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Computer vision deals with inverse problems

Projection of the 3D world onto the 2D image plane

Determine unknown model parameters based on observed data
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Computer vision is highly ambiguous

What you see ...
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Computer vision is highly ambiguous

What you see ... is maybe not what it is!

[Fukuda’s Underground Piano Illusion]
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Energy minimization methods

It is in general not possible to solve inverse problems directly

Add some smoothness assumption to the unknown solution

Leads to the energy minimization approach

min
u
R(u) +D(u, f )

Energy functional is designed such that low-energy states reflect the
physical properties of the problem

Minimizer provides the best (in the sense of the model) solution to the
problem

Different philosophies:
Continuous Setting: Variational methods
Discrete Setting: Markov/Conditional random fields
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Variational motion estimation
Vast literature on motion estimation:

Window based optical flow: [Lucas, Kanade, 1981]
Variational optical flow: [Horn, Schunck, 1981]
Discontinuity preserving optical flow: [Shulman, Hervé ’89]
Robust optical flow: [Black, Anadan, ’93]
Highly accurate optical flow: [Brox et al. ’04]
Real-time optical flow: [Bruhn et al. ’05]
Real-time optical flow on the GPU: [Zach et al. ’07]

Generic variational model for motion estimation

min
u

∫
Ω

|∇u|pp dx︸ ︷︷ ︸
Regularization term

+

∫
Ω

|I1(x)− I2(x + u(x))|qq dx︸ ︷︷ ︸
Data term

,

where p, q ≥ 1, I1,2 are the input images and u = (u1, u2) is the flow field
Regularization term:

Should favor physically meaningful flow fields
Popular convex regularizers: Quadratic, TV, TGV, ...

Data term:
Highly non-convex → hard to minimize
Different strategies to deal with the non-convexity of the data term
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Linearization

Perform a first order Taylor expansion of the function I2(x + u(x)) at
x + u0(x)
[Horn, Schunck, 1981], [Lucas, Kanade, 1981]

I2(x + u(x)) ≈ I2(x + u0(x)) + 〈∇I2(x + u0(x)), u(x)− u0(x)〉
Only valid close to u0, i.e. ‖u(x)− u0(x)‖ ≤ ε

Leads to the classical optical flow constraint:

ρ(u) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 ≈ 0

Note: ρ(u) is linear in u and hence |ρ(u)|qq is convex!
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TV-L1 motion estimation

It turns out that total variation regularization in combination with a L1

data term performs well

In the discrete setting it is written as

min
u
α‖∇u‖1 + ‖ρ(u)‖1

Total variation allows for motion discontinuities

L1 data term allows for outliers in the data term (occlusions, noise, ...)

Thanks to the linearization, we have a convex problem

Non-differentiable and hence difficult to solve

Different approaches
Smoothing and fixed point iterations [Brox et al. ’04]
Primal-dual optimization [Chambolle, Pock, ’10]
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Smoothing and fixed point iterations

Replace `1 norms by a C∞ approximation, e.g. |t|ε =
√
t2 + ε2

min
u
α‖∇u‖1,ε + ‖ρ(u)‖1,ε

Compute gradient (Euler Lagrange equation in the functional setting)

∇Tdiag(1/|∇u|ε)∇u + diag(1/|ρ(u)|ε)ρ(u)ρ′ = 0

Solve via a fixed point iteration

∇Tdiag(1/|∇uk |ε)∇uk+1 + diag(1/|ρ(uk)|ε)ρ(uk+1)ρ′ = 0

The method requires to solve a sequence of systems of linear equations

Can be ill-conditioned for small ε and hence slow

Sophisticated multigrid-algorithm achieves realtime performance [Bruhn et
al. ’05]
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Primal-dual optimization

Use concepts of convex optimization to rewrite the original problem as a
convex-concave saddle-point problem

min
u
α‖∇u‖1 + ‖ρ(u)‖1 ⇐⇒ min

u
max

p
〈∇u, p〉+ ‖ρ(u)‖1 − ι‖p‖∞≤α(p)

Can be solved exactly using primal-dual optimization [Chambolle, Pock,
’10]

Simple iterative scheme{
uk+1 = shrinkρ(u)

(
uk − τ(∇Tpk)

)
pk+1 = proj‖p‖∞≤α

(
pk + σ(∇(2uk+1 − uk))

)
,

Guaranteed convergence rate of O(1/k)

Real-time performance on the GPU
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Large displacements

How can we compute large displacements?

Integrate the algorithm in a coarse-to fine / warping framework

Similar to multigrid schemes, speeds up the minimization process

Does not give any guarantees!
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[Werlberger et al. ’11]
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Varying illumination

Recall the optical flow constraint

ρ(u) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 ≈ 0

We can modify the constraint [Shulman, Hervé ’89]

δ(u, s) = I1(x)− I2(x + u0(x))− 〈∇I2(x + u0(x)), u(x)− u0(x)〉 − s(x) ≈ 0

s(x) is a smooth function modeling illumination changes
Note that δ(u, s) is still linear in u and s!

Additional regularization needed for s(x)

min
u,s

α‖∇u‖1 + β‖∇s‖1 + ‖δ(u, s)‖1

(a) Input (b) Ground truth (c) Estimated motion (d) Illumination
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Stereo

If I1 and I2 come from a stereo camera or a moving camera that browses a
static scene, the displacement can be restricted to 1D problems on the
epipolar lines, [Slesareva, Bruhn, Weickert ’05]

Each stereo pair can be normalized such that the displacement is only
horizontally

The depth z can be computed from the displacement u via

z(x , y) =
bf

u(x , y)

where b is the baseline and f is the focal length of the camera

Optical flow constraint for stereo

ρ̂(u) = I1− I2(x +u0(x , y), y)−∂x I2(x +u0(x , y), y)(u(x , y)−u0(x , y)) ≈ 0

TV-L1 based stereo
min
u
α‖∇u‖1 + ‖ρ̂(u)‖1
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Range estimation in a driving car (with Daimler AG)

Input images provided by a calibrated stereo rig

(a) Left image (b) Right image

Range image computed by the TV-L1 based stereo algorithm

(a) Range image
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(b) Profile of street

Total variation regularization leads to the staircasing effect!
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Total generalized variation

The total variation can be written (via the convex conjugate) as

TVα(u) = α

∫
Ω

|Du| = sup
{∫

Ω

u div v dx
∣∣∣ v ∈ C1

c(Ω,Rd), ‖v‖∞ ≤ α
}
,

In [Bredies, Kunisch, Pock, SIIMS’10], we proposed a generalization of the
total variation to higher order smoothness.

TGVk
α(u) = sup

{∫
Ω

u divk v dx
∣∣∣ v ∈ Ckc (Ω, Symk(Rd)),

‖divl v‖∞ ≤ αl , l = 0, . . . , k − 1
}
,

For k = 2 it can be written as

TGV2
α(u) = inf

w
α1

∫
Ω

|Du − w|+ α0

∫
Ω

|Dw|

TGV2 can be used to reconstruct piecewise affine functions
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Image restoration examples

(a) Clean image (b) Noisy image

(c) TV (d) TGV2
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Image restoration examples
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(b) TGV2
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TGV based stereo

Simply replace TV regularization by TGV regularization in the stereo
model

min
u,w

α1‖∇u − w‖1 + α0‖∇w‖1 + ‖ρ̂(u)‖1

Comparison on the stereo problem
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(a) TV
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(b) TGV2
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Variational shape from focus (with Alicona Imaging)

Record an image sequence by varying the focus of an imaging system

Variational model that computes a piecewise smooth surface which
maximizes a certain sharpness measure σ(x , u) on the surface

min
u,w

α1‖∇u − w‖1 + α0‖∇w‖1 −
∑
x

σ(x , u)

Computation takes a few seconds on the GPU
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Global solutions of non-convex variational models

Consider the following non-convex energy-functional

min
u

∫
Ω

f (x , u(x),∇u(x)) dx

We assume that f (x , t, p) is convex in p but non-convex in t

Example: TV-L1 stereo

f (x , u(x),∇u(x)) = α|∇u|+ |I1(x)− I2(x + u(x))|

Can we compute a global minimizer of this problem?

In a discrete MRF setting, a solution has been proposed by [Ishikawa, ’03]
by a graph cut on a higher-dimensional graph

What about the continuous setting?

[Pock, Cremers, Bischof, Chambolle, SIIMS’10]
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The approach of Alberti, Bouchitte and Dal Maso

The calibration method of [Alberti, Bouchitte, Dal Maso, ’03], was
originally developed for the Mumford-Shah functional

The basic idea is to consider the graph Γu of u instead of the function u

Rewrite E(u) by means of the flux of vector field φ through the graph Γu

x

t
u(x)

1u(x, t)

νΓu

Γu

φ(x, t)

Ω

The characteristic function 1u of the subgraph of a function
u ∈ BV(Ω× R, [0, 1]) is defined as

1u(x , t) =

{
1, if t < u(x),
0, else.

The normal νΓu of the interface Γu is given by

νΓu =
(∇u,−1)√
|∇u|2 + 1
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A lower bound

Suppose, the maximum flux of a vector field φ = (φx , φt) through the
graph provides a lower bound to E(u)

E(u) ≥ sup
φ∈K

∫
Γu

φ · νΓu dH2.

It turns out that equality holds for

K =
{
φ = (φx , φt)

∣∣∣ φt(x , t) ≥ f ∗(x , t, φx(x , t))
}

The integral can be extended to Ω× R

E(u) = sup
φ∈K

∫
Ω×R

φ · D1u,

Convex relaxation and solution via primal-dual algorithm
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Digital surface model of Graz (with Arnold Irschara)

Input
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Digital surface model of Graz (with Arnold Irschara)

Data term only
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Digital surface model of Graz (with Arnold Irschara)

Convex variational approach
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Digital surface model of Graz (with Arnold Irschara)
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Online 3D reconstruction (with Gottfried Graber)

Aim: Online computation of a 3D model as a camera browses the scene

Use PTAM framework [Klein, Murray ’07] to track the camera in real-time

Volumetric range integration [Zach, Pock, Bischof ’07]
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Online 3D reconstruction

Surface is represented as the zero-level set of a signed distance function

Convert range hypotheses to signed distance functions

Each voxel (i , j , k) holds histogram (hb)nb=1 of distance hypotheses db

[Zach, ’08]

Global volumetric TV-L1 range integration

min
u
‖∇u‖1 + λ

∑
i,j,k

∑
b

hb
i,j,k |ui,j,k − db|

Can be solved exactly via the primal-dual algorithm

(a) 3D Scene (b) Volume (c) Surface

→ See our poster and demo
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Discussion

I talked about convex methods to compute dense motion stereo and 3D

Simple linearization leads to real-time performance for motion and stereo,
but can be unstable

Calibration method allows to compute high-quality results, but large
computational costs

Volumetric range integration can deal with low-quality depth maps to
produce high quality 3D models

Do we really need high quality depth maps?

Probably depends on the application ...
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Thank you for your attention!
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