
Intelligent Offload to Improve

Battery Lifetime of Mobile Devices

Ranveer Chandra
Microsoft Research

Phones are Energy Constrained

 Energy: A critical issue in smartphones

 Limited battery lifetime

 Battery energy density only

doubled in last 15 years

 Smartphone capability has increased drastically

 Multiple Components: GPS, 3G, retina display, ….

2

Where Does the Energy Go?

Suspended State

(68 mW)

Video Playback

(450 mW + backlight)

Network, Display & CPU are the main energy hogs!

Android G1 energy consumption

“An Analysis of Power Consumption in a Smartphone”, USENIX 2010

3

Efforts to Improve Battery Life

 Battery: bigger, more energy density
 Challenge: Lighter phones

 CPU: low power cores, parking individual cores
 Challenge: multi-core, faster processors

 Network: low power cellular & Wi-Fi states
 Challenge: LTE, 802.11ac

 Display: energy-efficient display, e.g. AMOLED
 Challenge: larger & brighter displays, video, animation

4

Mission & Big Bets

“Lasting a week without charge under normal usage”

 Profile energy use of each component

₋ Application energy profiler

₋ Energy debugging

 Big Bets:

- Offload: Intelligently utilize available resources

- Energy-aware UI: based on OLED energy models

- Adaptive battery usage: OS controlled multi-battery

systems

5

OFFLOAD

6

Computational Offload

 Move computation away from main processor

without degrading user experience

 Such that SoC is in low power states for longer

7

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component

Where to Offload?

 Low power subsystem on SoC

 Already shipping with TI and other SoC vendors

8

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Low Power
Processor)

Where to Offload?

 Low power subsystem on SoC

 Low power processor connected to NIC

9

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Low Power
Processor)

Where to Offload?

 Low power subsystem on SoC

 Low power processor connected to NIC

 Cloud or another machine

10

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Cloud/PC)

Use Cases

 When display is off

 Push e-mail

 Continuous sensing

 Large downloads

 Instant Messaging

 P2P file sharing

 When display is on

 Gaming

 Speech translation

 …

11

OFFLOAD TO LOW-POWER

PROCESSOR

12

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Low Power
Processor)

100’s of apps using
the accelerometer

Not using the full potential of sensors
13

Responsive Sleeping Challenge

 Sensor (accelerometer): 0.56mW

 Phone (mainly processor): ~600mW

 Wakeup + sleep time: 1200ms

 @ 1Hz sampling, processor can’t sleep

Sampling overhead High wakeup/sleep overhead

Solution: Offload sampling/processing sensor data to
a low-power processor

14

Phone Application
Processor

Low-power
proc.

High-speed serial bus
+ GPIO

Sensor buses
(I2C, SPI etc.) Sensors

Phone Application

Processor

Sensor buses
(I2C, SPI etc.)

Sensors

Current Phones EERS

Energy Efficient Responsive Sleeping

Bodhi, Jie, Dimitrios (2010)

15

Hardware Prototype

 Interfaced directly to phone’s AP

 Processor: MSP430F5438

 16KB RAM, 256KB Flash

 Active: 6.6mW @16MHz; sleep: 10mW

 Wakeup time: 4µs

 Sensors:

 Temperature

 Pressure

 3D compass

 3D accelerometer

 3D gyro

 Capacitive touch sensing (x16)

16

17

 Reprogrammable over the phone

 Leakage (sleep) power: 270mW

 Extensible: can accommodate more sensors, radios etc.

 Can interrupt and turn on/off the phone

 Interfaced directly to phone processor (SPI bus + GPIOs)

 Directly powered from the phone’s battery

Glue + Reset Logic
Phone
Interface

Main
Proc.

Processor Module

Slave
Proc.

SPI

Flash

GPIO

Digital Sensor Module

3-axis
Compass

Temp. Pressure
3-axis
Accel.

Analog Sensor Module

Z
Gyro

A/D
X-Y

Gyro
SPI

I2C

Little Rock

Phone
Battery

Power
Supplies

Summary

 Low Power processor on SoC can drive sensors

 Key application: Continuous sensing

18

OFFLOAD TO NETWORK-CONNECTED

LOW-POWER PROCESSOR

19

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Low Power
Processor)

Collaborators: Yuvraj Agarwal, Steve Hodges, James Scott, Victor Bahl

Power/Energy Efficiency are Key Drivers Today

Battery Powered Computers “Wall Powered” Computers

Lenovo X61 laptop
• Power: 0.74W (sleep) to 16W (active)
• Goal: improve battery lifetime

Dell Optiplex 745 desktop
• Power: 1.2W (sleep) to >140W (active)
• Goal: reduce energy costs and impact
 to the environment

Energy efficiency: do more work for less power or energy

20

IT Equipment Consumes Significant Power

 Yet, shutdown opportunities are rarely used

 Studies show that:
 67% of office PCs are left on after work hours

 “Sleep” modes used in less than 4% of these PCs! [1]

 Home PCs are left on for 34% of the time
 50% of the time they are not being used

 Confirmed by our measurements: CSE@UCSD
 600+ desktops left always on (total=700+)

 @150W each  100kW (25% of total energy bill)

 Propriety solutions at WaMu, Dell and GE have reported savings of
millions dollars per year

 Thousands of tons of CO2 emission avoided!!!

[1] J. Roberson et al. “After-hours Power Status of Office Equipment and Energy use of Miscellaneous Plug-load Equipment. Lawrence
Berkeley National Laboratory, Berkeley, California. Report# LBNL-53729-Revised, 2004 21

Saving Power Runs into Usability

 Reasons why users do not switch off their PCs

 Maintain state: desktop and applications preferences

 Occasional access

 Remote desktop/SSH, accessing files

 Administrative: updates, patches, backups

 Active applications running

 Maintaining presence: e.g. incoming Skype call, IM

 Long running applications: Web downloads, BitTorrent

Cannot be handled by low-power modes (e.g. Sleep, Hibernate)

22

Power Management vs. Use Models

• Current design trends in power management:

– Hosts (PCs): either Awake (Active) or Sleep (Inactive)

• Power consumed when Awake = 100X power in Sleep!

– Network: Assumes hosts are always “Connected” (Awake)

• What users really want:

– Provide functionality of an Awake (active) host…

 ….While consuming power as if in Sleep mode

– Resume host to Awake mode only if needed

Change the fundamental distinction between Sleep and Active states…
23

Network
Interface

Augment PC’s Network Interface

 Objective: Make PCs responsive even when asleep
 Maintain availability across the entire protocol stack

 E.g. ARP(layer 2), ICMP(layer 3), SSH (Application layer)

 Without making changes to the infrastructure or user behavior

Active State : >140 W
Idle State : 100 W
Sleep State : 1.2 W

+

Low Power
CPU

+

DRAM

+

Flash Memory
Storage

Secondary Processor
(Power in active state ~1W)

Requirements:
• Functionally similar - masquerade as the host
• Much lower power

24

Somniloquy*: PCs Talk in their Sleep

Somniloquy

daemon

Host processor,

RAM, peripherals, etc.

Operating system,

including networking

stack

Apps

Network interface

hardware

Secondary processor

Embedded

CPU, RAM,

flash

Embedded OS,

including

networking stack

wakeup

filters

Appln.

stubs

Host PC

• Augment network interfaces:
– Add a separate power domain

• Powered on when host is asleep

• Processor + Memory +
 Flash Storage + Network stack

– Same MAC/IP Address

• Wake up Host when needed
– E.g. incoming connection

• Handle some applications
while PC remains asleep
– Using “application stubs”

25

Supporting Stateless Apps: Filters

 Wake up host on any user defined “filter”

 E.g. incoming Skype call, Remote Desktop request

 Wake-on-LAN either impractical or affects usability

 Specified at any layer of the network stack

 E.g. from a particular IP (layer 3) or MAC (layer 2)

 E.g. wake up on finding “MSFTWLAN” Wi-Fi network

26

Supporting Stateful Apps: Stubs

 Applications actively maintain state
 E.g. background web downloads, P2P file sharing (BitTorrent)

 Need application specific code on the secondary processor

 Challenge: secondary processor limited in resources
 CPU, memory, flash storage

 Cannot run the full application

 Offload part of the applications: i.e. “stub” code
 Generate “stub” code manually

 Stubs for BitTorrent, Web downloads, IM

27

Software Components

Somniloquy States

Stub config/app-layer wakeup filters

Secondary

Processor

Port filters

(TCP, UDP,

ICMP etc)

Application

stubs

Network

config

Sleep/wake

Mgmt.

Host PC

Somniloquy

daemon

Applications

Operating

System

Get/set
network
 config.

Computer

active, using

network

Secondary

subsystem not

using network

Timer-based or user-
initiated sleep

Wake up on incoming network event
or timer-based/user-initiated action

Computer

asleep, not

using network

Secondary

processor

enabled, using

network

Port-Based wakeup filters

Application state

Wake-up signal and updated state

28

Somniloquy Prototype

 Prototype uses “gumstix” platform

 PXA270 processor with full TCP/IP stack

 USB connection to PC for sleep
detection/wakeup trigger, power while
asleep, and IP networking for data

 Wired and wireless prototypes

 *-1NIC version follows initial vision of
augmented NIC, where all data goes via
gumstix even when PC is awake

 *-2NIC version uses PC’s internal interface
while it is awake, and allows for simpler
legacy-friendly support

Wired-1NIC prototype

Wireless-2NIC prototype

29

USB Interface
(Wake up Host + Status + Debug)

USB Interface
(power + USBNet)

100Mbps Ethernet Interface

Processor

SD Storage

Prototype

30

Evaluation Methodology

 Maintain network reachability

 Stateless applications (filter based):

 Measure increase in “application layer” latency

 Detailed power profile: Gumstix, Host PCs

 Extend battery lifetime (Laptops), Energy Savings (Desktop)

 Stateful applications (stub based):

 Measure energy savings

31

Maintaining Reachability

 Respond to “ping”, ARPs, maintain DHCP lease

0

1

2

3

4

5

6

7

8

0 20 40 60 80

IC
M

P
 e

c
h

o
-r

e
s

p
o

n
s

e
s

L

a
te

n
c

y
 (

m
s

)

Time (seconds)

Desktop going to Sleep
4 seconds

Desktop resuming from Sleep
5 seconds

Break in ICMP responses are due to state transitions: Sleep  Active

32

Stateless Apps: “Setup” Latency

• Measured time till
user-perceived
response

• For each, incoming
TCP SYN caused
wakeup

• Additional latency:
3-10s for all
prototypes

• As a proportion of the
resulting session, this is
OK

0

5

10

15

20

25

30

35

40

W
ir

ed
-1

N
IC

W
ir

ed
-2

N
IC

W
ir

el
es

s-
2

N
IC

W
ir

ed
-1

N
IC

W
ir

ed
-2

N
IC

W
ir

el
es

s-
2

N
IC

W
ir

ed
-1

N
IC

W
ir

ed
-2

N
IC

W
ir

el
es

s-
2

N
IC

W
ir

ed
-1

N
IC

W
ir

ed
-2

N
IC

W
ir

el
es

s-
2

N
IC

Remote desktop
connect (RDP)

List remote
directory (SMB)

Remote file
copy (SMB)

Call connect
(VOIP)

Ti
m

e
 (

s)
 t

ill
 a

p
p

lic
at

io
n

-l
ev

e
l t

as
k

co
m

p
le

ti
o

n

Asleep (Somniloquy)

Awake

33

Gumstix: Power Consumption

Gumstix State Power

WIRED VERSION

1. Gumstix only – No Ethernet 210mW

2. Gumstix + Ethernet Idle 1073mW

3. Gumstix + Ethernet + Write to flash 1675mW

WIRELESS VERSION

4. Gumstix only - no Wi-Fi 210mW

5. Gumstix + Wi-Fi associated (PSM) 290mW

6. Gumstix + Wi-Fi Associated (CAM) 1300mW

• Our prototypes consume 290mW (Wi-Fi) to 1W (Ethernet)
• Similar to power consumed by our test laptop (740mW) in the “sleep” state.

 ...and our test desktop (1.2W) in the “sleep” state.

34

Desktops: Power Savings

Using Somniloquy:

– Power drops from >100W to <5W

– Assuming a 45 hour work week

– 620kWh saved per year

– US $56 savings, 378 kg CO2

Dell Optiplex 745 Power Consumption
and transitions between states

State Power

Normal Idle State 102.1W

Lowest CPU frequency 97.4W

Disable Multiple cores 93.1W

“Base Power” 93.1W

Suspend state (S3) 1.2W

35

Laptops: Extends Battery Lifetime

Using Somniloquy:

– Power drops from >11W to 1W,
– Battery life increases from <6 hours to >60 hours

– Provides functionality of the “Baseline” state
– Power consumption similar to “Sleep” state

36

Energy Savings for Sample Workloads

 Use trace data from [Nedevschi-NSDI2009]

 24 desktop PCs: ON, sleep, idle and OFF durations

 Bin data into 3 categories based on % idle time

% Idle Time % Energy Saving using
Somniloquy

<25% of the time (7 PCs) 38%

25% - 75% of the time (6PCs) 68%

>75% of the time (9 PCs) 85%

37

Stateful Application: Energy Savings

• Web download “stub” on the gumstix
– 200MB flash, download when Desktop PC is asleep

– Wake up PC to upload data whenever needed

– 92% less energy than using the host PC for download

0

50

100

150

200

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

(W

at
ts

)

Time (seconds)

Host Only Somniloquy

1 600 1200 1800 2400

38

Summary:

 Somniloquy: augment network interfaces of PCs
 Maintain reachability and availability transparently

 Power consumption similar to a “sleep” state

 Incrementally deployable prototype
 No changes to infrastructure, application servers

 Demonstrable savings
 Desktops: reduced energy cost, carbon footprint

 Laptops: extend battery lifetime

39

In the context of mobile devices

 Network-connected low power processor can:

 Sync with e-mail

 Perform IM tasks

 Run Skype in the background

 Download music

… all without waking up the main processor

40

CLOUD OFFLOAD

41

Application
Processor

Graphics Unit M
em

o
ry

 U
n

it

St
o

ra
ge

Wi-Fi & Cell
Modem

Accelerator

SoC (~1W when awake, ~10 mW when asleep)

Offload
Component
(Cloud/PC)

Collaborators: Eduardo Cuervo, Aruna Balasubramanian, Alec Wolman, Stefan Saroiu, Victor Bahl

Mobile apps can’t reach their full potential

Augmented Reality

Speech Recognition and Synthesis Interactive Games

Slow, Limited
or Inaccurate

Too CPU
intensive Limited

Power Intensive

Not on par with
desktop counterparts

42

One Solution: Remote Execution

 Remote execution can reduce energy

consumption

 Challenges:

 What should be offloaded?

 How to dynamically decide when to offload?

 How to minimize the required programmer effort?

43

MAUI: Mobile Assistance Using Infrastructure

MAUI Contributions:

 Combine extensive profiling with an ILP solver

 Makes dynamic offload decisions

 Optimize for energy reduction

 Profile: device, network, application

 Leverage modern language runtime (.NET CLR)

 To simplify program partitioning

 Reflection, serialization, strong typing

44

Roadmap

 Motivation

 MAUI system design

 MAUI proxy

 MAUI profiler

 MAUI solver

 Evaluation

45

Maui server Smartphone

Application

Client Proxy

Profiler

Solver

Maui Runtime

Server
Proxy

Profiler

Solver

Maui Runtime

MAUI Architecture

Application

RPC

RPC

Maui Controller

46

How Does a Programmer Use MAUI?

 Goal: make it dead-simple to MAUI-ify apps

 Build app as a standalone phone app

 Add .NET attributes to indicate “remoteable”

 Follow a simple set of rules

47

Run-Time Support For Partitioning

 Portability:

 Mobile (ARM) vs Server (x86)

 .NET Framework Common Intermediate Language

 Type-Safety and Serialization:

 Automate state extraction

 Reflection:

 Identifies methods with [Remoteable] tag

 Automates generation of RPC stubs

48

Maui server Smartphone

Application

Client Proxy

Profiler

Solver

Maui Runtime

Server
Proxy

Profiler

Solver

Maui Runtime

Application

RPC

RPC

Maui Controller

MAUI Proxy

Intercepts Application Calls
Synchronizes State

Chooses local or remote

Handles Errors

Provides runtime information

49

MAUI Profiler

Profiler
Callgraph

Execution Time

State size

Network Latency

Network Bandwidth

Device Profile
CPU Cycles

Network Power Cost
Network Delay
Computational Delay

Computational Power Cost
Computational Delay

A
n

n
o

tated
 C

allgrap
h

50

MAUI Solver

B
900 mJ
15ms

C
5000 mJ
3000 ms

1000mJ

D
15000 mJ
12000 ms

A

Computation energy and delay for execution

Energy and delay for state transfer

A sample callgraph

51

Is Global Program Analysis

Needed?

FindMatch
900 mJ

InitializeFace
Recognizer

5000 mJ

1000mJ

DetectAndExtract
Faces

15000 mJ

User
Interface

Yes! – This simple example from Face Recognition
app shows why local analysis fails.

Cheaper to do local

52

Is Global Program Analysis

Needed?

FindMatch
900 mJ

InitializeFace
Recognizer

5000 mJ

1000mJ

DetectAndExtract
Faces

15000 mJ

User
Interface

Yes! – This simple example from Face Recognition
app shows why local analysis fails.

Cheaper to do local

Cheaper to do local
53

Is Global Program Analysis

Needed?

FindMatch

InitializeFace
Recognizer

1000mJ

DetectAndExtract
Faces

User
Interface

25900mJ
Cheaper to offload

54

Adapting to Changing Conditions

 Adapt to:

 Network Bandwidth/Latency Changes

 Variability on method’s computational requirements

 Experiment:

 Modified off the shelf arcade game application

 Physics Modeling (homing missiles)

 Evaluated under different latency settings

55

DoLevel

HandleMissiles

DoFrame

HandleEnemies

HandleBonuses

11KB +
missiles

*Missiles take around 60 bytes each

11KB +
missiles

Required state is smaller

Complexity increases with # of missiles

Adapting to Changing Conditions?

56

Case 1

DoLevel

HandleMissiles

DoFrame

HandleEnemies

HandleBonuses

*Missiles take around 60 bytes each

 Zero Missiles
 Low latency (RTT < 10ms)

Computation cost is close to zero

Offload starting at DoLevel

57

Case 2

DoLevel

HandleMissiles

DoFrame

HandleEnemies

HandleBonuses

*Missiles take around 60 bytes each

 5 Missiles
 Some latency (RTT = 50ms)

Most of the computation cost

Very expensive to offload everything

Little state to offload

Only offload Handle Missiles

58

Roadmap

 Motivation

 MAUI system design

 MAUI proxy

 MAUI profiler

 MAUI solver

 Evaluation

59

MAUI Implementation

 Platform
 Windows Mobile 6.5

 .NET Framework 3.5

 HTC Fuze Smartphone

 Monsoon power monitor

 Applications
 Chess

 Face Recognition

 Arcade Game

 Voice-based translator

60

Questions

 How much can MAUI reduce energy

consumption?

 How much can MAUI improve performance?

 Can MAUI Run Resource-Intensive Applications?

61

0

5

10

15

20

25

30

35

En
e

rg
y

(J
o

u
le

s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

How much can MAUI reduce energy

consumption?

Big savings even on 3G An order of magnitude
improvement on Wi-Fi

Face Recognizer

62

How much can MAUI improve

performance?

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

Ex
e

cu
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

Improvement of around an
order of magnitude

Face Recognizer

63

Latency to server impacts opportunities

for fine-grained offload

0

20

40

60

En
e

rg
y

(J
o

u
le

s)

Smartphone only

MAUI (Wi-Fi, 10ms RTT)

MAUI (Wi-Fi, 25ms RTT)

MAUI (Wi-Fi, 50ms RTT)

MAUI (WiFi, 100ms RTT)

MAUI* (3G, 220ms RTT)

Up to 40% energy savings
on Wi-Fi

Solver would decide not
to offload Arcade Game

64

Can MAUI Run Resource-Intensive

Applications?

0

10

20

30

40

50

60

70

80

90

100

00:00 00:43 01:26 02:10 02:53

C
P

U
 C

o
n

su
m

p
ti

o
n

 (
%

)

Time

CPU1

CPU2

CPU Intensive even on a Core 2 Duo PC

Can be run on the phone with MAUI

Translator

65

SUMMARY

66

Looking ahead…

 Mechanisms are in place

 Low power cores in the SoC

 TI and others …

 Big.Little processors from ARM

 Expected by end of year

 Smart Web Services

 Offload Policies: the next big move?

67

