniques may be used for
preprocessing knowledge.

ATF uses invention, induction, deduction and abduction, and HR in-
teracts with automated theorem provers, model generators, constraint
solvers, computer algebra systems and mathematics databases to do so.
For systems such as HR to behave creatively, we believe that the search
it undertakes must be in terms of which reasoning technique to employ
next, rather than search at the object level. We envisage machine learn-
ing, theorem proving, constraint solving and planning systems being
routinely integrated in ways tailored individually for solving particular
problems. We believe that such integration of reasoning systems will
provide future AI discovery programs with more power, flexibility and
robustness than current implementations.

We further believe that domains of pure mathematics are highly
suitable for the development of such integrated systems, because (i)
the lack of noise in such domains will be an advantage in the initial
stages of developing integrated systems (ii) deductive techniques have
been used with much success for many years in mathematical domains
and (iii) inductive reasoning can have an impact on computer mathe-
matics, as witnessed by the success of the HR and Graffiti programs.
Inductive Logic Programming systems output first order hypotheses
about the data it is given. The majority of automated theorem provers
(ATP) are designed to prove such first order hypotheses. Therefore it
is surprising that there has been little work on combining ILP and
ATP into more powerful systems. In showing that Progol can be used
for mathematical discovery tasks in the same way as HR, we hope to
encourage the use of ILP systems in mathematics and to promote the
interaction of deduction systems and machine learning systems towards
more powerful AI techniques.
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Appendix - Discriminating Concepts found by Progol

Num First order and English Language Descriptions

1 positive(A) :- mult(A,B,B,B), mult(A,C,C,D), not(mult(A,B,D,D)).

Has an idempotent element which is not a left identity for any element on the diagonal.

1 positive(A) :- mult(A,B,C,B), not(mult(A,C,B,B)).

Has an element with a right identity for it which is not a left identity for it.

1 positive(A) :- mult(A,B,C,C), not(mult(A,C,C,B)).

Has an element which has a right identity for it which is not its square root.

2 positive(A) :- mult(A,B,B,C), not(mult(A,B,B,B)).

Has a non-idempotent element.

2 positive(A) :- mult(A,B,B,C), not(mult(A,C,B,B)).

Has an element for which its square is not a left identity for it.

2 positive(A) :- mult(A,B,C,B), not(mult(A,C,C,C)).

Has an element with a non-idempotent right identity.

2 positive(A) :- mult(A,B,C,C), not(mult(A,B,B,B)).

Has an element with a non-idempotent left identity.

2 positive(A) :- mult(A,B,C,C), not(mult(A,C,C,C)).

Has an element which is a left identity for a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,B,B,B)).

Has a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,C,C,C)).

Has a non-idempotent element.

2 positive(A) :- mult(A,B,C,D), not(mult(A,D,D,D)).

Has a non-idempotent element appearing in the body of the multiplication table.

3 positive(A) :- mult(A,B,C,C), mult(A,B,D,D), not(mult(A,C,B,D)).

Has elements B, C and D such that B is a left identity for C and D, but C ∗ B 6= D.

3 positive(A) :- mult(A,B,C,D), mult(A,B,E,B), not(mult(A,D,E,D)).

Has elements B, E, D: D is in B’s row, E is a right identity for B, but not D.

3 positive(A) :- mult(A,B,C,D), not(mult(A,D,C,D)).

Has elements C and D such that D is in C’s column, but is not a left identity for it.

5 positive(A) :- mult(A,B,C,D), not(mult(A,B,D,C)).

Has elements B, C and D such that B ∗ C = D but B ∗D 6= C.

5 positive(A) :- mult(A,B,C,D), not(mult(A,C,C,D)).

Has elements C, D such that D is in C’s column but is not the square of it.

6 positive(A) :- mult(A,B,C,D), not(mult(A,B,B,D)).

Has elements B and D such that D is in B’s column but is not the square of it.

6 positive(A) :- mult(A,B,C,D), not(mult(A,D,C,B)).

Has elements B, C and D such that B ∗ C = D but D ∗ C 6= B.

7 positive(A) :- mult(A,B,C,B), not(mult(A,B,B,C)).

Has an element which is a right identity to an element which is not its square root.

7 positive(A) :- mult(A,B,C,C), not(mult(A,C,B,C)).

Has an element with a left identity which is not its right identity.

7 positive(A) :- mult(A,B,C,D), not(mult(A,D,D,C)).

Has elements C and D such that D is in C’s column but is not its square root.

12 positive(A) :- mult(A,B,B,B).

Has an idempotent element.

16 positive(A) :- mult(A,B,B,C), not(mult(A,B,C,B)).

Has an element for which its square is not an identify for itself.

21 positive(A) :- mult(A,B,C,C), not(mult(A,B,B,C)).

Has elements B and C such that B is a left identity for C but C is not B2.

25 positive(A) :- mult(A,B,B,C), not(mult(A,C,B,C)).

Has an element whose square is not a left identity for it.

38 positive(A) :- mult(A,B,C,D), not(mult(A,B,D,D)).

Has elements B, D: D is in B’s row but B is not a left identity for D.

47 positive(A) :- mult(A,B,C,B), not(mult(A,B,B,B)).

Has an element which is a right identity for a non-idempotent element.

49 positive(A) :- mult(A,B,B,C), not(mult(A,C,C,C)).

Has an element which squares to a non-idempotent element.

54 positive(A) :- mult(A,B,B,C), not(mult(A,C,C,B)).

Has elements B and C such that B2 = C but C2 6= B.

63 positive(A) :- mult(A,B,C,B), not(mult(A,C,B,C)).

Has elements B and C such that C is a right identity for B but not vice-versa.

66 positive(A) :- mult(A,B,B,C), not(mult(A,B,C,C)).

Has an element which is not a left identity for its square.

95 positive(A) :- mult(A,B,C,C), not(mult(A,C,B,B)).

Has elements B and C such that B is a left identity for C but not vice-versa.
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