
The pepaprobe Manual

Allan Clark

June 18, 2007

1 Introduction

PEPA[Hil96] is a popular stochastic process algebra. The pepaprobe utility takes
as input a PEPA model and a number of probes descriptions. These probes are
performance measurement specification probes in the style of [AKBD04] and
describe, using a high-level regular-expression like language, additional compo-
nents to be combined with the input model. Such probes are intended to be
observational and therefore do not change the original behaviour of the given
model. The output is the input model transformed according to all of the given
probes.

The probe descriptions are translated into pepa components which then
synchronise with the model (or a part of it). Information about the state at a
given time t can be derived by interogating the state of the probe at time t.

2 Basic Usage

Probe descriptions are given via the --probe option. Section 3 describes the
grammar in more detail, here a few examples are given.

Labels may be attached to a probe to signify an immediate communication
action of some important event. There are two specially regarded labels start
and stop. These labels indicate the entering and exiting of the state of interest.
Either the start and end of a passage if a passage-time query is subsequently
given to the output model or the entering and exiting of the state of interest in
a steady-state computation.

The following probe will ’start’ on any of the actions a, b or c and, following
that will ’stop’ on any of the actions x, y or z. Notice that all probes are cyclic
and loop back to the start once they have completed.

(a | b | c) : start, (x | y | z) : stop

The following probe waits until it has seen three a actions without observing
a b action. Once this occurs the probe is ’started’, to stop the probe it must
observe the sequence c, d.

(a, a, a)/b : start, (c, d) : stop

Probes may be attached to a particular component within the model using
the double colon syntax. The following probe may be use to ask what is the

1

probe := location :: R A local probe
| R A global probe

location := processId Attach to a single process
| processId[n] Attach to an array of processes

R := action Observe an action
| R : label Send a signal on matching R
| R1, R2 R1 followed by R2

| R1 | R2 R1 or R2

| R∗ zero or more R
| R+ one or more R
| R{n} n R sequences
| R{m,n} between m and n R sequences
| R? one or zero R
| R/a R without observing an a

Figure 1: The grammar for probe specification in pepaprobe.

probability that the Client component has performed three or more requests
and has yet to see any responses.

Client :: (request, request, request)/reponse : start, response : stop

3 Probe Grammar

The full grammar for probe specification is given in Figure 1

4 Inner workings

To compile a probe specification the specification is first transformed into a
non-deterministic finite state machine.

This is then translated into a deterministic finite state machine.
This is then minimised, by combining equivalent states. Minimising the dfa

is not quite the same as a traditional dfa minimiser. Two states are considered
equal they have equal move sets. That is, two states s1 and s2 are considered
equal if every action which can be taken by s1 can be taken by s2 and results
in the same state and vice versa. For the purposes of the comparison any move
that results in state s1 or s2 is considered the same (provided it has the same
label). So for example if s1 loops on action ’a’ that is equivalent to s2 looping
on ’a’ or performing ’a’ and going to state s1. In fact if s1 performs ’a’ and goes
to s2, and s2 performs ’a’ and goes to s1 then the two moves are considered
equal.

If two states are considered equal (because they have equal move sets) we
delete one of the states, remove all moves which originate from that state, and
change all moves which target that state to target the equivalent state. We
then recursively minimise the dfa as this coalascing of states may lead to further
comparable states.

As an example consider the probe:

2

(a, b)?, c : start, d : stop

The following Figures: 2 3 4 and 5 denote the sequence of transformations
done in pepaprobe. Figure 2 shows the probe as a non-deterministic finite au-
tomata. Figure 3 shows that nfa without the non-determinism. Figure 4 shows
the same dfa minimised and finally in figure 5 the dfa has the self-loops added
such that the probe may perform any action in every state.

5 Start, Stop and --no-master

6 Outputting a dot file

The finite state machine produced from a probe specification may be output in
’dot’ file format for use with the graphviz program. This is done by citing the
--output-dot option.

7 Controlling nfa operations

The options in this section are mostly for those interested in the inner workings
of pepaprobe. There are four options for controlling how the finite state machines
are manipulated. Please note that if you are using pepaprobe to generate a pepa
model to be analysed you almost certainly do not want to give any of these
options.

--no-minimise Do not minimise the deterministic finite automata

--min-self-loops Add the self-loops before performing minimisation

--no-min-self-loops Perform the minimisation before adding the self-loops.
This means the self-loops do not contribute to the minimisation.

--no-self-loops Do not add the self-loops (useful mostly for debugging)

--non-deterministic Leave the finite automata non-deterministic (again use-
ful mostly for debugging)

The graphics in the section 4 were all produced using the --output-dot

and the options given above. If you wish to just see the diagram of probe
then a useful command to give is something such as

pepaprobe --output-dot <fa options> PEPAFILE | \

dot -Tpng -o <filename>.png && \

eog <filename.png>

Note that some of these options cause others to have no effect. For example
if the option --no-self-loops is given then the options min-self-loops
and no-min-self-loops will have no effect. Similarly for the no-minimise
option.

3

References

[AKBD04] A. Argent-Katwala, J.T. Bradley, and N.J. Dingle. Expressing per-
formance requirements using regular expressions to specify stochas-
tic probes over process algebra models. In Proceedings of the Fourth

International Workshop on Software and Performance, pages 49–58,
Redwood Shores, California, USA, January 2004. ACM Press.

[Hil96] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

4

0

1

a

3

Epsilon

2

b

Epsilon

4

c

5

start

6

d

7

stop

Epsilon

Figure 2: The probe translated into a non-deterministic finite automata

5

0

2

a

4

c

1

a

c

3

b

c

5

start

6

d

stop

Figure 3: The nfa translated into a deterministic finite automata

6

0

2

a

4

c

3

b

c

5

start

6

d

stop

Figure 4: The dfa minimised by removing equivalent states.

7

0 b,d

2

a

4

c

a,c,d

3

b

a,b,d

c

5

start

a,b,c

6

d

stop

Figure 5: The final probe achieved by adding the self-loops

8

