

Cevahir Çığla^{†,*} and A. Aydın Alatan[†] [†] Department of Electrical and Electronics Engineering, M.E.T.U, Turkey * VESTEK Electronic Research & Development Corp e-mail: cevahir@eee.metu.edu.tr, alatan@eee.metu.edu.tr

ABSTRACT

A computationally efficient stereo matching algorithm is introduced providing high precision dense disparity maps via local aggregation approach. The proposed algorithm exploits a novel paradigm, namely separable successive weighted summation (SWS) among horizontal and vertical directions with constant operational complexity, providing effective connected 2D support regions based on local color similarities. The intensity adaptive aggregation enables crisp disparity maps which preserve object boundaries and depth discontinuities. The same procedure is also utilized to diffuse information through overlapped pixels during occlusion handling. According to the experimental results on Middlebury online stereo benchmark, the proposed method is one of the most effective local stereo algorithm providing high quality disparity models by unifying constant time filtering and weighted aggregation. Hence, the proposed algorithm provides a competitive alternative, with its efficient GPU and FPGA implementations, for various local methods in terms of achieving precise disparity maps from stereo video within fast execution time.

1. INTRODUCTION

- •Two main constraints of stereo matching: Computational complexity High quality
- •Local methods:

Exploit windowed support regions and aggregation Enables faster processing compared to global methods

Adaptive weights:

Provide crisp and high quality disparity maps However, require huge computation

2. CONTRIBUTIONS

•Extends two pass integral filtering to weighted support O(1) complexity

Fastest aggregation

Connected support regions

Efficient memory access

High quality matching

Occlusion handling

Local background is favored Color and depth weighting are unified Constant time depth diffusion

3. ALGORITHM

- •The conventional steps of local methods is followed 1. Cost Calculation
 - 2. Cost Aggregation \rightarrow novelty
 - 3. Minimization
 - 4. Occlusion handling \rightarrow novelty

EFFICIENT EDGE PRESERVING STEREO MATCHING

3.1 Cost Calculation

•Sum of Absolute Difference and Hamming distance over Census Transform are combined.

 $C_{d}^{SAD}(x, y) = \min(\sum_{i=1}^{N} |I_{left}(x, y, i) - I_{Right}(x + d, y, i)|, T)$ $C_d^{CENSUS}(x, y) = Ham(CT_{left}(x, y), CT_{Right}(x+d, y))$ $C_d(x, y) = \alpha C_d^{SAD}(x, y) + (1 - \alpha) C_d^{CENSUS}(x, y)$

3.2 Aggregation

•Involves three stages; Stage-1: permeability weights of each pixel are calculated in four directions:

$$\mu = \min(e^{(-\Delta R/\sigma)}, e^{(-\Delta G)})$$

•Stage-2: Horizontal aggregation is achieved by successive weighted summation (SWS) in left-right and right-left directions

Results over Middlebury Stereo test bench

Computation Times for Different Platforms

	FPGA	GPU	CPU
Image Resolution	480x270	360x288	360x288
Disparity Candidate	30	30	30
Computation speed	60 fps	25 fps	3 fps

 Proposed method utilizes 6 additions and 4 multiplications per pixel.

3.3 Minimization

•Winner Take All optimization is performed among disparity candidates

3.4 Occlusion Handling

- •The unreliable pixels are detected by left-right cross check.
- A Confidence map in constructed
 - "O" for occluded pixels
- Lower weight to local foreground
- •Disparity values are scaled with confidence and filtered by SWS

4. EXPERIMENTAL RESULTS

Algorithm	Rank	Avg. Error [%]	Tsukuba	Venus	Teddy	Cones
Proposed (SAD+Census)	12	5.50	1.06	0.32	5.60	2.65
CostFilter [2]	15	5.55	1.51	0.20	6.16	2.71
GeoSup	18	5.80	1.45	0.14	6.88	2.94
AdaptDisp	23	6.10	1.19	0.23	7.80	3.62
DistinctSM	29	6.14	1.21	0.35	7.45	3.91
Proposed (SAD)	33	6.33	1.06	1.00	5.86	4.06
SegSupport	37	6.44	1.25	0.25	8.43	3.77
CostAggOcc	38	6.20	1.38	0.44	6.80	3.60
AdaptWeight	44	6.67	1.38	0.71	7.88	3.97
VarCross [1]	56	7.60	1.99	0.62	9.75	6.28

CPU lime Comparison of Cost Aggregation							
seconds	Tsukuba	Venus	Teddy	Cones			
Image Resolution	384x288	434x383	450x375	450x375			
Disparity Candidate	16	20	60	60			
VarCross [1]	0.109	0.192	0.616	0.623			
Guided Filter [2]	2.494	4.626	13.877	13.891			
Proposed	0,128	0,174	0,501	0,575			

References

[1] Ke Zhang, Jiangbo Lu and Gauthier Lafruit, Cross based stereo matching using orthogonal integral images, IEEE TCSVT, 2009 [2] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast cost-volume filtering for visual correspondence and beyond, CVPR 2011. [3] K. He, J. Sun, and X. Tang. Guided Image Filtering, In European Conference on Computer Vision, 2010.

 $\tilde{\sigma}^{(\sigma)}, e^{(-\Delta B/\sigma)})$

•Algorithm ranks 12 and 1 among all and local methods respectively in Middlebury bench.

•The fastest aggregation in CPU among top 30

 Regular and successive data access patern enabled implementation in GPU (Nvidia GeForce GTX 480) FPGA (Spartan 6 slx 45 nm)

