
Management Policy Service for Distributed Systems

Damian A. Marriott
dam@doc.ic.ac.uk

Morris S. Sloman
mss@doc.ic.ac.uk

Nicholas Yialelis
ny@doc.ic.ac.uk

Imperial College
Department of Computing

180 Queen's Gate, London SW7 2BZ, UK

Imperial College Research Report DoC 95/10

14 September 1995

Abstract

Interpreting policy in automated managers facilitates the dynamic change of behaviour
of a distributed management system by simply changing policies. This paper describes
a management policy notation which can be used to de�ne both authorisation policies

(what activities a manager is permitted to do) and obligation policies (the activities a
manager must perform). Some example policy speci�cations are given to demonstrate
the notation and the concepts involved. A graphical policy editor is described which per-
mits high level abstract policies to be re�ned into lower level, implementable policies and
maintains derivation and dependency relationships between the di�erent policies. A pol-
icy service which stores policies is outlined and its integration within a domain service for
grouping policies is explained. Outlines are given of implementations of automated man-
agers for interpreting obligation policies and of an access control mechanism for enforcing
authorisation policies.

Keywords: distributed systems management, management policy, security policy, policy
notation, policy interpreters, event speci�cation.

1 Introduction

Distributed systems management involves monitoring the activity of a system, making man-
agement decisions and performing control actions to modify the behaviour of the system
(Sloman, 1994). Policies are one aspect of information which inuences the behaviour of
objects within the system. Authorisation policies de�ne what a manager is permitted or not
permitted to do in terms of operations on managed objects. Obligation policies de�ne what
a manager must or must not do and hence guide the decision making process; the manager
has to interpret policies in order to achieve the overall objectives of the organisation.

Human managers are adept at interpreting both formal and informal policy speci�cations
and, if necessary, resolving conicts when making decisions. However the size and complexity
of large distributed systems has resulted in a trend towards automating many aspects of
management into distributed components. If the policies are coded into these components
they become inexible and their behaviour can only be altered by recoding. There is thus a

1

need to specify, represent and manipulate policy information independent from management
components to enable dynamic change of policies and reuse of these components with di�erent
policies.

The speci�cation of policies by human managers often begins at an high level of abstrac-
tion and it is through a process of policy re�nement that these result, perhaps after several
iterations, in policies that can be interpreted by the computer system. For example a policy
`the controller must maintain the reactor in a safe state' cannot be directly interpreted by an
automated controller. It would have to be re�ned into actions to be performed by the con-
troller when safety limits are reached, e.g. `on temperature > 150 the controller must close
valve 3'. There may be some policies that cannot be re�ned to such an extent, either because
they fall beyond the scope of the computer system or technology for supporting them does
not exist, so they can only be interpreted by humans. When a policy is re�ned, the resulting
policies are said to be children of the original (parent) policy.

In this work policies are represented as objects which specify a relationship between sub-
jects (managers) and targets (managed objects). Domains are used to group objects to which
a policy applies. In general, a policy is speci�ed in terms of a subject domain and target
domain and the policy applies to all objects in the domains, so it is not necessary to specify
separate policies for each object in a large system. Policy objects have attributes specifying
the action to be performed or permitted, and constraints limiting the applicability of the
policy. Policies themselves can be members of domains so that authorisation policies can
be used to control access to the policy objects in a domain, e.g. to permit only authorised
managers to de�ne and modify policies.

A policy service provides a distributed database for storing policies and the re�nement
hierarchy, and a tool is provided to assist with the editing and manipulation of policies. If a
high level policy is altered, it is then easy to trace the derived policies which may also need
to be changed.

After re�nement, leaf-level policies, i.e. policies which have no children, are ready to be
distributed and enabled. Implementable obligation policies are interpreted by their subjects,
automated managers, whereas high-level obligation policies may be sent to human managers
for action. Leaf-level authorisation policies are translated into entries for access control lists
associated with the target objects to which they apply. These access control entries are
distributed to the security components which enforce access control in the systems on which
their target objects reside. Authorisation policies that are still high-level are not implemented.

The policy service and tool have been implemented using ANSAware (APM, 1993) as the
distributed platform and Tcl/Tk (Ousterhout, 1994) to provide the interpreted and graph-
ical environments. The distributed aspects are being migrated to the CORBA-compliant
Orbix platform (IONA, 1995), on which the obligation policy managers and access control
mechanisms are being implemented.

2 Life of a policy

During its life a policy undergoes various changes of status, as shown in Figure 1. At its
conception it acquires its Dormant status. It keeps this status, undergoing editing changes
until its authors are satis�ed that it is ready to be enacted, or until its death by deletion. A
deleted policy does not actually exist anymore, hence the dotted box in the �gure.

There are two steps involved in getting a policy up and running. The �rst is to distribute

2

Dormant

Disabled

Policy Status

Transition
Enabled

Deleted

Distribute Retract

Enable Disable

Create

Delete

Edit

Figure 1: Status transitions in the life of a policy.

the policy to the object that will be interpreting it. Once this is done, the policy may be
Enabled, i.e. take e�ect. This process is broken into these two steps to provide the added
exibility of being able to relatively quickly enable and disable policies at their implementors
without needing to redistribute the policies, which could be both time-consuming and costly.
Once Disabled, a policy may be removed from its interpreter by the retract operation. Note
that a policy may not by deleted or altered until it has been disabled and retracted.

The policy service imposes an additional restriction on the transitions of policy status
to prevent transient inconsistencies. A non-leaf-level policy can only be edited when all its
descendants are in the dormant state. The policy service keeps track of this information
for each policy. The policy editor provides a convenient means of editing policies that are
currently distributed. The acts of distributing, enabling, disabling, retracting and deleting
non-leaf-level policies cause the action to be propagated down the hierarchy.

3 Attributes of a policy

The general format of a policy is given below with optional attributes within brackets (the
braces and semicolon are the main syntactic separators).

[description] identifier mode [trigger] subject `{' action `}' target

[constraint] [parent] [child] [xref] `;'

A more detailed description of the syntax is given in Appendix A. The attributes are now
described.

3.1 Description

The description attribute of a policy provides an opportunity to express any general comments
about a particular policy, such as its history, author and derivation. Other attributes of a
policy (speci�cally, trigger, subject, action, target and constraint) may also be comments,

3

however any one of these being a comment destines a policy to be considered high-level and
not able to be directly interpreted. Comments are C-style, as in `/* this is a comment */ '.

3.2 Identi�er

The policy service (see Section 6) provides a unique identi�er as part of the object identi�-
cation descriptor (Oid) for each new policy object that is created. When a policy is created
a reference to it is placed in given a domain. The domain path name of this reference can be
used by human managers to identify policies and is included when the editor writes policies
into �les (see Section 5). Note that the use of �les here is simply a means for users, who
are familiar with the notation syntax, to use a text editor for editing policies, however actual
policy objects are stored by the policy service, which only uses Oids to identify policies, and
does not store the path names.

3.3 Mode

The mode of a policy is given by either an `O', denoting an obligation policy, or an `A',
denoting an authorisation policy, with either a `+' or a `�' appended, denoting a positive
or negative policy respectively, e.g. `A+' denotes a mode of positive authorisation. Negative
mode policies take precedence over positive ones, and by default actions are not authorised.
Negative obligations should be read as `obliged not to'. An obligation to do an action does
not imply the authorisation to perform it; this must be speci�ed as a separate authorisation
policy.

Some conceptual examples of authorisation and obligation policies (not expressed in the
notation) follow.

� information technology manager must protect the company's assets (positive obligation)

� primary archiver must backup department's �les every night (positive obligation)

� secondary archiver must not backup department's �les (negative obligation)

� all archivers can read all department's �les (positive authorisation)

� ordinary users are not permitted to read backups (negative authorisation)

3.4 Trigger

The actions de�ned in an obligation policy may be triggered by an event, but authorisation
policies (when enabled) are consulted whenever a relevant action is attempted and thus they
do not require the speci�cation of a trigger. An event trigger is speci�ed using a subset of
the GEM event expression notation (Mansouri-Samani and Sloman, 1995). The simple events
able to be speci�ed in the policy notation are primitive events and two types of time events.
Primitive events may be either internally generated (within a manager), or noti�ed by an
external monitoring service component. Some examples follow.

� primitive event
on invalid login /* internally generated event */
on /monit serv/o� site/invalid login /* externally generated event

from /monit serv/o� site
monitoring service component */

4

� time point event
at [8:00] /* at 8:00 (every morning) */
at [23:00 15/Mar/1995] /* one speci�c point in time */

� time period event
every [20 � min] /* every twenty minutes */
every [3 � day + 12 � hour] /* every three and half days */

Only simple events are supported by the policy notation as a separate monitoring service
is available to generate a composite event from multiple primitive events using composition
operators. For example, a composite event could be de�ned in terms of a sequence `e1; e2' i.e.
e1 occurs before e2, or the non-occurrence of an event `(e1; e2) ! e3' i.e. e1 is followed by e2 with
no intervening e3. Each composite event may also have an optional guard, which speci�es a
constraint to be met before an event will be triggered. An automated manager would register
with the monitoring service to receive the events needed to trigger the obligation policies.
Details of the monitoring service can be found in (Mansouri-Samani and Sloman, 1995).

Events may have attributes which can be accessed when the event is noti�ed (see pm2 2
in the following section for an example). In a high-level policy both the trigger and action
parts may be expressed in abstract forms as comments, for example:

arch0 O+ every /* night */ archiver f
/* backup to safe store */

g *�les ;

3.5 Subject

The subject of a policy speci�es those objects which are to be obliged or authorised to perform
the action speci�ed. Users and automated managers are examples of typical subjects. The
subject of an obligation policy determines where the policy is to be distributed, since it is to
be interpreted by the subject.

The subject of policy is speci�ed as a domain scope expressions (Becker, Sloman and
Twidle, 1993) which are speci�ed in terms of explicit objects and domains where membership
is indeterminate at the time of policy speci�cation. Scope expressions represent sets of objects,
and allow union, di�erence and intersection operators over sets of domains and objects. An
advantage of specifying policy scope in terms of domains is that objects can be added and
removed from domains to which policies apply without having to change the policies.

The syntax for domain scope expressions is given as part of Appendix A. The interpreta-
tion of scope expressions is from left to right, and the symbols have the following semantics.

any : refers to any object
+ : set union
� : set di�erence
^ : set intersection
� : if applied on a domain object returns a set that contains all

direct and indirect members of the domain and the domain object itself;
otherwise returns a set that contains the object itself | if an integer
constant is present, then the domain structure is traversed that many
levels down, which can be used to limit the search space

5

@ : if applied on a domain object returns a set that contains all direct
members of the domain; otherwise returns the empty set

fg : returns a set that contains the object on which it is applied (note
that this is implicit for objects without braces as a shorthand)

The following example authorisation policy uses full paths (which are not used in other
examples for the sake of brevity), and is expressed in terms of members of Manager Position
Domains, so that the policy applies to current members of these domains. It speci�es that
the system and security administrators are permitted to query and delete the computing
department �les except those in the Head of Department's (HOD) domain.

secpol1 A+
@/ic/computing/system administrators +
@/ic/computing/security administrators f

query(); delete()
g @/ic/computing/�les � @/ic/computing/HOD �les;

Each scope expression (and trigger) may have an optional label for enabling easy refer-
ence within the policy statement, of the form `label:expression'. For example, the following
obligation on a printer manager obliges it to mail users if their job fails. In it `pm' refers to
the subject, `ms' the target, and `pf' is used to access the event's attributes.

pm2 2 O+ on pf:print failed
pm:printer manager f

pm.mail via(ms, pf.user, pf.message)
g ms:mail server ;

3.6 Action

An action speci�es what must be performed for obligations and what is permitted for au-
thorisations. It consists of method invocations or a comment (for high-level policies), and
may list di�erent methods for di�erent object types. For example, di�erent types of storage
devices may have di�erent reset capabilities.

arch2 O+ on backup complete archiver f
\cdworm": stop(),
\tape": rewind()

g @backup devices ;

Multiple actions also can be speci�ed separated by semicolons. For authorisation policies
this means that all of the actions are authorised (or forbidden). For obligation policies, the
subject must sequentially perform all the actions speci�ed. There is no notational support
for parallel actions, however, depending upon the underlying implementation, these may be
achieved by specifying multiple obligation policies with identical triggers.

For authorisation policies the methods referenced in a policy are supplied by the target
objects. However, for obligation policies, the methods may be sourced from the targets (the
default scope) or subjects. These di�erent sources are distinguished syntactically by labelling
the source and prepending the action (or attribute in the case of constraints) with the label.
For example, in the following obligation policy the subject (labelled with `a') provides the
backup action.

6

arch1 O+ at [23:00] a:archiver f a.perform backup() g *�les ;

The methods speci�ed in actions may have parameters. For obligation policies, the pa-
rameters should be constant values or expressions which can be evaluated. For the particular
case of obligation policies where the action is provided by the subject, the target is the de-
fault parameter when none is given (as in arch1 above), otherwise the target can be explicitly
placed in the parameter list using a label (as in pm2 2 above). The following policy demon-
strating the use of parameters obliges the archiver to mail the system administrator when
problems occur with the backup procedure.

arch3 O+ on bf:backup failure archiver f
mail(\system administrator", bf.reason)

g mail server ;

For authorisation policies the parameters are pseudo labels because they are simply iden-
ti�ers which provide a handle for accessing the parameter values of an invoked operation. The
values can then be used in constraint evaluation. For example, the following policy allows
the archiver to use the mail method of the mail server which has two parameters, the �rst of
which must be system administrator. No constraint is placed on the message contents which
is the second parameter.

arch4 A+ archiver f
mail(user,)

g mail server
when user == \system administrator" ;

3.7 Target

The target or targets of a policy are objects on which the activities speci�ed by the policy are
performed, for example, �les, printers, workstations, services and users. They are speci�ed in
the same way as subjects using domain scope expressions.

Authorisation policies are distributed to the targets' host security components which en-
force them (see Section 8).

3.8 Constraint

The constraint attribute limits the application of a policy, e.g. to a particular time period,
or making it valid after a particular date. A constraint takes the form of a predicate, similar
in style to C expressions, which may refer to event attributes from the trigger part, system
state, subject and target attributes, and parameters of actions and events. For example, the
�rst constraint in the following uses the system attribute of local time to specify a valid time
period, and the second speci�es a start date.

� when local time >= [9:00] && local time <= [17:00]

� when local time > [1/Jun/1995]

Domain scope expressions may be used in constraints using the `in' operator, as in the
following policy which authorises the security administrator to write policies subject to con-
straints on the mode and subject and target scopes.

7

secpol2 A+ security administrator f
set policy(, mode, , subject, , target,)

g *maps/policies
when subject in *sec admin subjects &&

target in *sec admin targets && mode == \A+";

It may also be desirable to allow limited method invocation within a constraint, with
methods from the subject and possibly the target and system. These would be `limited' in
the sense that they should perform no action (or rather, e�ect no state change) since this
would belong in the action, but could perform simple queries and data conversions. For
example, a policy concerning a printer manager maintaining a current job queue might need
to know the user associated with a given job number, which could be provided by querying
the printer manger with a method invocation, as in the following example.

pm2 3 A+ u:@users f
remove queued job(job)

g pm:printer manager
when pm.owner(job) == u ;

3.9 Parents, children and cross references

In order to record the policy re�nement hierarchy, policies contain references to their parent
and children policies. In addition, a manual cross reference list of policies is kept for any
policies not strictly related yet of possible interest, e.g. a cross reference could refer to a
similar yet unrelated policy on which a policy has been modelled, or to the authorisation
policy granting permission for an obligation policy's activity. These relationships are written
with a keyword (either `parent', `child' or `xref ') followed by a list of domain path names, as
in the following example of arch3 from above, now shown specifying its parent and containing
a cross reference to a related authorisation policy arch4.

arch3 O+ on bf:backup failure archiver f
mail(\system administrator", bf.reason)

g mail server
parent arch0
xref arch4 ;

All reference information is stored in a dual fashion, so that a parent knows its children
and similarly a child knows its parents. Note that the editing tool provides support for
maintaining policy hierarchy and cross reference information.

4 Policy examples

In this section several scenarios with related policies are presented in order to clarify the
notation and concepts.

8

4.1 Travel agent franchise

Consider the scenario of a travel agent (tr agent) selling a franchise to an information network
provider (net prov), so that the provider can use the bought software to deal with sub-
contractors, link products together, and provide advice and sell products to its customers.

A set of policies are speci�ed which describe the authorities the network provider has once
a sale has gone through. One such policy is given following.

/* net prov has the right to place tr agent software in its environment. It also
may make as many copies as it wishes. */
pol 1 A+ net prov f install() ; copy() g tr agent software ;

Similarly, the travel agent has a set of obligations to uphold.

/* net prov will receive support from tr agent's marketing activity */
pol 2 O+ tr agent f /* provide marketing support */ g net prov ;

The travel agent makes stipulations about certain marketing data about which it wants
to be informed.

/* net prov will provide tr agent with information about the users of the software
*/
pol 3 O+ net prov f /* provide marketing reports */ g tr agent
child pol 3 1 ;

pol 3 1 O+ at [23:00] net prov f
/* generate and dispatch report for purchase speci�c and browse
(non-purchase) speci�c information */

g tr agent
parent pol 3 ;

As remuneration for providing its software, the travel agent expects payment, consisting
of a one-o� fee, an annual fee and a percentage of the pro�ts.

/* payment from net prov to tr agent */
pol 4 O+ on delivery net prov f pay(one o� fee) g tr agent ;

pol 5 O+ at [15/4/�] net prov f
pay(annual fee) ; pay(pro�t percentage)

g tr agent ;

A `�' in the date of a trigger indicates that this portion of the date is not considered in
determining when to generate the event, e.g. in this case an event is generated every year on
the �fteenth of April.

4.2 Printer manager

Consider a system where a system administrator has been assigned the task of providing and
maintaining a printing service for users.

9

pm1 O+ @roles/system administrator f
/* provide and maintain a printing service for users */

g /* printing service */
child pm2 1, pm2 2, pm2 3 ;

The administrator sets up a manager to spool print requests and to handle queueing. All
users except for a class of restricted users are given permission to submit print jobs.

pm2 1 A+ @users � @restricted users f
submit print job()

g printer manager
parent pm1 ;

There is an obligation placed on the manager to inform users of failed jobs.

pm2 2 O+ on pf:print failed
pm:printer manager f

pm.mail via(ms, pf.user, pf.message)
g ms:mail server ;

Authorisation is given for users to remove their own jobs.

pm2 3 A+ u:@users f
remove queued job(job)

g pm:printer manager
when pm.owner(job) == u
parent pm1 ;

4.3 Active badge system

Consider an active badge system in which users are equipped with badges which can be
actively polled by sensors located in di�erent rooms (Harter and Hopper, 1994). In addition,
the badges may be signalled to give a small audio noti�cation. A service keeping track of this
information for each badge can be queried for the location information. Some policies in the
context of this setup are given below.

The location information could be considered sensitive, so the following policy authorises
a certain group of users to to access the location information for the user winston.

ab0 A+ @winston/friends f
get location()

g badgeman/winston ;

Location information can be put to good use by users, for instance, an enter room event
could be used to identify to which printer a user's output should be sent, and to lock and
unlock terminals.

ab1 O+ on er:badgeman/winston/enter room
badge service f

set printer room(er.user, er.room)
g printer manager ;

10

ab2 O+ on lr:badgeman/winston/leave room
winston/personal manager f

lock()
g winston/xserver
when lr.room != \101" ;

ab3 O+ on er:badgeman/winston/enter room
winston/personal manager f

unlock()
g winston/xserver
when er.room == \101" ;

The badge could also be used as a paging device, setup as in the following example, to
beep when mail is received and the user is away from their terminal.

ab4 O+ on new mail
winston/mail monitor f

beep()
g w:badgeman/winston
when w.room != \101" ;

5 Policy editor

The tool used for viewing and editing policies, pled, consists of two di�erent types of windows.
The policy window is used to examine and edit the attributes of a policy, including relation-
ships with other policies, i.e. parents, children and cross references. The hierarchy window is
used to view and manipulate a set of policies, displaying either parent{child relationships or
cross references. These windows are now further described.

5.1 Policy window

A policy window displays an individual policy in detail, listing its various attributes and
displaying its relationships to other policies. A snapshot is shown in Figure 2. It supports
the following functions.

� create a new policy, either with or without a relationship (child, sibling, parent or cross
reference) to the current policy

� edit an existing policy stored in a policy server

� read and write a policy (of appropriate format) to and from a �le, thus allowing policy
editing in text editors for advanced users

� check for syntax errors in a policy

� perform operations on a policy (e.g. enable and disable)

� print a policy

11

Figure 2: Snapshot of a policy window.

5.2 Hierarchy window

An hierarchy window is a tool for viewing and manipulating a number of policies. It displays
any number of policies as icons and displays parent and child relationships between policies,
by drawing arrowed lines between the icons, from parent to child. Alternatively, the cross
references between the policies can be displayed. From the hierarchy window one can �re up
a new policy window to examine a particular policy in detail, or drag a policy icon onto an
existing policy window for a similar e�ect. Using the mouse one can select a group of policies
and then perform operations on them, such as enable and disable, print, or write them to a
�le for manual editing and subsequent reading back.

A snapshot of an hierarchy window is shown in Figure 3. There is a single line at the bot-
tom of the window which is used for displaying feedback to the user. As well as informing the
user of operations being performed, when moving the mouse over the hierarchy, information
is displayed relating to the object under the mouse cursor. In the �gure this line is displaying
as much as can �t of the policy pm1. Other information that can be displayed includes the
full domain path of a policy, and alternative paths (since it may be a member of more than
one domain).

There are various ways of adding new policies to an hierarchy window.

� policy | individual policies can be added

� domain | all policies within a given domain can be added

12

� server | all policies stored in a policy server can be added

� drag 'n' drop | icons of any of the above can be dragged into the window with the
corresponding policies added

It would also be useful to be able to add all policies with a particular subject or target.

Figure 3: Snapshot of an hierarchy window.

6 Policy service

The policy service is provided by as set of management policy servers, maps, which provide a
persistent data store for policy objects. It is currently implemented using ANSAware. Each
maps process contains a server together with any number of policy objects.

Each new policy object that is created by the policy service is given a unique object
identi�er (Oid) which is used internally by the service although users may use the domain
path name of the policy. The operations supported by the policy server itself are to create
policies and to return the Oids of all policies stored in it. The actual policy objects support
editing a policy, retrieving its status, and checking that a policy is syntactically and, to the
extent possible, semantically valid. In addition, the operations of distribute, enable, disable,
retract and delete act on a policy and alter its status as discussed in Section 2. When
invoked on non-leaf-level policies these operations are propagated down the hierarchy. Note
that deleting a policy may involve removing references from other policies and deleting any
resulting orphans.

As mentioned previously, domains can be used to group policies for management purposes
such as partitioning responsibility and access control. For example, the following policy
speci�es the restriction (mentioned in Section 2) on editing policies with descendants.

13

edit restrict A+ @users f edit() g p:*policies
when p.status == \dormant" &&

p.descendants status == \all dormant" ;

7 Obligation policy implementation

The implementation of obligation policies is distributed among automated managers which in-
terpret policies. An obligation manager is currently being implemented in a custom Tcl/ANSA
shell. Obligation policies on human subjects may be implemented through a suitable inter-
face which advises users of the policies which apply to them although this has not been
implemented in this system.

The diagram in Figure 4 shows how an automated manager interacts with the various
components of a system to implement an obligation policy. The following steps are involved
in setting up an obligation policy.

1. An authorised user creates, and edits a policy hierarchy in a maps within the policy
service and then requests the maps to distribute and enable the leaf obligation policies.

2. A maps queries the domain service in order to determine the subjects speci�ed in the
subject domain scope expression of each policy, and propagates the policy to these
objects (automated managers) thus completing the distribution.

3. A user then enables the policy via the maps.

4. The managers register with the monitoring service (or themselves for internal events),
to receive the events speci�ed in their triggers.

5. The monitoring service begins monitoring for the events registered, which may include
monitoring target objects, the system and the managers.

Once a manager is noti�ed of a relevant event, it checks the speci�ed constraint is satis�ed,
possibly querying the system and target objects (which are determined by querying the domain
service). The manager performs the speci�ed action on each of the target objects which satisfy
the constraint.

8 Authorisation policy implementation

A security architecture is being developed which aims at supporting domain{based access
control and allowing the development of secure distributed applications on existing operating
systems that do not support distributed security. The access control mechanism used to
enforce authorisation policies is briey described in this section. A more detailed description
is given in (Yialelis and Sloman, 1995b).

Following the discussion in the previous sections, the policy service permits human users
that have the necessary access privileges to specify authorisation policies. The Access Control
Agents, which reside in every node within the system determine (in cooperation with the
domain service) which policies apply to the targets in their nodes and hold copies of these
policies.

When a subject intends to invoke operations on a remote target, a secure channel is estab-
lished between these two objects. A secure channel is identi�ed by a unique channel identi�er

14

Editor
Human

Manager

Policy Service
(maps)

Domain
Service

Automated Manager
(Subject)

Service
Monitoring

Policy
Data

System
Target
Objects

Constraint
Data

Subjects

Targets

Data

Events

Policies

Data

Actions

Policies

Figure 4: Interactions of an automated manager.

(chid) and is associated with cryptographic information (session key and cryptosystem used
for secure communication), as well as access control information. In the framework of an
established secure channel, the target Access Control Agent speci�es the policies permitting
the subject of the established channel to access the target. The list of these policies is referred
to as Enabled Policy List (EPL) and it is given to the Reference Monitor (RM) located in the
address space of the target (see Figure 5). A RM makes access control decisions for target
objects in its address space using the EPL that applies to a particular subject{target pair
(identi�ed by the chid of the established secure channel). Note that the determination of the
EPL only has to be done once for the lifetime of a secure channel.

The determination of the EPL is based upon the identity and domain membership of
the subject which are authenticated by the Authentication Agents that reside in the nodes of
target objects. These agents use a trusted Authentication Service which is based on symmetric
cryptography for identity authentication and exchange of session keys, as well as the domain
service for domain membership authentication. A detailed description of the authentication
mechanism is given in (Yialelis and Sloman, 1995a). When a new secure channel has been
established, the session key for that channel is given to the cryptographic facilities in the
address spaces of the subject and target objects. So, further communication between these
two objects does not involve the authentication agents. Code for the cryptographic and RM
facilities are linked to the code of the objects.

Both the Authentication and the Access Control Agent are trusted to act on behalf of
all objects in their node. Their use makes authentication and access control transparent to
the application objects while it minimises the size of the security components that must be
replicated among the application processes. A prototype of this access control scheme is
currently being implemented using Orbix.

15

Reference

Monitor

Policy
Service

Domain
Service

Authentication
Service

Authentication

Agent
Control
Agent

Access

Invoke Operation Grant

Reject

EPL

Target

Subject

Node

Figure 5: Access control overview.

9 Related work and conclusion

Putter, Bishop and Roos (1995) take a similar approach to our concepts of policies and
domains, but their policy objects have two parts. A passive relationship object is very similar
to our policy objects and de�nes a relationship between a manager and target domains.
The second part is an active policy object which is a form of proxy manager which tries to
achieve the goals speci�ed in the passive policy on behalf of the manager. This active policy
object would poll the managed objects in the domain and perform management operations
on them. We would model this as a hierarchical management structure with one set of
policies de�ning the manager to proxy relationship and another set of policies de�ning the
role of the manager proxy with respect to the target domains. Wies (1995) also has active
policy objects for enforcement and monitoring of policy. All these policy speci�cations, which
de�ne a manager or proxy's behaviour, look like management algorithms i.e. the policy is now
encoded into proxy managers. We do not think that the policy service should be used as the
means of distributing the management function. Meyer and Popien (1994) have a notation for
specifying manager behaviour as policies, but it looks like a manager programming language.
Policies need to be su�ciently abstract to be interpreted by managers or reference monitors
so that they can be changed dynamically.

Wies (1995) has a template for specifying policies which is a superset of our policy objects.
It includes our policy attributes (mode, trigger, subjects, targets, activity, parent reference,
status) plus author, management functionality, management scenario, services a�ected by the
policy, life-time of the policy and noti�cations emitted due to failures etc.. These templates
are transformed into management scripts which generate active objects that can monitor the
system in order to react to changes. He also uses a similar life-cycle model to ours.

The approach adopted by Koch, Kramer and Rohde (1995) is conceptually similar to
ours but they use a rule-based software development environment called Marvel to implement

16

their policy driven management system. Their rules have predicates and are similar to our
obligation policies, but they can specify an alternative list of assertions depending on the
outcome of an activity. They do not support generalised authorisation policies, but they can
specify in the precondition of a rule that, for instance, user authentication is required. The
system has been used for centralised management in a distributed environment but it not
clear that Marvel supports distributed management.

The ESPRIT IDSM project use the domain and policy concepts described in this pa-
per, but their notation is based on ISO's Guidelines for the De�nition of Managed Objects
(GDMO) which is rather verbose. Their policies are implemented within OSI network man-
agement platforms. The only form of obligation policies which they have implemented are
reporting policies which are translated into OSI Event Forwarding Descriptors (Alpers and
Plansky, 1995). Both Bull and Siemens will be including domain and policy services within
future releases of their network management platforms.

Jonscher's (1992) work on modelling access behaviour of database users also has some
similarities to our approach. His access rights compare to our authorisation policies and his
normative rights have some similarity to our obligation policy although he models both duties
and freedoms (liberties) to do actions. Our system does not deal with freedom policies which
might be used to permit human managers to override obligation policies, however we are
not convinced of the need for liberties in management policy, and in particular automated
management. Much of the work on active databases (Gehani, Jagadish and Shmueli, 1992)
has triggered actions which are similar to our obligation policies but these databases are not
distributed, and the triggered actions are de�ned statically and cannot be changed without
re-compilation.

Lomita is a rule based language for programming the management layer in the Meta system
(Marzullo, Cooper, Wood and Birman, 1991). Lomita rules are of the form `on condition do
action', which is also similar to Jonscher's triggered actions, but there is no explicit subject
or target | they are de�ned implicitly.

This paper has presented a notation which can be used to express management policies
for distributed systems as relationships between object scopes, expressed in terms of domains.
These policies are at such a level that they can be interpreted by managers, thus providing the
exibility of being able to alter policies without having to re-build management components.
The parent{child relationships between policies resulting from the process of policy re�ne-
ment, and the more general cross reference relationships, can be expressed in the notation
and the policy tools assist in the creation and visualisation of the re�nement hierarchy. Two
modes of policies have been identi�ed, authorisation and obligation, and are supported by
the one notation. The implementation support for these, which is quite di�erent in each case,
has been described.

10 Acknowledgements

We gratefully acknowledge the support of DSTO, Australia for a PhD cadetship. We also
acknowledge support of the Commission of the European Union for ESPRIT Projects SysMan
(7026) and IDSM (6311). In addition we acknowledge the support of our colleagues in the
Distributed Software Engineering Section at Imperial College for comments on the concepts
described in this paper. We are grateful to BT for their permission to use their TravelCo
scenario as examples of management policies.

17

References

Alpers, B. and Plansky, H. (1995). Concepts and application of policy-based management, in
A. S. Sethi, Y. Raynaud and F. Faure-Vincent (eds), Integrated Network Management
IV, Chapman & Hill, London, pp. 57{68.

APM (1993). ANSAware 4.1 Documentation Set.

Becker, K., Sloman, M. and Twidle, K. (eds) (1993). Domain and Policy Service Speci�cation,
number S-SI-07-I-2-R. IDSM Deliverable D6, SysMan Deliverable MA2V2.

Gehani, N., Jagadish, H. and Shmueli, O. (1992). Composite event speci�cation in active
databases: Model and implementation, Proceedings of the 18th VLDB Conference, Van-
couver, British Columbia, Canada.

Harter, A. and Hopper, A. (1994). A distributed location system for the active o�ce, IEEE
Network 8: 62{70.

IONA (1995). Orbix Programmer's Guide, 1.3 edn.

Jonscher, D. (1992). Extending access control with duties: Realized by active mechanisms,
IFIP WG 11.3 Sixth Working Conference on Database Security, IFIP WG 11.3.

Koch, T., Kramer, B. and Rohde, G. (1995). On a rule based management architecture, Second
International Workshop on Services in Distributed and Netowrked Environments, IEEE
Computer Society Press, pp. 68{75.

Mansouri-Samani, M. and Sloman, M. (1995). GEM a generalised event monitoring language
for distributed systems, Research Report Doc 95/8, Imperial College.

Marzullo, K., Cooper, R., Wood, M. and Birman, K. (1991). Tools for distributed application
management, IEEE Computer 24(8): 42{51.

Meyer, B. and Popien, C. (1994). De�ning policies for performance management in open
distributed systems, Fifth IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management. DSOM '94.

Ousterhout, J. K. (1994). Tcl and the Tk Toolkit, Addison-Wesley.

Putter, P., Bishop, J. and Roos, J. (1995). Towards policy driven systems management, in
A. S. Sethi, Y. Raynaud and F. Faure-Vincent (eds), Integrated Network Management
IV, Chapman & Hall, London, pp. 69{80.

Sloman, M. (1994). Policy driven management for distributed systems, Journal of Network
and Systems Management 2(4).

Wies, R. (1995). Using a classi�cation of management policies for policy speci�cation and
transformation, in A. S. Sethi, Y. Raynaud and F. Faure-Vincent (eds), Integrated Net-
work Management IV, Chapman & Hall, London, pp. 44{56.

Yialelis, N. and Sloman, M. (1995a). An authentication service supporting domain based
access control policies, Research Report DoC 95/13, Imperial College.

18

Yialelis, N. and Sloman, M. (1995b). A security framework supporting domain based access
control in distributed system, Research Report DoC 95/14, Imperial College.

A EBNF of policy notation

In the EBNF of the policy notation which follows, the lexical tokens are denoted by sin-
gle quotes, e.g. `+', or capital letters, e.g. COMMENT, optionality is denoted by brackets,
e.g. [description], and repetition (zero or more occurrences) is denoted by braces, e.g.
{`,' object}.

// *** policy ***

policy:

[description] identifier mode [trigger] subject `{' action `}' target

[constraint] [parent] [child] [xref] `;'

;

// *** description ***

description:

COMMENT

;

// *** identifier ***

identifier:

IDENT

;

// *** mode ***

mode:

`A+' | `A-' | `O+' | `O-'

;

// *** trigger ***

trigger: // always empty for authorisation policies

`on' COMMENT

| `at' COMMENT

| `every' COMMENT

| event_expression

;

event_expression:

`on' event_id_label

| `at' time_point_const

19

| `every' `[' time_period_expr `]'

;

event_id_label:

[event_label `:'] event_id

;

event_label:

IDENT

;

event_id:

object

;

time_point_const:

`[' time_point `]'

;

time_point:

time_of_day

| weekday

| date

| time_of_day date

| time_of_day weekday

;

time_of_day:

INTconst `:' INTconst [`:' INTconst]

| INTconst `:' INTconst `:' DOUBLEconst

;

// 0 <= n1 <= 23, 0 <= n2 <= 59, 0 <= n3 < 60

weekday:

`Sun' | `Mon' | `Tue' | `Wed' | `Thu' | `Fri' | `Sat'

;

date:

day_or_blank `/' month_or_blank `/' year_or_blank

;

blank:

`-'

;

day_or_blank:

blank | INTconst

20

;

month_or_blank:

blank | month

;

month:

INTconst | monthname

;

monthname:

`Jan' | `Feb' | `Mar' | `Apr' | `May' | `Jun'

| `Jul' | `Aug' | `Sep' | `Oct' | `Nov' | `Dec'

;

year_or_blank:

blank | INTconst

;

time_period_expr:

period

| INTconst `*' period

| time_period_expr `+' time_period_expr

// e.g., (2*hour)+(15*sec)

| `(' time_period_expr `)'

;

period:

`msec' | `sec' | `min' | `hour' | `day' | `week' | `month' | `year'

;

// *** subject ***

subject:

COMMENT

| [dse_label `:'] domain_scope_expression

;

dse_label:

IDENT

;

domain_scope_expression:

`any'

| [`{'] object [`}']

| `*' [INTconst] object

| `@' object

21

| domain_scope_expression `+' domain_scope_expression

| domain_scope_expression `-' domain_scope_expression

| domain_scope_expression `^' domain_scope_expression

| `(' domain_scope_expression `)'

;

object:

OBJECT_PATH

| IDENT

;

object_list:

object {`,' object}

;

// *** action ***

action:

COMMENT

| method_call {`;' method_call}

;

method_call:

object_method_call

| switch_action_element {`,' switch_action_element}

;

object_method_call:

[dse_label `.'] method_name `(' [parameter_list] `)'

;

method_name:

IDENT

;

switch_action_element:

switch_selector `:' object_method_call

;

switch_selector:

constant

| `default'

;

// *** target ***

22

target:

COMMENT

| [dse_label `:'] domain_scope_expression

;

// *** constraint ***

constraint:

`when' COMMENT

| `when' logical_expr

;

logical_expr:

logical_expr `||' logical_expr

| logical_expr `&&' logical_expr

| `!' logical_expr

| expression

| `(' logical_expr `)'

;

expression:

expression `+' expression

| expression `-' expression

| expression `/' expression

| expression `%' expression

| expression `*' expression

| expression `==' expression

| expression `<' expression

| expression `>' expression

| expression `>=' expression

| expression `<=' expression

| expression `!=' expression

| `-' expression

| `+' expression

| object_attribute

| object_function_call // must return some value - no

// side-effects

| system_attribute

| constant

| dse_label `in' `{' domain_scope_expression `}'

;

constant:

INTconst

| DOUBLEconst

| STRINGliteral

| CHARconst

23

| time_point_const

;

object_attribute:

[dse_label `.'] attribute_name

;

attribute_name:

IDENT

;

object_function_call:

[dse_label `.'] function_name `(' [parameter_list] `)'

;

function_name:

IDENT

;

parameter_list:

logical_expr {`,' logical_expr}

;

system_attribute:

`local_time' | `local_hostname'

;

// *** parent ***

parent:

`parent' object_list

;

// *** child ***

child:

`child' object_list

;

// *** xref ***

xref:

`xref' object_list

;

24

