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Abstract. Boosting is an established propositional learning method to
promote the predictive accuracy of weak learning algorithms, and has
achieved much empirical success. However, there have been relatively
few efforts to apply boosting to Inductive Logic Programming (ILP) ap-
proaches. We investigate the use of boosting descriptive ILP systems,
by proposing a novel algorithm for generating classification rules which
searches using a hybrid language bias/production rule approach, and a
new method for converting first-order classification rules to binary clas-
sifiers, which increases the predictive accuracy of the boosted classifiers.
We demonstrate that our boosted approach is competitive with normal
ILP systems in experiments with bioinformatics datasets.

1 Introduction

Inductive Logic Programming (ILP) has been very successful in application to
relational predictive tasks. Sophisticated predictive ILP systems, such as Progol
[1] and foil [2], can achieve high predictive accuracy, while the learning results
remain understandable. To achieve higher predictive accuracy, there have been
attempts to combine ILP with propositional learning algorithms, such as Support
Vector Machines [3]. While the predictive accuracy of such systems can be better
than ILP systems, the learning results can be less understandable due to the
complex representations employed.

Boosting [4] is an established method to increase the predictive accuracy
of other learning algorithms, which are known as base learners. The result of
boosting is a weighted sum of the predictions of the classifiers received from
the base learner, and therefore can be easily understood. Although boosting
has many advantageous characteristics, there have been relatively few efforts to
apply it to ILP systems. Some studies include [5], which applied AdaBoost [4] to
the ffoil ILP system, and [6], in which MolFea, a domain-specific ILP system,
was used as the base learner for AdaBoost. While these studies showed that the
predictive accuracy of ILP can often be increased by boosting, there is still much
room for improvement. In particular, the run-time performance of ILP systems
becomes an issue because AdaBoost has to invoke them many times to produce
base classifiers. This prevents boosting from running more iterations to achieve
higher predictive accuracy. Also, base classifiers generated by these ILP systems



tend to be fairly accurate, which causes boosting to converge quickly, hence it is
liable to overfitting, particularly on noisy datasets. Moreover, boosting needs to
apply a weighting over training examples when the base learner is invoked, and
it expects that the base learner can minimise the weighted training error instead
of the normal one. As ILP systems are usually not able to handle weighted
examples, resampling is adopted, in which low weighted examples may be lost.

To attempt to overcome these weaknesses, we have investigated the use of
boosting with descriptive ILP systems, which generate first-order classification
rules from training data in a class-blind manner. In order to control the gener-
ation of classification rules, we have introduced a novel descriptive ILP system
that employs a declarative language bias which in turn enables a new method to
convert classification rules to binary classifiers. We present the results of this ap-
proach for four bioinformatics datasets, and show that our method is competitive
with state of the art ILP systems.

This paper is structured as follows. Section 2 gives a brief introduction to
descriptive ILP and boosting algorithms. An overview of our boosted descriptive
ILP approach is given at the beginning of section 3, followed by the details of
the language bias, rule conversion and boosting steps. The benefits of combin-
ing boosting with ILP is also explained. Our experiments with bioinformatics
datasets are described in section 4, and we describe some directions for further
work in section 5.

2 Background

2.1 Boosting

Boosting is a machine learning algorithm that attempts to increase the predictive
accuracy of a weak learning algorithm (known as a base learner) by aggregating
multiple classifiers from it (known as base classifiers). Early studies of boosting
were motivated by Kearns and Valiant’s research on the PAC learning model [7].
The most widely used boosting algorithm, AdaBoost, was introduced by Freund
and Schapire [4]. AdaBoost is simple to implement, and has many favourable
characteristics. In particular, while the learning algorithm is understood as a
stepwise optimisation [8] in training accuracy, its generalisation error is effi-
ciently bounded by margins independent of the number of base classifiers [9,
10]. The effectiveness of AdaBoost at minimising margins was observed in early
experiments: the generalisation error often keeps dropping even after the train-
ing error reaches zero. However, it was later found that AdaBoost does overfit
sometimes, especially when the data is noisy [11]. A strong connection between
AdaBoost and logistic regression was also discovered [12], which showed that
both algorithms essentially solve the same constrained optimisation problems.

The AdaBoost algorithm tries to construct an accurate combining classifier
via a weighted majority vote of base classifiers. The base classifiers are obtained
by repeatedly calling the base learner, which is supplied with a weighting that af-
fects the evaluation of training errors of the base learner. Each time it is called,



the base learner is applied to the training examples and returns the classifier
which minimises the weighted training error. AdaBoost then chooses a weight
for the received base classifier according to the weighted training error and up-
dates the weighting of training examples such that the total weight of correctly
classified examples are the same as that of misclassified examples. This process
is repeated until AdaBoost has received a specified number of base classifiers –
a typical setting of 200 to 300 base classifiers is widely used. The final classifier
is the weighted sum of all of the received base classifiers.

2.2 Descriptive ILP

In contrast to predictive learning, which learns a target concept from labelled
examples, a descriptive learning system requires no class labels when perform-
ing non-predictive learning tasks such as association rule learning and frequent
pattern discovery. Descriptive ILP systems often perform learning from inter-
pretations [13], assuming each training example is an independent set of ground
facts and using coverage tests to validate candidate rules or patterns. Such pat-
terns are referred to as classification rules in this paper, as each rule specifies a
binary classification of objects according to the truth-value. Without any limita-
tion, descriptive ILP systems search over an excessively large rule space, and this
may require an impractically long time to finish. To avoid this problem, search-
ing is often limited to a specific type of rule specified by an explicit declarative
language bias. Well known descriptive ILP systems include Claudien [14] and
HR [15].

Claudien performs characterising induction on positive examples to produce
classification rules which characterise training examples. To restrict the language
to search over, Claudien employs the Dlab language bias. Dlab defines the
syntax of association rules by using a grammar that has the expressive power of
a regular expression, but with a more convenient notation.

We refer to this type of language bias as a syntactical language bias. In con-
trast, other ILP systems use a constructive language bias, which operates by
repeatedly applying production rules to existing classification rules to construct
new ones. Note that in a syntactical language bias, production rules are used
differently, namely to develop an intermediate rule into either another interme-
diate rule or a classification rule (as is the case in a context-free grammar). An
important difference between the two types of language biases is that construc-
tive language biases typically allow for recursive language definitions, producing
infinite language spaces and usually requiring classification rules to meet other
constraints, such as the maximum number of literals in a rule. In contrast, syn-
tactical language biases generally do not take recursive definitions, and produce
a finite search space.

HR is a descriptive ILP system that performs automated theory formation via
a constructive language bias [15]. Starting from a set of initial classification rules
provided as background knowledge, HR repeatedly applies a set of production
rules to develop an existing rule or combine two existing rules. For instance,
the compose rule makes conjunctions of two existing classification rules, while



the split rule instantiates some variables in an existing classification rule. HR
employs a weighted sum – with weights provided by the user – of measures of
interestingness to guide the search for classification rules.

3 Boosting Descriptive ILP

Our boosted descriptive ILP approach is composed of three steps:

Rule generation. In this step, a new descriptive ILP system, WeakILP, is used
to produce a set of first order classification rules, which are specified in a
syntactical language bias. The rules may have to meet certain criteria with
respect to training examples and background knowledge.

Rule conversion. In this step, the received classification rules are converted
into binary classifiers, from which boosting chooses base classifiers. Different
rule conversion methods may be used, as discussed in section 3.2.

Boosting. In this step, we use an adaptation of AdaBoost to choose some classi-
fiers to aggregate into the boosted classifier. Instead of specifying the number
of base classifiers in advance, we employ cross validation sets to determine
when to stop adding base classifiers.

Compared to existing boosted ILP approaches, our descriptive ILP based
approach has certain advantages. Firstly, the new framework separates the ILP
and boosting steps, which avoids the necessity of resampling weighted examples.
Hence, the boosting step can handle weightings of examples more accurately.
Secondly, the learning process is more efficient, because descriptive ILP is invoked
only once. This enables boosting to run as many rounds as necessary without
significant increase in computational time. In previous boosted ILP experiments,
such as [5], the number of base classifiers was set to between 10 and 20, whereas
the typical setting in our experiments is between 50 and 200 base classifiers. In
general, this means that a higher predictive accuracy can be achieved. Thirdly,
although some predictive ILP systems may produce multiple classification rules
at once, descriptive ILP can make better use of boosting. Boosting’s performance
is conditional on the ability of the base learner to return a proper1 base classifier
for arbitrarily weighted training examples. As descriptive ILP does not have a
target concept to learn, classification rules from it describe a wide variety of
classifications of training examples. Hence, rules from a descriptive ILP system
are much more likely to fit different weightings than those from predictive ILP,
which enables boosting to perform properly.

3.1 Rule generation

Our approach employs descriptive ILP to exhaustively generate classification
rules, regardless of accuracy. In contrast to predictive ILP which produces only
1 The weighted training error of a proper base classifier must be less than 50% for

binary learning tasks.



a few of the most accurate rules, the number of rules generated in this step may
be quite large. Hence, to improve efficiency, it is essential to have an expressive
language bias to specify a language where no rule is irrelevant to the learning
target.

As an example, a typical learning task in bioinformatics is to predict a certain
biological characteristic of a molecule given its structural information, usually
atoms in the molecule and bonds between atoms. For simplicity, we assume
the predicates are of the form: atom(X, A,E) and bond(X, A,B), where X is
the unique identifier of a molecule, A and B are atoms, and E represents the
element type of atom A. Continuing with the example, suppose that domain
experts believe that the biological characteristic is determined by linear (i.e.,
non-cyclic) connected substructures of the molecule. In this case, we need a
language which specifies a sequence of atoms of any type and any length.

This is not straightforward to specify with existing syntactical language bi-
ases, as the maximum number of variables in the rule is indefinite due to the
indefinite length of the sequence. Hence, because existing syntactical language
biases do not allow recursive production rules, to cover all rules in this lan-
guage, we have to use a more powerful language specification. However, existing
constructive language biases also have difficulty to restrict rules to non-cyclic
sequences of atoms, and often an excessive number of irrelevant rules are pro-
duced. Our solution has been to develop a new light-weight descriptive ILP
system, called WeakILP, which uses a syntactical language bias of more expres-
sive power. WeakILP allows recursive production rules and can employ a novel
rule conversion approach.

Language bias
A classification rule in WeakILP has the following form:

rule(X, {X1, X2, . . .}) : Body

where X represents the object to classify (i.e., a training or test set example),
{X1, X2, . . .} is a set of key variables which occur in the Body, which is a well-
formed formula in first-order logic2, though it is often a conjunction of literals.
For example, below is a rule specifying a non-cyclic sub-molecule structure:

rule(X, {A, B, C}) : atom(X, A, o) ∧ bond(X, A, B) ∧ bond(X, B, C) ∧ atom(X, C, n)

where X is the molecule to classify and A, B and C are strictly different atoms.
The set of key variables is referred to as a key set, which is used to highlight

interesting properties or structures of the rule. In the above example, the vari-
ables A, B and C can help identify each unique occurrence of the substructure.
To specify key sets for classification rules and allow recursive definitions in the
2 Note that Body is not theoretically restricted to first-order logic, as the language bias

is simply a set of grammatical definitions. Any logic can be accepted if the produced
rules can be interpreted by the runtime system. Our current implementation is based
on Prolog, hence rules are restricted to Prolog queries. In the experiments presented
here, all classification rules are a conjunction of literals.



language, WeakILP adopts a new syntactical language bias. The language bias
defines the grammar of classification rules by using production rules.

A grammar is composed of several production rules: A1 → B1, . . . , Ak → Bk,
where each Ai is a positive literal or a function symbol, to be replaced by one of
the formulae on the right-hand side, and Bi is a well-formed formula. Each Ai

is a nonterminal symbol, as defined below.

Definition 1 (Terminal and Nonterminal symbols). A nonterminal sym-
bol is any positive literal which occurs on the left-hand side of a production rule,
and may or may not be ground. The nonterminal symbol is in fact a placeholder,
which is absent from the produced classification rules. On the other hand, literals
which must occur in the produced classification rules are called terminal symbols.

Note that, to avoid confusion, any nonterminal symbol must not be used as a
terminal symbol.

A replacing formula, Bi, can be any well-formed logic formula, which may
include nonterminal symbols to allow recursive definitions of rules. In particular,
to allow the specification of the key set, some variables may be enclosed by the
function symbol key/1. In the generated classification rules (which include no
nonterminal symbol), if a variable occurs in a key/1 functor, it will be put into
the key set, and the functor itself will be ignored.

The following is an example of the syntactical grammar which defines a
sequence of atoms of arbitrary length for the above bioinformatics problem.

rule(X) → sequence(X, key(A) ∧ key(B))
sequence(X, A,B) → bond(X, A,B)
sequence(X, A,B) → bond(X, A, key(C)) ∧ sequence(X, key(C), B)

The above grammar produces classification rules, of which the key set com-
prises all atoms in a sequence of atoms. For instance, the grammar can pro-
duce the rule bond(key(A), key(C)), bond(key(C), key(B)), which is interpreted
as this classification rule, which defines a sequence of three connected atoms:
rule(X, {A,B, C}) : bond(X, A,C) ∧ bond(X, C, B). Note that the key/1 func-
tor enclosing variables A, B and C has been removed, and these variables have
been put into the key set (the importance of which becomes clearer when this
classification rule is interpreted as a binary classifier, as described below).

When a production rule is chosen to apply to a formula which contains non-
terminal symbols, one of the nonterminals is replaced by the formula defined
in the production rule. The replacing continues until there are no nonterminal
symbols left. More formally, the application of a production rule to a formula
including nonterminals is defined as follows:

Definition 2 (Application of production rules). Given a well-formed for-
mula F (A′), where A′ is an occurrence of some nonterminal symbol in F (A′), a
production rule A → B can be applied to A′ if and only if there is a unification
of A′ and A. Suppose θ is the most general unifier of A′ and A. Application of
the production rule to A′ of F (A′) produces a well-formed formula F (B)θ.



The generation of classification rules starts from a rule including only one
nonterminal symbol, known as the start symbol: rule(X). The language defined
by a grammar is the set of all classification rules that contain no nonterminal
symbols and can be derived from the start symbol by applying production rules.
Note that, when there are recursive production rules in a grammar, the set of
rules defined by the grammar may be infinite. Therefore, it is often necessary to
specify a maximum length of classification rules or the maximum steps to derive
a classification. Some classification rules defined by the above grammar include:

rule(X, {A,B}) : bond(X, A,B)
rule(X, {A,C, B}) : bond(X, A,C) ∧ bond(X, C, B)

rule(X, {A,C,D, B}) : bond(X, A,C) ∧ bond(X, C, D) ∧ bond(X, D, B)

Importantly, the key set can be used for counting purposes. For instance, in
the above example, suppose we require variables to be instantiated into strictly
different constants. In this case, we can count different ground instantiations of
rules for a molecule, which gives information about the occurrences of a specific
substructure. This information is then used to obtain more sophisticated base
classifiers, as described in section 3.2.

The following grammar extends the above example grammar with atom/3
predicates to restrict the element type of atoms. For the purposes of the example,
we specify that the first and last atoms in a sequence must be assigned a specific
element, with other atoms being optional.

rule(X) → atomtype(X, A) ∧ sequence(X, key(A), key(B)) ∧ atomtype(X, B)

sequence(X, A, B) → bond(X, A, B)

sequence(X, A, B) → bond(X, A, key(C)) ∧ optional(X, C) ∧ sequence(X, key(C), B)

optional(X, A) → atom(X, A, )

optional(X, A) → atomtype(X, A)

atomtype(X, A) → atom(X, A, o)

atomtype(X, A) → atom(X, A, n)

atomtype(X, A) → atom(X, A, c)

atomtype(X, A) → atom(X, A, h)

Continuing the example, we add production rules to the above grammar, so
that the generated classification rules will include combinations of genotoxicity
properties of a molecule, such as salmonella/1, cytogen/1, and drosophila/1.

rule(X) → properties(X, 2) ∧ atom(X, A)
∧sequence(X, key(A), key(B)) ∧ atom(X, B)

property(X, Last,New) → salmonella(X)
properties(X, N) → salmonella(X) ∧ properties1(X, M)
properties(X, N) → properties1(X, N)

properties1(X, N) → cytogen(X) ∧ properties2(X, M)



properties1(X, N) → properties2(X, N)
properties2(X, N) → drosophila(X, N)

Pruning
Given a grammar as above, WeakILP exhaustively produces all classification
rules in the language, except those which are true for fewer examples than re-
quested by a user-specified minimum coverage. Such pruning is mainly to im-
prove computational efficiency. In the case that a classification rule covers no
training examples, it cannot contribute to classification, because its training ac-
curacy could not be higher than the default classifier regardless of weighting over
training examples. As a consequence, boosting does not choose a base classifier
derived from a classification rule of zero coverage. Moreover, those rules that
cover very few training examples may be too specific to these examples, and
might not affect the training result significantly. Pruning those examples can
dramatically reduce the number of classifiers that boosting has to evaluate.

3.2 Rule conversion

For predictive learning tasks, we convert first-order classification rules from de-
scriptive ILP into binary classifiers according to their evaluation for each training
example, as described below. These classifiers are then used as candidate base
classifiers for boosting. We have experimented with the conventional method for
performing this conversion which uses truth values. We have also experimented
with a novel method which finds coefficients of instantiations, as described below.

Truth-based Conversion Method
An intuitive means for converting a classification rule into a classifier is based
on its truth-value for each example, which is the method adopted in previous
attempts to combine ILP with propositional learning systems [6, 5]. In this case,
supposing that R(X, K) is a classification rule, then the corresponding classifier
is defined as:

f(xi) =
{

+1 if R(xi,K) is true
−1 otherwise

where R(xi,K) is the instantiation of R(X, K) gained by replacing X with a
specific example xi.

Instantiation-based Conversion Method
We also propose a different rule conversion method based on the number of
ground instantiations of the classification rule. Given a classification rule R(X, K),
the corresponding binary classifiers are defined as:

f(xi, β) =
{

+1 if
∣∣ {Kθ |R(xi,K)θ is ground and true}

∣∣ ≥ β
−1 otherwise

where β is a non-negative integer and θ is a ground substitution that maps
variables into ground terms.



As R(xi,K)θ is ground, the substituted key set Kθ is also ground. The set
{Kθ |R(xi,K)θ is ground and true} is therefore the set of all ground instantia-
tions of the key variables that make the classification rule R(X, K) true for the
example xi. The cardinality of the instantiation set counts the different key sets
that make the classification rule true for the example, which can be understood
as the degree to which a rule holds for an example. Note that only instantiations
of the key set to strictly different ground instances are counted, and permutations
of an instantiation which has been counted already are similarly not counted.

To illustrate this novel rule conversion method, we consider the above bioin-
formatics problem. Each rule defined in the language represents a non-cyclic
sequence of atoms. The key set is composed of the atom variables, therefore the
cardinality of the instantiation set describes the number of distinct occurrences
of the sequence in a molecule. Illustrated below are 6 instantiations of this classi-
fication rule: rule(X, {A,B, C}) : bond(X, A,B), bond(X, B, C), for a particular
example xi.

rule(xi, {a, b, c}) : bond(xi, a, b), bond(X, b, c) (1)
rule(xi, {c, b, a}) : bond(xi, c, b), bond(X, b, a) (2)

rule(xi, {a, b}) : bond(xi, a, b), bond(X, b, a) (3)
rule(xi, {b, a}) : bond(xi, b, a), bond(X, a, b) (4)
rule(xi, {b, c}) : bond(xi, b, c), bond(X, c, b) (5)
rule(xi, {c, b}) : bond(xi, c, b), bond(X, b, c) (6)

We note that only instantiation (1) will be counted. This is because the
key set in (2) is a permutation of that in (1), and instantiations (3), (4), (5)
and (6) have instantiated two variables to the same ground term, hence are not
counted. Therefore, for this classification rule, the instantiation coefficient used
in the second rule conversion method described above will be 1. Note that the
requirement to instantiate to strictly different terms is referred to in Claudien
as injectivity. Note also that the first conversion method is clearly a special case
of the second method, namely when β is set to 1, and, when β is set to 0, f(xi, β)
is a naive classifier that gives the same positive prediction for any example.

Further Pruning
When the instantiation-based conversion is adopted, each classification rule cor-
responds to multiple binary classifiers with different choices of the parameter
β. To improve efficiency, we prune certain classifiers. In many descriptive ILP
systems, a prover is used to determine whether two rules are logically equiv-
alent. Logically equivalent rules can be safely pruned, as they always give the
same prediction with respect to the background theory. In WeakILP, we choose
to prune any classifier which gives the same predictions for training examples
as another, i.e., predictively equivalent classifiers. Note that such pruning does
not affect the learning process of boosting, as the boosting algorithm cannot
distinguish those classifiers, and might randomly (depending on the implemen-
tation) choose one of them as a base classifier when appropriate. As all logically



equivalent classifiers must also be predictively equivalent, this approach is more
efficient in reducing redundant classifiers than using a logic prover.

However, because the converse statement is not true, i.e., predictively equiv-
alent classifiers are not necessarily logically equivalent, predictively equivalent
classifiers (for training examples) might give different predictions for test ex-
amples. It has been suggested in [16] that a syntactically less complex classifier
tends to have better generalization performance than a more specific one. Hence,
we choose to prune the more complex classifiers, i.e., in WeakILP, given a set
of predictively equivalent classifiers, we take the shortest one in terms of the
number of literals in the classification rule.

3.3 Boosting

Once binary classifiers are produced, the AdaBoost algorithm will be applied
to construct a combining classifier from them. The boosting algorithm is pre-
sented in Figure 1, in which boosting does not invoke a separate base learner to
obtain base classifiers, but, instead, evaluates received binary classifiers against
weighted examples directly and chooses the one of the highest weighted accuracy.

Given (x1, y1), . . . , (xm, ym) where xi ∈ X, yi ∈ Y = {+1,−1}
Initialise d1(xi) = 1/m for each example xi

Generate candidate base classifiers Γ from descriptive ILP
For t = 1, . . . , T :

– select ht(x) ∈ Γ to minimise εt =
∑

i
ht(xi)yidt(xi)

– let αt = 1
2

ln 1−εt
εt

– update dt+1(xi) = dt(xi) exp(−αtyiht(xi))
Output the final classifier: H(x) = sign

(∑
t
αtht(x)

)
Fig. 1. The boosting descriptive ILP algorithm, where T is the specified number of
base classifiers to combine in the boosted classifier.

In experiments with boosting, the learning results are often presented on a
stepwise basis, i.e., results after every step are listed. This is particularly use-
ful to demonstrate the efficiency of boosting for improving the accuracy of the
base learner. However, it is more appropriate to evaluate the generalisation per-
formance of the learning algorithm as a whole. This is because, in practical
applications, we have to choose a combining classifier produced at a particular
step. Hence, we need to estimate AdaBoost’s parameter, i.e., determine when to
stop adding base classifiers to the boosted classifier.

For our experiments, when n-fold cross validation is used for an experiment,
we use (n − 1)-fold cross validation to evaluate the parameter on the training
set. This strategy roughly maintains the size of the validation sets employed
comparable to that of the test set. Hence, after each base classifier is added to the
boosted classifier, we use 9-fold cross validation over the training set to determine
the performance of the boosted classifier. Our system then backtracks to the



boosted classifier which performed best, and outputs this as the final result. We
have found that this improves performance over the usage of a single validation
set. In the case of separate training and test sets, 10-fold cross validation is
typically used.

4 Experiments with Bioinformatics Datasets

We performed experiments with four bioinformatics datasets: mutagenicity [17],
DSSTox [3], carcinogenicity [18], and KDD Cup 2001 [19]. For each dataset, we
evaluated our method using four different settings: WeakILP with and without
boosting and using both of the rule conversion methods. When WeakILP was
used without boosting, we chose the most accurate classifier in terms of predictive
accuracy on training examples. We performed cross validation for all datasets
except the KDD Cup dataset (which has a independent test set) to estimate the
generalisation performance. In the KDD Cup dataset, for pruning purposes, the
minimum coverage of classification rules was set to 15 to reduce the number of
classifiers produced. In all the other experiments, we used a minimum coverage
of one.

– Mutagenicity. The mutagenicity problem, reported in [17], is one of the
most widely used datasets in ILP. The task regards learning a theory of
mutagenesis from a set of 188 nitroaromatic molecules, of which 125 are
mutagenic (active) and 63 are non-mutagenic (non-active). The background
knowledge includes atoms which occur in a molecule, bonds between the
atoms, certain chemical features, structural attributes, and predefined func-
tion groups in the molecule. The language bias used for this experiment is
presented in table 1. The maximum length of classification rules was set to
be 4. We performed 10-fold cross validation to estimate the generalisation
performance on this dataset. Table 2 gives a partial example of an output
combining classifier, which achieves a predictive accuracy of 89.47% (on both
training and test examples) when six base classifiers are chosen.

– DSSTox. DSSTox is the predictive toxicity dataset used in [3], which con-
sists of 576 molecules. The language bias and other settings were the same
as in the mutagenicity experiment, except that 5-fold cross validation was
used, to be consistent with the previous study [3].

– Carcinogenicity. The carcinogenicity dataset includes 337 chemicals, which
is composed of both training and test datasets used from a previous predic-
tive toxicology competition. The task is to predict the cancerous activity
of the chemicals. Similar settings were used in this experiment as with the
mutagenicity dataset, except that the language bias allowed arbitrary com-
binations of genotoxicity properties and structural indicators [18].

– KDD Cup 2001. This competition [19] was composed of three tasks, of
which we consider only the second task, the prediction of functions of genes.
The dataset consists of 862 genes as training examples and 381 genes as test



examples. Each gene can belong to any combination of 14 classes, so we can
break down the leaning task into 14 binary classification sub-tasks. We used
a language bias similar to that used in [20], except that no negation was
allowed.

bound type(X, A, B) → bond(X, key(A), key(B), 1) or
bond(X, key(A), key(B), 2) or
. . .

atom type(X, B) → atom(X, B, h) or
atom(X, B, c) or
. . .

connection(X, A, B) → bond type(X, A, B) or
bond type(X, A, B) ∧ atom type(X, B)

sequence(X, A, B) → connection(X, A, B) or
connection(X, A, C) ∧ sequence(X, C, B)

structure(X, A, B) → arc(X, A, B) or
arc(X, A, B) ∧ structure(X, A, B) or
arc(X, A, C) ∧ arc(X, C, B) ∧ structure(X, C, D)

rule(X) → structure(X, A, B) or
atom type(X, A) ∧ structure(X, A, B)

Table 1. Language bias for the mutagenicity dataset. Production rules with the same
left-hand side nonterminal symbol are grouped together for ease of reading.

Acc. Wt. Pred. β Body of the classification rule

73.68% 0.82 + 16 bond(X, A, C, 1) ∧ bond(X, C, B, 7).

73.68% 0.45 + 6 bond(X, A, C, 2) ∧ bond(X, C, D, 1) ∧ bond(X, D, E, 7)
∧bond(X, E, B, 7).

73.68% 0.37 + 28 bond(X, A, B, 7).

73.68% 0.43 − 2 bond(X, A, C, 1) ∧ atom(X, C, o) ∧ bond(X, C, B, 1)
∧atom(X, B, c).

78.94% 0.38 + 8 bond(X, A, C, 1) ∧ bond(X, C, B, 1) ∧ bond(X, C, D, 1)
∧atom(X, D, c).

89.47% 0.28 − 16 bond(X, A, C, 1) ∧ bond(X, C, D, 7) ∧ bond(X, D, B, 1)
∧atom(X, B, h).

Table 2. The first six base classifiers of a boosted classifier for the mutagenicity dataset.
Acc. represents the test accuracy of the corresponding combining classifier. Wt. is the
weight assigned to the corresponding base classifier. Pred. is the prediction of the base
classifier, which may be either active (+), or non-active (-). We only give the body of
the classification rule, as all variables except X are key variables. The classifier is read
as: the molecule is Pred. if the number of ground instantiations is equal to or greater
than the threshold, β.



Rule conversion Truth-value based Instantiation based

Boosting WeakILP boosted WeakILP boosted

Mutagenicity 66.5% 76.6% 80.9% 90.5%

DSSTox 63.0% 66.1% 68.4% 75.6%

Carcinogenicity 58.4% 57.5% 58.7% 61.1%

KDD Cup 2001 90.5% 91.8% 90.5% 91.8%

Table 3. Test accuracy or estimated generalization accuracy of WeakILP and boosted
WeakILP for the four datasets, using truth-value and instantiation based rule conver-
sion methods.

[t]Category Method Mutagenesis Carcinogenesis DSSTox †† KDD Cup 2001

ILP Progol 88.0% 55.0%
FOIL 86.7%
STILL 93.6%‡
ICL 88.3% 92.2%

Aleph 88.8% 57.9%

Kernel SVILP 73.0%
based CHEM 58.0%

MIK 93.0% 60.0%
PLS 71.0%

Bagging/ RS 95.8%
Boosting Bagging Aleph 64.0%†
Based Boosted FFOIL 88.3%

Boosted WeakILP 90.5% 61.1% 59.3% 91.8%

Others RELAGGS 88.0% 93.0%

Table 4. The comparison of our boosted WeakILP approaches with other state of the
art systems. The results for the mutagenicity dataset are mostly taken from [21] and
the results for DSSTox are from [3]. RELAGGS was the winner of KDD Cup 2001
task 2 [19] and ICL results are collected from [20]. Aleph results are based on [22]. It is
worth noting that many experiments were done in different settings, including different
background knowledge and performance estimation. † This result has large variations
between 60% and 64% in different bagging steps. ‡ The STILL experiment did not
perform 10-fold cross validation, but held 10% examples back as test examples. †† All
other methods except boosted WeakILP had access to background knowledge which is
not currently available in the public domain.

Table 2 shows a typical training result from our boosted WeakILP experi-
ments. We found most weightings concentrate on the first few base classifiers and
if we reduce the boosted classifier to ten base classifiers, in most cases, the result
is still fairly accurate but much simpler. Hence, the training result can be made
more understandable at a minor cost to predictive accuracy. Table 3 lists the
predictive accuracies of WeakILP and boosted WeakILP using both rule conver-
sion methods. The result shows that with only one exception, boosting is able
to improve the generalization performance of WeakILP, and the improvement
is more than 10% in two out of four datasets. We also observed that the new
instantiation-based rule conversion method resulted in better test accuracy with
no exceptions, and when used together with the boosted WeakILP approach, it
always produces better predictive accuracy than with other settings. We compare



our results (using boosted WeakILP with the instantiation based rule conver-
sion) with other methods in Table 4. The predictive accuracy we achieve is in
line with the top ranking approaches for all experiments except DSSTox. Note
that all the other methods had access to certain more sophisticated background
information for the DSSTox dataset, which was not available to us. Our experi-
ments involved minimum use of background knowledge, and we hope to improve
our results by using more background knowledge.

5 Conclusions and Further Work

We have explored the use of boosted descriptive ILP for predictive learning tasks,
and presented some experimental results for bioinformatics datasets. The main
contributions of our study include the following:

– We distinguish two types of language biases, namely constructive and syn-
tactical, and we highlight the limitation of existing language biases.

– To take advantage of both types of language biases, we suggest a new declar-
ative language bias, used in our WeakILP system. The new language bias
adopts a context-free style grammar to define languages, which is more ex-
pressive than Dlab in that it allows recursive definitions of the language.

– We have proposed a new propositionalization technique, which counts the
ground instantiations of a logic rule to indicate the degree that the classi-
fication rule supports its prediction. This approach has been shown to be
effective in some learning tasks, in which both training and test accuracies
have been improved significantly.

– We have shown that the boosted WeakILP approach performs well with
four bioinformatics datasets, and it outperforms many widely used ILP sys-
tems. Hence, there is some evidence that the boosted WeakILP approach
is competitive with state of the art ILP systems in terms of predictive ac-
curacy. This is encouraging, especially given that the learning results are
understandable compared to other propositionalization based methods.

In further work, we plan to perform further experiments to investigate both
runtime and predictive performance of the proposed approach in non-bioinformatics
domains. Also, further theoretical and experimental studies are necessary to com-
pare the performance of boosting with other machine learning methods including
SVM and logistic regression. Moreover, we aim to find a theoretical explanation
to answer questions about when our approach is suitable and when it is not.
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