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Abstract

A number of recent approaches to requirements engineering suggest

that a new paradigm is emerging based upon the use of goals. To gain

insight into these approaches, and thus into the emerging paradigm, �ve of

them were surveyed, and four of the �ve were also applied to a common

case-study: \the meeting scheduler problem". Knowledge gained from

the surveys and case-studies enabled both the main contributions of each

approach to goal-oriented requirements engineering, and the similarities

and di�erences between the approaches to be identi�ed. In addition the

knowledge facilitated the sketching of an alternative approach based upon

a synthesis of the \best" features of the approaches surveyed.

1 Introduction:

Within the discipline of software engineering, a number of recent approaches to
requirements engineering suggest that a new paradigm is emerging based upon
the use of goals. In this context goals are requirements which describe states to
be either achieved, maintained or avoided by a system. In the new paradigm
such goals provide a basis for deriving and evaluating designs. These features
are exempli�ed in the approaches described below. They include an approach
to the speci�cation of composite systems developed by Martin Feather [Fea87]
at ISI (Information Sciences Institute); a development of this work, the Crit-
ter approach [FH92]; the Knowledge Acquisition in AutOmated Speci�cation
(KAOS) approach [DvF93]; the Generic Modelling Approach to Requirements
Capture (GMARC) [BJT+94]; and an approach which addresses non-functional
requirements, developed by Lawrence Chung at Toronto University [Chu91].

In this paper I have attempted to elucidate the approaches by reviewing each,
and applying all but one (the Critter approach [FH92] was excluded for reasons
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given below) to a common example: the Meeting Scheduler System [vDM92]
(See appendix A). I have also attempted to identify the main contribution of
each approach, the similarities and di�erences between approaches, and any
problems I feel an approach might have. Finally I suggest a synthesis which I
hope may make them more useful to software practitioners.

2 The approaches:

2.1 The ISI approach:

As �gure 1 shows, the ISI approach [Fea87] involves the creation of speci�cations
of composite systems. These are systems which comprise multiple interacting,
autonomous components, where each component might be, for example, a piece
of software, or a human, or perhaps a machine. An elevator system is an ex-
ample of a composite system; other examples include process control systems,
operating systems and communication systems.

The input for the process is a \closed speci�cation" of a composite system.
A \closed speci�cation" models both the desired behaviour of the composite
system expressed in terms of global constraints, and an initial analysis of the
composite system expressed in terms of putative agents, their actions, and the
information they have access to.

The objective of the process is to decompose the global constraints into an
equivalent set of sub-constraints where each sub-constraint may be satis�ed by
the actions of a single agent.

During the process an analyst �rst uses the initial analysis to identify agents,
their actions, any information to which they alone have access, and their inter-
faces to local information owned by other agents.

The analyst next decomposes the global constraints into sub-constraints until
each sub-constraint can be made the sole responsibility of one agent. Feather
[Fea87] suggests that \decomposition of a constraint is achieved by choosing an
implication of the constraint to make into a separate, explicit constraint, and
thereafter simplifying the original constraint." He continues: \Judicious choice
of the implication will give a constraint whose responsibility can be simpli�ed
to an individual agent."

When the process ends, the initial global constraints have been transformed
into a set of equivalent sub-constraints each of which has been assigned as the
responsibility of one agent. It is intended that each agent uses its actions, its
access to local information, and its access to interface information to meet its
constraints.

Agents are expressed in the speci�cation language GIST [BGW82] aug-
mented with the notion of agents. Each agent speci�cation has a generative
part, which generates a behaviour, i.e. a set of candidate histories (where each
history is a sequences of actions), by using the state changing actions speci�ed
for the agent combined with control structures (sequentiality, conditionality,
parallelism, etc); each agent also has a constraint portion denoting predicates



Goal-driven approaches to requirements engineering 3

composite system

putative behaviour: putative agents, actions, etc.

desired behaviour (global constraints)

Agent: A1

constraints

actions and

local information

constraints

actions and

local information

Agent: A2

identify:

agents

their actions

their local information

their interfaces to other agents

decompose global constraints until each constraint

can be assigned as the responsibilty of one agent.

input:

process:

output:

C1 C2

closed specification

two open specifications

Figure 1: Overview of Feather's approach
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which have to be satis�ed by candidate histories. So a GIST agent speci�cation
denotes a behaviour which is the set of candidate histories satisfying the agent's
constraints.

Each agent description may be viewed as an \open speci�cation" of one of
the components of the composite system: the behaviour of the component, in
terms of its inputs, is de�ned by both the component's generative description
(its actions) and its assigned constraints. The inputs to the component are
completely de�ned by the generative descriptions of the other agents in the
closed system and the constraints assigned to them.

2.1.1 Applying the approach to the Meeting Scheduler problem:

To illustrate the ISI approach further, I have attempted to apply it to the
Meeting Scheduler problem referred to in the introduction. The results of this
application are depicted in �gure 2.

The approach was applied to the global constraint \Meeting scheduled ra-
tionally", which is the responsibility of all the agents in the meeting scheduler
composite system: meeting scheduler, all intended participants, meeting con-
vener, and so on.

Having identi�ed global constraints, the approach encourages an analyst
to select and remove an implication of the constraint, and then to simplify
the remainder. One implication of the chosen constraint is that a meeting be
requested and accepted. This is shown in �gure 2 as (2a). After this was
identi�ed, the original constraint was then simpli�ed to \Requested meeting
scheduled rationally".

From �gure 2 it can be seen that only two agents are responsible for the con-
straint \Meeting requested and accepted". However, when this is decomposed
in turn via (3a) and (3b), the resulting constraints are each the responsibility
of just one agent.

The remainder of the diagram was produced in a similar way.

2.1.2 Tool support:

There is currently no existing tool support for the ISI approach.

2.2 The Critter approach:

Fickas and Helm [FH92] have developed further the ideas behind the ISI ap-
proach to tackle the same problem, i.e. the speci�cation of composite systems.
This section describes the development.

The purpose of the Critter approach is to create open speci�cations for
composite systems.

As �gure 3 shows, the input to the Critter process is an initial (compos-
ite system) design state. This is equivalent to a closed speci�cation in the ISI
approach. The initial design state has a constraint part, where the desired
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behaviour of a composite system is modelled as a set of global constraints, ex-
pressed using a �rst order sorted temporal logic based on ERAE [DH89]. It also
has a system part, where an initial description of a composite system's behaviour
is expressed using a superset of Numerical Petri Nets [WH85] augmented with
the concept of agents.

The objective of the Critter process is to decompose all the global con-
straints into a set of (not necessarily equivalent) sub-constraints where each
sub-constraint is satis�ed by the actions of one or more agents.

The Critter process interactively generates a design state space, i.e. an
inverted tree of design states. Ideally this should contain at least one design
state for which the behaviour produced by the system part (i.e. by the agents
through their actions) satis�es all the constraints in the constraint part. Such
a state is called a leaf design state.

A design state space is created as follows: Starting from an initial design
state an analyst develops each global constraint in turn. The analyst may use
three di�erent tools (see below) to determine whether a design state's system
description satis�es a constraint, i.e. to determine whether it is a leaf design
state (with respect to the constraint). If the tools indicate that the selected
constraint is violated by the system behaviour, the analyst may use his or her
knowledge to select a Critter \operator" to apply to the design state to create
a new design state where satisfaction of the constraint is more likely.

Each Critter operator embodies the framework of a composite system design
strategy, e.g. the means of dividing responsibility among agents in a particular
context. An operator consists of a matching pattern and a replacement pattern.
An analyst applies the matching pattern to a design state by mapping each
element of the pattern to an element of the design state. This generates a
replacement pattern that introduces new concepts in a new design state. The
new concepts might consist of a modi�ed constraint, e.g. a weakened constraint,
or new agents, or a new assignment of responsibilities to existing agents, and so
on.

The analyst may be able to match several di�erent operators to a design
state and thus be able to produce several new design states. In this way the
analyst may interactively create and explore the design state space generated
from the initial design (see �gure 3).

After an operator has been applied, the analyst uses the tools to check again
whether the new system behaviour satis�es the constraint. This process of
checking design states with the tools and decomposing them with the operators
continues until a leaf design state (with respect to the constraint) is produced.
At this point the analyst considers another constraint, and so on until all the
constraints have been considered.

The output from the process is a design state space. Ideally it should contain
at least one leaf design state. For leaf design states, the behaviour generated by
their system agents is congruent with the �nal version of their global constraints.
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2.2.1 Applying the approach to the Meeting Scheduler problem:

It was not possible to apply this approach to the meeting scheduler problem
because general purpose operators are not available. (The operators which were
developed [Hel93] were speci�c to a \railroad" example [FH92].)

2.2.2 Tool support:

The Critter approach is supported by three analysis tools. One tool uses a
system description to attempt to generate a sequence of actions that leads to
a violation of a constraint. Another allows the NPN system description to
be \run" forward, thus simulating the behaviour of the composite system. The
third creates a reachability graph and answers questions about it, such as, in the
context of a meeting scheduling system, \is it possible for a requested meeting
not to be scheduled eventually?" The latter tool is implemented on a Macintosh
[Hel93].

In addition, operators were developed [Hel93] to a suÆcient extent to enable
Fickas et al. to tackle a \railroad example" [FH92].

2.3 KAOS:

Before either of the two approaches described above may be used for the design
of a composite system, a description of its required behaviour and an initial
analysis of its structure must be available. But how is such information ob-
tained?

The aim of the KAOS approach [DvF93] is to generate such information
by acquiring and formalising functional and non-functional requirements (i.e.
goals) for a composite system.

Figure 7 shows the inputs to KAOS. (The meta model is actually an in-
tegral part of KAOS, but is included here as an input as it may be changed
occasionally.) The meta model is like an ERA schema; here it characterises
composite systems. As such it comprises meta concepts, e.g. goal, constraint,
agent, action...; meta relationships, e.g. agent-performs-action, action-ensures-
constraint, constraint-operationalises-goal...; meta attributes characterising both,
e.g. pre-condition is a meta attribute of the action meta concept and strength-
ened pre-condition is a meta attribute of the ensures meta relationship; and
meta constraints, e.g. constraints de�ning the cardinality of a meta relation-
ship. Figure 4 shows a part of a KAOS meta model.

The order and manner in which meta objects are acquired is determined by
the meta model traversal strategy (or acquisition strategy). The meta model
could be traversed backwards, either from identi�ed agents, or from client sup-
plied scenarios; however, for the remainder of this section, only backwards
traversal from a client's requirements (or goals) is considered. Knowledge about
traversal strategies is included in meta knowledge used by a computer based ac-
quisition assistant to guide an actual traversal. The assistant also uses domain
knowledge of varying degrees of abstraction in order to perform analogical rea-
soning.
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The main objective of the KAOS approach is to elicit requirements for an
application and to represent them in a formal structure called a requirements
model.

The initial basic source of information for this approach, using a goal-driven
strategy, is a client's expression of functional and non-functional requirements
for a composite system. These are input to the seven stage KAOS process,
which is shown in �gure 5.

During the KAOS process, instances of each of the meta objects discussed
above are acquired as a requirements model is gradually created.

During stage one, the highest level goals of a system are identi�ed from
the requirements. Goals are deemed to be system objectives which cannot be
met by the actions of just one agent. Such goals are reduced to an equivalent
set of objectives each of which can be met by the actions of one agent. These
objectives are called constraints and are formally de�ned during stage three.
The reduction is achieved by decomposing goals into one or more sets of sub-
goals, where each member of a set contributes to the satisfaction of a parent
goal, and satisfying all the sub-goals in a set completely satis�es the parent goal
[Nil71].

If it is possible, goals should be expressed formally using a �rst-order tem-
poral logic (currently a formalism inspired by ERAE [Dub91] is used by the
KAOS group).

As the goal decomposition proceeds, objects (agents, entities, relationships,
and events) referred to in formal and informal goal descriptions are identi�ed
and abstracted for use in stage two.

During stage two, objects associated with goals are reviewed, and agents
(objects which control state transitions) are identi�ed along with their actions
and any pre-conditions, post-conditions, and trigger-conditions for their actions.
This knowledge of agents and actions is then used in stage one to identify when
a goal may be reduced to a constraint, i.e. to identify leaf-goals. Thus stages
one and two may be viewed as co-routining stages.

In stage three, each leaf-goal of a goal structure is converted into a constraint
whose formal de�nition is expressed in terms of objects and actions available to
some agent identi�ed during stage two.

In stage four, new actions and objects described in the formal de�nitions
of constraints during stage three are identi�ed and acquired. In addition, new
characteristics of already acquired concepts, such as new meta attributes or new
pieces of invariants, pre-conditions, post-conditions, and trigger-conditions are
also identi�ed.

In general, actions, pre-conditions, post-conditions, and trigger-conditions
identi�ed in stage two are not necessarily suÆcient to ensure that each constraint
will be satis�ed. So in stage �ve each constraint is examined and consequently,
to ensure that each constraint will be met, some actions and objects may be
modi�ed, and new actions and objects may be introduced. Such modi�cations
might involve strengthening an action's pre-condition, for example, or strength-
ening an object's invariant. This new information is held in a requirements
model as meta attribute values of the ensures meta relationship. In addition,
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new actions are acquired which allow soft constraints (see below) which may
have been violated to be restored.

In a complete requirements model each constraint is the responsibility of a
single agent. During stage six, each constraint is reviewed in turn and agents
which might be made responsible for it are linked to it by instances of the
responsibility meta relationship.

Finally, in stage seven, the actions required to satisfy a constraint are as-
signed to the \best" agent from among the candidate agents for satisfying that
constraint.

The rationale for the meta model and the acquisition process is as follows:
The system goals correspond to a client's requirements; these are satis�ed if all
the leaf goals of the generated goal structure can be satis�ed; these in turn can
be satis�ed if the constraints operationalising them can be met.

The formal de�nition of each constraint de�nes a set of sequences of states
(a behaviour in Feather's terms) in terms of properties of objects in the states,
i.e in terms of patterns of states. In order to move from one state in a sequence
to the next, actions must be performed on one or more of the objects in the
input state. In general, a set of actions (with appropriate pre-conditions, post-
conditions and trigger conditions) acting on objects (conforming to appropriate
invariants) will be needed to meet a constraint.

A number of agents may be able to perform actions which will enable them to
satisfy the constraint. One of these is selected as the agent which is responsible
for meeting the constraint; this one has the appropriate actions assigned to it.

The approach is used to create a requirements model for a composite system.
This model comprises, among other things, a set of agents, where each agent
has a set of actions and a set of constraints for which it has been assigned
responsibility. Di�erent constraints may conict with one another.

It should be clear that by either judiciously selecting agents and constraints
so as to avoid conicting constraints, or by resolving conicting constraints, the
starting point for the Critter approach might be obtained from a requirements
model.

2.3.1 Applying the approach to the Meeting Scheduler problem:

I now illustrate the KAOS approach by applying it to the Meeting Scheduler
problem. The initial basic source of information for this approach, using a
goal-driven strategy, is a client's expression of functional and non-functional
requirements for a composite system. For example, for the meeting scheduler
system, such goals include the following: \to determine, for each meeting re-
quest, a meeting date and location so that most of the intended participants
will e�ectively participate", and \privacy rules should be enforced; an ordinary
participant should not be aware of constraints stated by other participants".

A client's requirements are input to the seven stage KAOS process, which is
shown in �gure 5.

Stage one:
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Figure 6 shows the results of partially decomposing one of the meeting sched-
uler system's functional goals.

Stage two:

From complete goal descriptions (not given) for the goals referred to in �gure
6, it is possible to identify from the ScheduleMeetings goal the following objects:
meeting request, date, location, meeting scheduler, attendee (i.e. meeting par-
ticipant); and actions: participate. During stage two, these objects and actions
are reviewed, and Attendee and MeetingScheduler are identi�ed as agents, and
Participate (at meetings) is identi�ed as an action of the Attendee agent. Simi-
larly, an AuthorisedUser agent, and RequestMeeting and AcceptMeeting actions
are also identi�ed during stage two.

Stage three:

Continuing the example, the AttendeesPreferencesKnown system goal is op-
erationalised into two constraints: a hard constraint (hard constraints must
not be violated), RequestForAttendeesPreferencesMade, and a soft constraint,
RequestForAttendeesPreferencesSatis�ed. This is shown in �gure 8. The �rst
constraint may be satis�ed by a RequestAttendeesPreferences action available
to the MeetingScheduler agent; the second may be satis�ed by the SubmitPref-
erences action available to Attendee agents. It is assumed that both actions
were acquired from the client during stage two.

Stage four:

The two constraints in the example contain no new objects or actions, nor
do they contain anything which completes the description of objects and actions
already identi�ed.

Stage �ve:

RequestForAttendeesPreferencesSatis�ed is a soft constraint which signi�es
that all the requests for attendee preferences will be satis�ed within a prede�ned
time period. If the constraint is violated, actions are required to help to restore
it. One such action might be SendPreferenceRequestReminder; in the meeting



Goal-driven approaches to requirements engineering 16

scheduler requirements model this action would be linked to the constraint by
an instance of the restoration meta relationship.

Stage six:

In the example, the Attendee agent is linked by a responsibility meta re-
lationship to the RequestForAttendeesPreferencesSatis�ed constraint, and the
SystemScheduler agent is similarly linked to the RequestForAttendeesPrefer-
encesMade constraint. Had other agents been identi�ed earlier which might
also have been made responsible for either of these constraints, then they would
also have been similarly linked.

Stage seven:

The RequestForAttendeesPreferencesMade is assigned to the MeetingSched-
uler agent by an instance of the performs meta relationship link.

Figure 9 shows a fragment of the requirements model acquired for the meet-
ing scheduler system by the approach just described.

2.3.2 Tool support:

There are no tools currently available for supporting the KAOS approach. How-
ever there is a plan to instantiate a generic process tool to produce a tool to
guide the KAOS acquisition process [Dar94].

2.4 Toronto approach:

I next turn to an approach developed developed at Toronto University [Chu91]
which uses non-functional requirements to help to select both design components
and implementation components for information systems. Clearly, the degree
to which particular non-functional requirements are met in an implementation
depends upon design and implementation decisions that have been made dur-
ing the development, and in particular upon how each decision a�ects each
non-functional requirement. To capitalise on this idea the Toronto approach
encourages both analysis of non-functional requirements, and exploration of the
impact of alternative design and implementation decisions on non-functional
requirements.

Before proceeding to a detailed description of the Toronto approach and
an example of its use, it is worth noting that it is just one part of a more
comprehensive approach for developing information systems [CPM+91] This
latter approach, an outcome of the DAIDA project [JMSV92], is represented in
�gure 10.

Initially, a customer's requirements for an application are re-expressed as
a requirements speci�cation with four main components: a system model, an
environment model, an interaction model, and a set of non-functional require-
ments. (As is the case for some of the approaches described above|with their
focus on composite systems|one can also see here a concern to model both a
system and its environment.)

In developing a design speci�cation, system model components are mapped
to one or more corresponding design components. At the same time, non-
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functional requirements are decomposed to alternative (possibly conicting) de-
sign decisions. These alternative designs may be evaluated for their e�ect on
the non-functional requirements, and then the evaluations may be used to help
to make decisions about which candidate design components will make up a
design speci�cation.

An implementation is produced in a similar manner [Nix94].
The purpose of the approach is to produce information systems whose global

properties|performance, cost, accuracy of managed information, etc.|match
customers' stated non-functional requirements more closely than is normal to-
day.

The input to the Toronto approach is a set of non-functional requirements
for a required information system.

The objective of the process is to generate knowledge which should facilitate
the selection of those design components which will best satisfy the functional
and non-functional requirements of a required application.

In outline the Toronto process may be described as follows. Each non-
functional requirement is represented as a goal. Each such goal is decomposed
to a point where sub-goals may be satis�ced|satis�ed within agreed limits|by
one or more design decisions; these may themselves be re�ned further. The
results of this process are represented in a number of goal structure diagrams
(one for each non-functional requirement) similar to the one shown in �gure 11.
The diagrams should also record any conict between design decisions which
has been identi�ed.

In more detail, the Toronto approach may be described with respect to
�ve main components: goals, links, methods, correlation rules, and a labelling
procedure.

Goals are used to represent non-functional requirements, design decisions,
and arguments; the latter support both goals and links between goals.

Di�erent kinds of link are used to denote the di�erent ways in which goals
may be related both to goals, and to links. In \and" links a parent goal is
satis�ced by satis�cing all its child goals. Other types of link include \or" links,
where a parent goal is satis�ced by satis�cing at least one child goal ; \sub"
links, where a designer believes that there is strong evidence that satis�cing a
child goal will contribute to the satis�cing of its parent goal; and other link
types.

All the details of a particular decomposition of a parent goal into child goals
may be separately worked out by a designer, or they may be achieved simulta-
neously through the application of an existing goal decomposition method to a
parent goal. A goal decomposition method is like a rule or a template. Goal
satis�cing methods is another important class of methods. Satis�cing goals are
goals which represent design decisions. Satis�cing methods may be applied to a
parent goal to re�ne it into a satis�cing goal and an appropriate link. Argument
methods are a third class of method. These may be applied to goals or to links
in order to generate argument goals; these support goals or links, either formally
or informally.

The decomposition of one non-functional requirement may lead ultimately



Goal-driven approaches to requirements engineering 20

to satis�cing goals, i.e. design decisions, which conict with satis�cing goals
derived in the goal structures of other non-functional requirements. Such conict
might be recognised either directly by the designer, or through the application
of correlation rules, the fourth main component of the framework.

Finally, Chung has created a procedure, the labelling procedure, the �fth
main component of his approach, which allows a particular goal structure to be
evaluated and the extent of its contribution to the satis�cing of a non-functional
requirement to be determined. Using this procedure, alternative designs may
be evaluated and the results may be used to choose design components for a
design speci�cation.

The output from the Toronto approach is a set of goal decomposition di-
agrams with one diagram for each non-functional requirement. The goal de-
composition diagrams comprise goals, sub-goals, and design decisions. Conict
between design decisions in one diagram and goals in another is also shown.

2.4.1 Applying the approach to the Meeting Scheduler problem:

Before applying Chung's approach to a Meeting Scheduler non-functional re-
quirement, I thought that it would be useful to outline a requirements speci�-
cation for the Meeting Scheduler problem in the spirit of DAIDA. This is shown
below:

Environment model:

1. Conveners have ideas for particular meetings.

2. Invited participants read meeting invitations and consider their response.

Interaction model:

1. Conveners request meetings

2. Scheduler acknowledges meeting requests

3. Scheduler invites intended participants

4. Scheduler prompts participants for replies

5. Participants respond to requests with date/time preferences

System model:

1. System manages interaction with conveners and participants

2. System schedules meetings rationally.

Non-functional requirements:

1. Minimize interaction overhead.

2. Minimize elapsed time between the time a meeting is requested and the
time the meeting is scheduled.
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3. Enforce privacy for participants.

4. Ensure system is usable by non-experts.

I chose to decompose and re�ne the second non-functional requirement in
order to inuence the selection of implementation components for a Meeting
Scheduler system. A partial goal structure for this example is shown in �gure
11.

The second non-functional requirement is represented by a non-functional
requirement goal as follows:

MT[Schedule_requested_meeting(Meeting, Participants)]

Here MT stands for good minimisation of elapsed time.
I decomposed this non-functional requirement goal with an Implementation

Components Method [Nix94] which I assumed to exist:

MT[Schedule_requested_meeting(Meeting, Participants)] <--and--

{MT[Input_meeting_request(Meeting, Participants)],

MT[Schedule_meeting(Meeting, Participants)]}

I decomposed the

MT[Schedule_meeting(Meeting, Participants)]

non-functional requirement goal in the same way:

MT[Schedule_meeting(Meeting, Participants)]} <--and--

{MT[Obtain_participants_preferences(Meeting,Participants)],

MT[Compute_meeting_date_time(Meeting,Participants)]}

I decomposed the

MT[Obtain_participants_preferences(Meeting,Participants)]

non-functional requirement goal with an \and" link: (Although there might
be a standard method for this type of decomposition in the context of meet-
ing systems, here, I determined what child goals were required to satis�ce the
parent.)

MT[Obtain_participants_preferences(Meeting,Participants)] <--and--

{MT[Request_preferences(Meeting,Participants)],

MT[Request_in_communication_channel],

MT[Receive_valid_preferences(Meeting,Participants)]}

I decomposed the
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MT[Input_meeting_request(Meeting, Participants)] MT[Schedule_meeting(Meeting, Participants)]

MT[Schedule_requested_meeting(Meeting, Participants)]

MT[Obtain_participants_preferences(Meeting,Participants)] MT[Compute_meeting_date_location(Meeting, Participants)

MT[Request_preferences(Meeting, Participants)]

(Meeting, Participants)

MT[Request_in_communication_channel] MT[Receive_valid_preferences

MT[Participants_know_of_meeting(Meeting, Participants)] MT[Valid_preferences_returned(meeting, Participants)]

MT[Preferences_completed]

MT[Preferences_returned_to_system] 

MT[Returned_preferences_validated]

MT[Invalid_preferences_returned]

Prompt_tardy_participants

Manual_preference_validationAutomated_preference_validation

sup sub

KEY:

MT

and

or

minimise time

Figure 11: Re�ning the nfr \minimise elapsed time to schedule a requested
meeting"
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MT[Receive_valid_preferences]

non-functional requirement goal using my own knowledge:

MT[Receive_valid_preferences(Meeting,Participants)] <--and--

{MT[Participants_know_of_meeting(Meeting,Participants)],

MT[Valid_preferences_returned(Meeting,Participants)] }

The

MT[Valid_preferences_returned(Meeting,Participants)]

non-functional requirement goal was then decomposed:

MT[Valid_preferences_returned(Meeting,Participants)] <--and--

{MT[Preferences_completed],

MT[Preferences_returned_to_system],

MT[Returned_preferences_validated],

MT[Invalid_preferences_returned_to_participants],

Prompt_tardy_participants(Meeting,Participants)}

The last goal in this \and" set is a satis�cing goal, i.e. an implementa-
tion decision, indicating that the system will prompt participants who have not
responded with their preferences within a prede�ned period.

Finally the

MT[Returned_preferences_validated]

non-functional requirement goal was decomposed into two \or" satis�cing goals:

MT[Returned_preferences_validated] <--or--

{Automated_preference_validation],

Manual_preference_validation]}

These are both satis�cing goals, i.e. implementation decisions; the �rst
indicates that validation will be carried out automatically by a meeting scheduler
system, the second that a meeting scheduler system will interact with a human
who will validate participants' responses. Either satis�ces the parent goal.

Conict between satis�cing goals can be seen if the reader considers the de-
composition of the fourth non-functional requirement viz \Ensure the system is
usable by non-experts". At some point in the decomposition it is likely that a
satis�cing goal will be posited which will conict with the Manual preference validation
satis�cing goal already established, since a system in which validation has to be
performed manually is relatively diÆcult to use. Such a conict link might be
detected by the non-functional requirement computer-based assistant.



Goal-driven approaches to requirements engineering 24

2.4.2 Tool support:

A prototype tool has been developed which supports the management of the �ve
main components of the approach viz goals, links, methods, correlation rules,
and labels [Chu93].

2.5 GMARC:

In the GMARC (Generic Modelling Approach to Requirements Capture) ap-
proach [BJT+94], domain knowledge plays a central role.

The purpose of the GMARC approach is to make it easier than current
practice allows for a non-technical client to produce formal speci�cations for a
variety of applications within a domain of interest. Figure 12 below shows how
GMARC �ts into a software development process model, and also indicates its
main inputs and outputs. It is intended that domain analysis be performed
once for each new domain and that its result, a domain model, be re-used many
times to create a variety of speci�cations for applications in the domain.

The GMARC approach has two main inputs: a client's requirements for a
particular application and a domain model for the application area.

A domain model depicts the goals of a domain from high-level goals to low-
level goals. It also shows which goals support each other, which undermine
each other, which specialise each other, and the order in which goals must be
considered for the inclusion of any associated formal speci�cation fragments into
a formal speci�cation.

The BSG (Basic System Goal) is intended to model the most basic function-
ality goal of a domain. Formal speci�cation fragments modelling the goal are
stored with it.

Goals which specialise a BSG (directly or indirectly) are intended to model
the variety of ways in which the functionality speci�ed by the BSG can be
augmented.

An example domain model is shown in �gure 13.
The other main input to GMARC is a client's requirements.
The objective of the GMARC process is to allow a non-technical client to

create a formal speci�cation corresponding to an application need.
In order to create a speci�cation, it is intended that a client and analyst

would �rst examine the BSG, and then examine the other goals in a domain
model. They do this in order to validate that the right domain model is being
used, to see which domain goals will be supported and which undermined by
their requirements, to familiarise themselves with the domain, to remind them-
selves of domain goals the may have forgotten, and to learn about new domain
goals.

Following such an examination, it is intended that they would next navigate
the domain model, selecting goals (corresponding to their requirements) which
they wanted their intended application to meet. Formal speci�cation fragments
associated with selected goals are added to an emerging speci�cation for the
application.
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Figure 12: The role of GMARC in the software development process
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Figure 13: GMARC domain model for a conference scheduler
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In general, it may be the case that selection of certain goals will inhibit
selection of some remaining goals, and force the consideration of others.

Finally, if a client has some goals in mind for an application which are not
covered by the corresponding domain model, it is intended that the client would
be able to modify the application speci�cation accordingly. It is expected that
in such circumstances consideration would be given to augmenting the domain
model to account for the missing goals.

The output of the GMARC process is a formal speci�cation for a client's
application, and possibly some suggestions for modifying a domain model.

2.5.1 Applying the approach to the Meeting Scheduler problem:

Figure 13 below depicts a partial GMARC domain model for a particular kind
of meeting scheduler, an academic-conference scheduler. This model depicts
high-level goals such as \disseminate research knowledge", and low-level goals
such as \consider the equipment needs of active participants".

The Basic System Goal (BSG) is to determine dates and locations for re-
quested conferences, prevent conferences being scheduled at the same location
at the same time, announce conferences to intended participants, and call for
conference papers. Formal speci�cation fragments modelling the goal are stored
with it.

Here, one way of augmenting the BSG might be to take the preferences
of intended participants for dates and/or locations of meetings into account.
Consequently the domain model contains a specialising goal which represents
this. This goal is associated with fragments of formal speci�cation which are
intended to realise the goal by modelling the acquisition of participants' prefer-
ences and the generation of an appropriate conference date and location based
upon them. In addition, the goal is linked negatively to the goal \meeting
speedily scheduled" (since taking participants' preferences into account will in-
crease the time taken to arrive at a suitable date and location), and positively
to the goal \maximise number of meeting participants" (since taking partici-
pants' preferences into account is likely to result in a date and location which
is convenient for more participants).

The other main input to GMARC is a client's requirements: here, it would
be a client's requirements for a particular conference scheduling application.

In order to create the speci�cation the client and analyst would �rst exam-
ine the BSG, and then examine the other goals in the domain model. Following
this examination, they would navigate the domain model, selecting goals (corre-
sponding to their requirements) which they want their intended application to
meet. For example, this client might select goals from the conference scheduler
domain model to create an application speci�cation which allows conferences to
be rescheduled and cancelled, but which doesn't take into account participants'
date and location preferences. Another client might make a selection of goals
which, in addition to those of the former client, includes a goal related to elic-
iting the preferences of the intended participants, and a goal related to issuing
reminders to participants to send in their preferences.
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Finally, if this client has some goals in mind for the application which are not
covered by the domain model, he or she would be able to modify the application
speci�cation to take account of them.

2.5.2 Tool support:

A tool has been developed to support the GMARC approach [BJT+92]. The
tool is built on top of the Xerox Parc NoteCards hypertext product.

3 Critique of reviewed approaches:

In the preceding section a number of goal-driven approaches to requirements
engineering are presented. In this section I �rst present the main contribution of
each approach. This is followed by a discussion of the similarities and di�erences
between the approaches. The section ends with a review of some of the problems
encountered with each approach.

3.1 Contribution:

The ISI approach [Fea87] �rst proposed and began to explore the idea that
speci�cations for individual agents in multi-agent systems might be derived by
decomposing the global goals of such systems.

Developing this idea, the Critter approach [FH92] introduced a new strategy
for creating formal speci�cations for composite systems: it identi�es behaviours
that violate constraints, and then applies design operators to overcome these
de�ciencies.

Critter also re�ned some aspects of the ISI approach, e.g. by introducing
formal expression of goals and system behaviour; extended some aspects, e.g.
by introducing formal operators, which weaken goals and introduce new agents,
etc.; and modi�ed others, e.g by permitting both multiple agents to satisfy a
goal, and global goals to be altered in the decomposition process. However,
perhaps its most important contribution was to propose and explore the idea
that a variety of con�gurations of agents and constraints might be properly
derived from the same global goals.

The KAOS approach [DvF93] extended the two previous approaches by tak-
ing the starting point for goal decomposition not as the global goals of a com-
posite system, but as the higher-level goals of the domain|organisation, super-
system, etc.|in which the composite system is embedded. In addition, speci�ca-
tions (or requirements models, in KAOS terminology) are created by systemati-
cally instantiating an elaborate meta-model (ERA schema) which characterises
composite systems.

At Toronto University, Lawrence Chung has created a goal-decomposition
approach [Chu91] which can be applied to di�erent types of non-functional re-
quirements in order both to suggest new formal speci�cation components and
to measure the contribution of alternative candidate formal speci�cation com-
ponents towards meeting stated goals.
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Finally, the main contribution of the GMARC approach [BJT+94] has been
to introduce the idea of reusing existing goal decompositions for creating formal
speci�cations for new applications in related areas.

3.2 Similarities and di�erences:

It should be clear that each of the �ve approaches may be characterised as goal-
driven. However, while the GMARC approach requires users to select goals from
existing goal-decompositions, each of the other four approaches may involve
analysts in decomposing goals, either directly or indirectly: in the KAOS, ISI,
and Toronto approaches it is goals that are decomposed, while in the Critter
approach it is design states, which include goals, that are decomposed.

The KAOS, ISI, and Critter approaches are explicitly directed towards cre-
ating speci�cations for composite systems. Because of this the notion of agents
plays an important role in each approach. The Toronto approach, however, is
explicitly directed towards facilitating the creation of information systems, and
has no notion of agents. The GMARC approach also has no notion of agents.

The Toronto approach is the only one to explicitly treat only non-functional
requirements. Both KAOS and GMARC address functional and non-functional
requirements. (These two are also the only ones to explicitly address higher
level domain goals as well as application speci�c goals, and the only ones to be
concerned with the elicitation of requirements.) Critter and the ISI approach,
while noting the importance of non-functional requirements, both address just
the functional requirements of composite systems.

Within the goal \decomposition" group two other important properties are
shared by the KAOS, Critter, and Toronto approaches but not by the ISI ap-
proach:

First, while the decomposition structure of all four approaches is formal, the
representations of goals and and behaviour is also formal for the former group;
but in the ISI approach, goals are expressed informally in English. This fea-
ture has allowed the former group to develop knowledge-based tools to support
their decomposition processes. It has also allowed other kinds of tools to be
developed, e.g. the analysis tools in Critter. Within GMARC goals are de-
scribed informally in English, while the behaviour to achieve them is described
formally in Z [Spi92]. The GMARC formal decomposition structure has allowed
a prototype tool supporting its use to be developed.

Second, the ISI, KAOS, and Critter approaches each support the notion of
alternative decompositions to behaviour which can satisfy the same basic goals.
This feature is also shared by the GMARC approach but is not present in the
ISI approach.

Finally, there is very little obvious overlap between the kinds of relationships
between goals adopted by each approach:

The KAOS, Toronto, and GMARC approaches all include the \goal conicts
with goal" relationship type. And the KAOS and Toronto approaches both
include \and reduction" and \or reduction" relationships between goals too.
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The GMARC \goal supports goal" relationship type seems similar to the
\sup" and\sub" relationship types of the Toronto approach.

All the other relationships between goals are speci�c to an approach. For
example the \goal x is an implication of goal y" relationship type is speci�c to
the ISI approach.

3.3 Problems:

Although I appreciate that the ISI approach [Fea87] is concerned with presenting
an original idea rather than a fully elaborated approach, nevertheless, it is felt
that any approach which were to be developed from the idea would have to solve
a number of problems. First, decomposing constraints (by selecting suitable im-
plications and then simplifying) is diÆcult. To make this a more tractable task,
heuristics are required which could help an analyst both to recognise implica-
tions in a constraint and to judge between implications with regard to their
suitability for decomposition. Second, I feel that when constraints are decom-
posed, it must be possible to demonstrate that behaviour is correctly preserved,
i.e. that the sub-constraints are equivalent to the original constraints.

Critter is a more detailed approach with a set of supporting tools. However,
I have identi�ed one possible problem with the process. After a �rst constraint
has been developed and an associated system description perhaps modi�ed, the
second and subsequent constraints are developed. However, in general, as each
additional constraint is developed and the system description modi�ed, it may
be necessary to ensure that some constraints developed earlier are still satis�ed
by the current system description. These additional checks are likely to make
the process time-consuming to carry out. In addition, in some cases it seems
possible that the process of checking constraints, modifying system descriptions,
rechecking constraints, and so on, might not terminate.

Moving on to KAOS, the major problem perceived with this approach is
that a number of its steps are diÆcult to perform. For example, it was found to
be diÆcult to generate a goal structure (step one) for the Message Scheduling
System. This is because it is diÆcult to identify sub-goals of a goal, and to
know when all the required sub-goals have been identi�ed.

Step �ve is also diÆcult to perform. The acquisition of actions and objects
for a given system is completed at step four. However, in general there is no
guarantee that these will meet the constraints. To alleviate this, in step �ve
each constraint must be matched against the available actions to see whether
the state transitions de�ned by the actions match the constraint. The match
may reveal that a pre-condition, post-condition, or invariant associated with
an action must be strengthened in order to ensure that a constraint is met.
To help an analyst perform such matching, some inference rules for deriving
strengthened pre-conditions, post-conditions, and invariants have been identi-
�ed. However, it is felt that, in general, it will prove diÆcult for an analyst
manually to select a correct rule and then to apply it accurately.

Turning now to GMARC, domain models have only been created for some
simple domains, e.g. rail ticket system. It may prove more diÆcult to construct
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domain models for more complex domains. In particular it may prove more
diÆcult or even impossible to organise the specialising sub-goals so that they
are independent of one another. In addition, in the work to date on GMARC,
the question of which speci�cation language is used to express goals has not been
considered an issue. In the examples to date Z has been used. However, it is
now seen that when such a language is used the set of behaviours, i.e. sequences
of allowable states, is only implicit in the speci�cation. It is now clear that it
would be preferable to use a temporal logic to express some goals (as sequences
of possible state patterns) at one level, and language like Z to express lower level
goals through describing operations which allowed the state pattern sequence
to be achieved.

4 Synthesis:

Previous sections describe �ve di�erent goal-oriented approaches to require-
ments engineering and illustrate them with the meeting scheduler problem. In
this section I have attempted to synthesise an approach from the �ve considered
by selecting what I feel are the best features of each approach and organising
them to provide a new approach. This synthesised approach is shown in outline
below:

Either

1. Select speci�cation components from domain model

or

1. Obtain goals

2. Decompose goals to speci�cation components

3. Select \best" speci�cation component alternatives

4. Create or modify domain model

This approach is now described in greater detail.

4.1 Select speci�cation components from domain model

The previous section on GMARC [BJT+94] described a goal-oriented domain
model containing high and low-level domain goals, as well as speci�cation com-
ponents denoting behaviour required to satisfy low-level goals. If such a model
existed for a particular domain, e.g. for the domain of meeting scheduling, it
would seem sensible for a client who wanted to build a particular meeting sched-
uler to use the domain model in the manner described previously. Thus they
might review the high and low-level goals in the domain model, and select those
goals and associated speci�cation components that matched their goals for the
particular application.
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4.2 Obtain goals

On the other hand, if such a model is not available, then the alternative path,
shown above, might be followed. This path begins with \obtaining goals". Here
an attempt is made to capture the functional and non-functional goals of a
required application. In addition, the rationale for each goal should also be
captured. By rationale I mean the reason given by the goal-owner for the goal.
In general I would expect the reason for a goal to be given in terms of the way
it contributes to or inhibits the achievement of other domain goals.

Clearly there will often be conicting goals stated by di�erent goal-owners,
and even by the same goal owners. In such cases, the conict should be resolved
before moving on to the next step.

In general, all the information obtained at this stage might be considered
when creating or modifying a domain model during the last stage.

4.3 Decompose goals to speci�cation components

At the beginning of this stage a requirements engineer should classify the goals
obtained during the previous stage as either functional or non-functional goals.
Then they should process the two sets of goals separately (either sequentially
or in parallel).

To process the functional goals, the requirements engineer must �rst identify
the highest level, or global, goals of the required application when it is viewed as
a composite system. The goal decomposition approach of, for example, KAOS
[DvF93] is now applied: the high-level goals are decomposed until sub-goals
are identi�ed whose satisfaction may be made the responsibility of a single
agent; such agents are identi�ed during the decomposition along with actions
and objects associated with satisfying goals (as we saw in the KAOS section).

At the end of this stage, a set of leaf-goals equivalent to the set of global
goals will have been identi�ed. And one or more sets of agent, actions and
objects will be associated with each leaf-goal. It is understood that a such an
association indicates that an agent may satisfy the leaf-goal by acting on the
objects.

During this stage the non-functional requirements are also treated as goals.
Each is decomposed using the \methods" of the Toronto approach [Chu91] until
all the leaf-goals may be satis�ed by by one or more design decisions. As a
proposed modi�cation to the Toronto approach I feel that it would be desirable
if the design decisions could be stated in terms agents, actions and objects as
they are in KAOS.

Such design decisions may correspond to functionality that has also been
derived through decomposing the functional requirements, or they may identify
the need for new functions whose role is solely to help satisfy particular non-
functional requirements.

At this point, the various decomposition hierarchies should be inspected
either manually, or automatically with a tool based perhaps on the Toronto ap-
proach's correlation rules, and potential conict between design decisions should



Goal-driven approaches to requirements engineering 33

be recorded.
Before proceeding to the next stage, the impact of functional requirement de-

sign decisions on non-functional requirements should be assessed and recorded,
and the impact of non-functional requirement design decisions on functional
requirements should be assessed and recorded.

4.4 Select \best" speci�cation component alternatives

When this stage is reached functional and non-functional goal decomposition di-
agrams are available which explicitly show various ways in which all the goals (of
both types) for an application may be met by candidate design decisions. And
which also show the impact (either positive or negative) that these candidate
design decisions have on all goals. These diagrams should now be inspected and
the optimum design decision set identi�ed. This is expected to be the one that
meets all the functional requirements and as many non-functional requirements
as possible. It seems likely that this task might be automated.

4.5 Create or modify domain model

In the �nal stage, the knowledge about an application domain in terms of goals,
constraints, agents, and actions acquired during the earlier stages should be
used to create or modify a GMARC style domain model. Such a domain model
would then be either available for re-use if just newly created, or possibly better
suited for re-use, if just modi�ed, when a new application in the domain was
required.

5 Summary and future work:

In this paper �ve goal-oriented approaches to requirements engineering have
been characterised and four of them have been applied to a common example:
\the meeting scheduler problem". In addition, the main contribution of each
approach, and the similarities and di�erences among the approaches have been
identi�ed.

The outline of a new approach has also been sketched. This is based upon
the \best" features of the �ve presented approaches. It is intended that this
new approach be further elaborated in future work.
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A The Meeting Scheduler Problem: Prelimi-

nary De�nition

A.1 Problem Statement

The purpose of a meeting scheduler is to support the organization of meetings -
that is, to determine, for each meeting request, a meeting date and location so
that most of the intended participants will e�ectively participate. The meeting
date and location should thus be as convenient as possible to all participants.
Information about the meeting should also be made available as early as possible
to all potential participants. The intended system should considerably reduce
the amount of overhead usually incurred in organizing meetings where potential
attendees are distributed over many di�erent places.

Meetings are typically arranged in the following way. A meeting initiator

asks all potential meeting attendees for the following information based on their
personal agenda:

� a set of dates on which they cannot attend the meeting (hereafter referred
as exclusion set);

� a set of dates on which they would prefer the meeting to take place (here-
after referred as preference set).

A meeting date is de�ned by a pair (calendar date, time period). The exclu-
sion and preference sets are contained in some time interval prescribed by the
meeting initiator (hereafter referred as date range).

The initiator also asks active participants to provide any special equipment
requirements on the meeting location (e.g., overhead-projector, workstation,
network connection, telephones, etc.); he/she may also ask important partici-
pants to state preferences about the meeting location.

The proposed meeting date should belong to the stated date range and to
none of the exclusion sets; furthermore it should ideally belong to as many
preference sets as possible. A date conict occurs when no such date can be
found. A conict is strong when no date can be found within the date range and
outside all exclusion sets; it is weak when dates can be found within the date
range and outside all exclusion sets, but no date can be found at the intersection
of all preference sets. Conicts can be resolved in several ways:

� the initiator extends the date range;

� some participants remove some dates from their exclusion set;

� some participants withdraw from the meeting;

� some participants add some new dates to their preference set.

A meeting room must be available at the selected meeting date. It should
meet the equipment requirements; furthermore it should ideally belong to one
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of the locations preferred by as many important participants as possible. A new
round of negotiation may be required when no such room can be found.

The meeting initiator can be one of the participants or some representative
(e.g., a secretary).

The system should assist users in the following activities.

� Plan meetings under the constraints expressed by participants (see above).

� Replan a meeting dynamically to support as much exibility as possible.
On one hand, participants should be allowed to modify their exlusion set,
preference set and/or preferred location before a meeting date/location
is proposed. On the other hand, it should be possible to take external
constraints into account after a date and location have been proposed
- e.g., due to the need to accommodate a more important meeting. The
original meeting date or location may then need to be changed; sometimes
the meeting may even be cancelled.

� Support conict resolution according to resolution policies stated by the
client.

� Manage all interactions among participants required during the organiza-
tion of the meeting - to communicate requests, to get replies even from
participants not reacting promptly, to support the negotiation and con-
ict resolution processes, to make participants aware of what's going on
during the planning process, to keep participants informed about sched-
ules and their changes, to make them con�dent about the reliability of the
communications, etc.

The meeting scheduler must in general handle several meeting requests in
parallel. Meeting requests can be competing by overlapping in time or space.
Concurrency must thus be managed.

The following aspects should also be taken into account.

� The system should accomodate decentralized requests; any authorized user
should be able to request a meeting independently of his whereabouts.

� Physical constraints may not be broken - e.g., a person may only attend
one meeting at a time, a meeting room may not be allocated to more than
one meeting at the same time, etc.

� The system should provide an appropriate level of performance, for exam-
ple:

- the elapsed time between the submission of a meeting request and
the determination of the corresponding meeting date/location should
be as small as possible;

- the elapsed time between the determination of a meeting date/location
and the communication of this information to all participants con-
cerned should be as small as possible;
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- a minimal delay should exist between the determination of a meeting
date and the actual date of the meeting.

� Privacy rules should be enforced; an ordinary participant should not be
aware of constraints stated by other participants.

� The system should be usable by non-experts.

� The system should be customizable to professional as well as private meet-
ings. These two modes of use are characterized by di�erent restrictions on
the time periods that may be allocated (e.g., meetings during oÆce hours,
private activities during leisure time).

� The system should be exible enough to accommodate evolving data - e.g.,
the sets of concerned participants may be varying, the address at which a
participant can be reached may be varying, etc.

� The system should be easily extendable to accommodate the following
typical variations:

- introduction of explicit status and priorities among participants;

- introduction of explicit priorities among dates in preference sets;

- introduction of explicit dependencies between meeting date and meet-
ing location;

- participation through delegation - a participant may ask another per-
son to represent him/her at the meeting;

- partial attendance - a participant can only attend part of the meeting;

- variations in date formats, address formats, interface language, etc.

- partial reuse in other contexts - e.g., to help establish course sched-
ules.


