A Tutorial in Using Ipc

Allan Clark, Jeremy Bradley and Stephen Gilmore
October 10, 2007

1 Introduction

PEPA]JL] is a poplular stochastic process algebra. The ipc software tool is a
compiler for PEPA models into a format suitable for analysis by the Hydra[2]
tool. This tutorial will guide you through using the the ipc software tool to
perform various measurements over various models. For full documentation on
the ipc tool please refer to the manual.

2 The Basics

We begin with a basic model and will subsequently augment the model to take
into account more interesting features of PEPA and to allow some more sophis-
ticated measurements. Our model is intended to represent a typical workplace
coffee-room. The first model is a straight-line model representing only a single
tea~drinker. The concrete syntax source for this first model is given in Figure 1.

r_thirst = 0.01 ; r_boil = 1.0 ; r_pour = 10.0 ;
r_milk =6.0 ; r_stir = 10.0 ; r_drink = 0.1 ;
TeaDrinker = (thirst , r_thirst) . MakeTea ;
MakeTea = (boil_kettle, r_boil) . PourWater ;
PourWater = (pour , r_pour) . AddMilk ;
AddMilk = (milk , r_milk) . Stir ;
Stir = (stir , r_stir) . Enjoy ;
Enjoy = (drink , r_drink) . TeaDrinker ;
TeaDrinker

Figure 1: The source for the simple tea drinker model.

The rates described in table 1.
The simplest invocation of ipc on this model would be the following com-
mand:

ipc simpleTea.pepa

However this will simply produce a Hydra (.mod) with no measurement
specifications. Generally we wish to compute some performance measurement

Rate Name | Value | Meaning

r_thirst 0.01 Thirsts once every 100 minutes
r_boil 1.0 The kettle takes one minute to boil
r_pour 10.0 It takes 6 seconds to pour

r_milk 6.0 It takes 10 seconds to add the milk
r_stir 10.0 It takes 6 seconds to stir the tea
r_drink 0.1 It takes 10 minutes to drink the tea

Table 1: The meaning of the rates in the simpleTea PEPA model.

over our model. In ipc there are four general kinds of measurements one can
specify.

Steady-state
e Passage-time

Transient

e Count measures

Each of these will be described in more detail as we apply each to the first
simple model. Special probe components are used to specify complex perfor-
mance measurements however to begin with the user need not know about these
and use the simpler interface of specifying activities of interest. The first three
kinds of measurements are require ’start’ and ’stop’ actions to be given by the
user, while a count measure requires only one set of action names. We now
describe each of these four kinds of measurements in detail.

2.1 Passage-time Measurements

A passage-time measurement is used to measure between two events. The user
specifies a set of start actions, the observation of the model performing any one
of these actions will start the measurement. The user also specifies a set of stop
actions and the measurement is terminated when the model performs any actions
within that set. Without further ado a possible passage-time measurement over
our simple model would be to measure the passage between a thirst activity
and a stir activity. This can be done with the following command line:
ipc --source thirst --target stir simpleTea.pepa
This will produce a .mod file suitable for analysis with Hydra however ipc
also provides the ——--run-hydra flag which will do this for the user.
ipc --source thirst --target stir --run-hydra simpleTea.pepa
We will make extensive use of this flag during this tutorial. Having run
this command-line there should now be a simpleTea.PT_RESULTS file. This
can now be processed with gnuplot. This will produce a graph as shown in
Figure 2. This graph shows the cummulative distribution function, this means
it maps the probability that the given passage has completed at the point in
time corresponding to the x-axis. In this particular case we can see that the
probability rises quickly before flattening out close to probability 1 (on a long
enough timeline all teas are made).

After about 50 seconds it has a 50% chance of having completed, so after
50 seconds there is an equal probability that the passage will have completed
as there is that it has not completed. After about 3 minutes there is a high

probability that the passage has completed.
Note that the measurement is from the completion of a thirst activity and
the completion of a stir activity. Therefore in this measurement the time taking
to perform the thirst activity is irrelevant but the time take to perform the stir

activity does matter.
1 T T T T e e B T T
" "simpleTea.PT_RESULTS" ——
09 | / i
0.8 / e
2 o7t -
el /
5] /
o /
g o6fr 1
05 / .
04+ | 1
1
0.3 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
Time

Figure 2: Shows the cummulative probability of completion against time.

2.2 Steady-state Measurements
A steady-state measurement analyses the long-term probability that the model

is in a given state or set of states.
currently in the process of making their tea. To do this we start the measurement

at the thirst activity and stop at the stir activity. Shown here is both the
command used to invoke ipc and the response from the subsequent run of Hydra.

This first measurement analyses the probability that the TeaDrinker is
Note here the short forms of the -—source and --target options have been used,

these are -s and -t respectively.
ipc -s thirst -t stir --steady --run-hydra simpleTea.pepa

State Measure ’steady_measure’
1.2271774918e-02

mean

This tells us that there is a very low probability, just over 1 percent, that the
user is currently making tea, this is intuitively correct since generally the user
is either enjoying a tea or not yet thirsty. We can therefore also measure the
probability that the TeaDrinker has finished their last cup of tea but is not yet
ready for another. To do this we measure the probability of being in any state
between the occurrence of the drink activity and the occurrence of a thirst
activity (in this case there is only one such state).
ipc -s drink -t thirst --steady --run-hydra simpleTea.pepa

State Measure ’steady_measure’
mean 8.9793475007e-01

This tells us that there is almost an 81 percent chance that the user is in this
state.

2.3 Transient Measurements

Transient measures are similar to passage time measurements but may be used
to measure the short-term rather than steady-state probabilities. Our simple
first model behaves similarly in the short-term than in the long-term this is
because there are no interacting components so there is no need for the single
straight line component to ’settle’ into a steady-state. A transient measurement
is invoked with the —~—--transient flag, below is shown a sample command-line.
As with a passage-time measurements the results are written to the file named
simpleTea.PT_RESULTS.
ipc -s thirst -t stir --transient --run-hydra simpleTea.pepa

2.4 Count Measurements

Count measures are used to calculate the mean rate at which a given set of
activities occurs within a model. The mean rate an activity is performed de-
pends upon the mean rate at which the activity is enabled and the long-term
probability that the model is in a state in which the activity is enabled. For our
simple model we could calculate the mean rate at which the T'ea Drinker has a
cup. This may be calculated with the following command-line:
ipc --count-measure drink --run-hydra simpleTea.pepa

Count Measure ’my_count_measure’ mean 0.008979347501

These results tell us that it is quite a low rate in comparison to the rates
involved in making the tea, again as one would expect. At a mean rate of
approximately 0.009 this means the tea-drinker enjoys a cup every 1,/0.009 min-
utes, or once every 111 minutes. This in intuitively correct since the tea drinker
‘thirsts’ at a rate of once every 100 minutes and the time taken to make and
drink the tea are both small by comparison.

3 Intermediate

We will now consider some more complex measurements. For this we update our
model to include a boiler which continuously boils water for the tea drinkers.
The model used for these measurements is given in Figure: 3.

r_thirst = 0.01 ;
r_milk = 6.0 ; r_stir = 10.0 ; r_drink = 0.1 ;
TeaDrinker = (thirst , r_thirst) . PourWater ;
PourWater = (pour , infty) . AddMilk ;
AddMilk = (milk , r_milk) . Stir ;
Stir = (stir , r_stir) . Enjoy ;
Enjoy = (drink , r_drink) . TeaDrinker ;
r_pour = 10.0 ; r_cool =0.2 ;
r_boil = 1.0 ; r_refill = 10.0 ;
Boiler = (cool, r_cool) . CoolBoiler

+ (pour, r_pour) . RefillBoiler
CoolBoiler = (boil, r_boil) . Boiler ;
RefillBoiler = (refill, r_refill) . CoolBoiler ;

TeaDrinker < pour > Boiler

Figure 3: The source for the tea drinker and boiler.

3.1 Probe Specifications

Rather than specifying start and stop actions one can specify a probe. We
begin with an example first. Suppose we wish to find out the probability that
the boiler has boiled three times in a row without any water being taken from
it. If this probability is high then we can conclude that the boiler is inefficient
since it will unnecessarily boil water which is not then subsequently used.

The probe specification to ask this question is the following: ((boil, boil, boil) /pour) :
start, pour : stop This probe specifies that once we have witnessed three boil ac-
tivities without witnessing a pour activity then the measurement should start.
Once the measurement is started the a pour activity will stop it. We could per-
form a passage-time measurement on this model and probe however this would
tell us only the expected time to a pour activity after witnessing a sequence of
three boil activities. This is not what we want. Instead we use a steady-state
measure to calculate the probablity that we are in any of the measured states.
Therefore our command-line is:

ipc --probe "((boil, boil, boil)/pour) : start, pour : stop" \
--steady --run-hydra boiler.pepa

References

[1] J. Hillston. A Compositional Approach to Performance Modelling. Cam-
bridge University Press, 1996.

[2] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J. Knottenbelt. Extracting
passage times from PEPA models with the HYDRA tool: A case study.

In S. Jarvis, editor, Proceedings of the Nineteenth annual UK Performance
Engineering Workshop, pages 79-90, University of Warwick, July 2003.

