
A Simple Declarative Language for

Describing Narratives with Actions

Antonios Kakas
Dept. of Computer Science

University of Cyprus
75 Kallipoleos Street

P.O. Box 537
CY-1678 Nicosia

CYPRUS
antonis@turing.cs.ucy.ac.cy

Rob Miller
Department of Computing

Imperial College
180 Queen's Gate

London SW7 2BZ, U.K.
rsm@doc. ic. ac. uk
http://laotzu.doc.ic.ac.uk/

UserPages/sta�/rsm/rsm.html

August 1995

Joint
Imperial College / University of Cyprus

Research Report

Imperial College Research Report Number DoC 95/12

(also submitted for journal publication, August 1995)

Abstract

We describe a simple declarative language E for describing the e�ects

of a series of action occurrences within a narrative. E is analogous to

Gelfond and Lifschitz's Language A and its extensions, but is based on a

di�erent ontology. The semantics of E is based on a simple characterisa-

tion of persistence which facilitates a modular approach to extending the

expressivity of the language. Domain descriptions in A can be translated

to equivalent theories in E. We show how, in the context of reasoning

about actions, E's narrative-based ontology may be exploited in order to

characterise and synthesise two complementary notions of explanation.

According to the �rst notion, explanation may be partly modelled as the

process of suitably extending an apparently inconsistent theory written in

1

E so as to establish consistency, thus providing a natural method, in many

cases, to account for conicting sets of information about the domain. Ac-

cording to the second notion, observations made at later times can some-

times be explained in terms of what is true at earlier times. This enables

domains to be given an alternative characterization in which knowledge

arising from observations is appropriately separated from other aspects

of the domain. We also describe how E domains may be implemented as

Event Calculus style logic programs, which facilitate automated reasoning

both backwards and forwards in time, and which behave correctly even

when the knowledge entailed by the domain description is incomplete.

1 Introduction

This paper largely concerns narrative reasoning, that is, reasoning about actions
which actually occur at various times, and reasoning about the properties that
hold or do not hold at di�erent times as a consequence of such occurrences. The
importance of narrative reasoning has been recognised elsewhere (see [2], [27]
or [25]). For example, to deal with observations a formalism must allow the
representation of a narrative, since phenomena can only be `observed' at actual
times. In the context of the Situation Calculus it makes little sense to state that
Fred is observed to be alive in the `hypothetical' or `projected' situation

Result(Shoot;Result(Wait;Result(Load; S0)))

unless there is some extra mechanism to relate the sequence of actions Load -
Wait - Shoot to the time at which the observation took place.

For the purposes of discussion, we will informally de�ne a narrative-based
formalism as a formalism in which the structure or ow of time is represented
independently from the notion of an action, and in which actions are `embedded'
in this independent structure using an explicit notion of an action occurrence.
Examples of such formalisms are Allen's interval-based approach [1] and Kowal-
ski and Sergot's Event Calculus [20]. On the other hand, formalisms such as the
McCarthy and Hayes' Situation Calculus [23], Dynamic Logics (see for example
[14]) and Gelfond and Lifschitz's Language A [13] are not narrative-based. This
is not to say that they cannot be extended to deal with narrative information
(see for example [27], [25] or [21]). But the notions of an independent ow of
time and of an action occurrence are not central to their underlying ontology.

In [13], Gelfond and Lifschitz proposed a particular methodology for research
into reasoning about action. The authors introduced the Language A as a \sim-
ple declarative language for describing actions", and suggested that, by describ-
ing general translation procedures from A domains into other formalisms, an
insight could be gained into the comparative possibilities and limitations of each
approach. The success of this idea is exempli�ed in two papers by Kartha [17],
[18]. The �rst of these papers uses translations from A to show the equivalence
of three well-known characterisations of the Situation Calculus for a whole class

2

of domains, and the second uses A to reveal a potential incompatiblity between
Baker's circumscriptive formalism [3] and a deductive view of explanation. The
primary intention of A was to provide a language and semantics simple enough
to be regarded as uncontroversial and intuitive, even if (initially) somewhat lim-
ited in expressivity. Of course, the `neutrality' of any such language, used as a
measuring stick for other formalisms, will inevitably be compromised to some
extent by the necessity of choosing a particular ontology as a starting point. The
ontology underlying the Language A is inherited from the Situation Calculus.

This paper shows that the methodology described above need not be limited
to this particular ontology. Our central aim is to propose and develop a simple
declarative language for describing narratives, called E , based not upon the on-
tology of the Situation Calculus, but instead upon a narrative-based ontology
similar to that of the Event Calculus. Furthermore, we aim to use E as a spec-
i�cation for developing logic programs for automated reasoning about action
and change in a principled manner. We believe that the use of, and compari-
son between, di�erent ontologies is vital in the study of reasoning about action.
Central issues such as the frame problem, the rami�cation problem and the qual-
i�cation problem all take on di�erent avours when set in di�erent ontological
contexts. Comparisons between approaches can help reveal which aspects of
these problems are fundamental, and which are merely the product of a partic-
ular method of representation.

In particular, the notion of persistence (or `inertia') is somewhat di�erent
in a narrative setting. A simple declarative characterisation of persistence is
central to the semantics of E described below. This semantics, like that of
A, is model-theoretic, and the characterisation of persistence is achieved by
listing three speci�c conditions which each model must satisfy. The de�nition
of a model is intended to be modular in the sense that, in future extensions
to E , further conditions or constraints not relating to persistence may simply
be added. (To illustrate this point, two simple extensions to E are given in
an appendix.) The semantics gives rise to a notion of entailment which is
independent from any particular method of derivation or computation. Thus
the Language E helps di�erentiate between the ontological commitments of the
Event Calculus and the computational mechanisms provided by its original logic
programming setting. In this respect it serves a purpose similar to that of the
formalism described in [30].

The paper is organised as follows. In Section 2, we describe the basic syntax
and semantics of E , give some examples and discuss some general properties of
the formalism. In Section 3 we show a correspondence between the Languages
A and E by describing a sound and complete translation from theories written in
A into Language E domain descriptions. We also briey discuss the relationship
between E and the Language L0, a narrative extension of A recently proposed
by Baral, Gelfond and Provetti [5]. In the next three sections, we use E to
characterise two complementary notions of explanation in temporal domains.
In Section 4, we show how explanation may be partly modelled as the process

3

of extending an apparently inconsistent theory written in E so as to establish
consistency. In particular, we show that the syntax and semantics of E allows a
class of `narrative-based' explanations to be identi�ed in a natural way. We also
show how di�erent preference relations between explanations can be combined
with the simple object-level de�nition of entailment described previously in or-
der to de�ne a meta-level semantics with both an abductive and a deductive
avour. In Sections 5 and 6 we show that observations made at later times
may also sometimes be explained in terms of what is true at earlier times. To
do this, we identify a special class of E domain descriptions, and separate out
observations from these theories. In Section 7 we describe how E domains may
be implemented as Event Calculus style logic programs. We do this in a way
which avoids potential problems when the information entailed by the domain is
`incomplete', which could otherwise be caused by logic programming's implicit
completion of the HoldsAt predicate. These programs also encode a limited
form of reasoning backwards in time. Finally, in Section 8 we show how, for
a particular class of domains, we may use some of the notions of explanation
developed earlier to add a meta-level component to these implementations, in
order to facilitate a more `complete' form of automated temporal reasoning.

2 A Class of Languages for Describing

Narratives of Action Occurrences

First, we will describe the basic syntax of the Language E . Strictly speaking, E
represents a family of languages, all of which use a basic ontology and vocabulary
of uents (properties), actions and time points. The progression of time is
represented by an ordering relation over the set of time points. Time may
either be continuous or progress via discrete steps, and need not necessarily be
linear.

De�nition 1 [Domain Language] A domain language is a tuple h�;�;�;�i,
where � is a partial (possibly total) ordering1 de�ned over the non-empty set �
of time points, � is a non-empty set of action constants, and � is a non-empty
set of uent constants. 2

Except where the context implies otherwise, for the remainder of the paper
we assume a particular domain language E = h�;�;�;�i. We will often write
T1 � T2 to mean T1 � T2 and T1 6= T2.

1We mean `partial ordering' in the usual mathematical sense, i.e. � is reexive, transitive
and anti-symmetric. � should not be regarded as representing partial knowledge about a
total order { our formalism would have to be modi�ed to cope with this type of incomplete
information. Although it might be argued that time is in fact linear, so that � should always
be a total ordering, we consider partial orderings here for the sake of mathematical generality,
and because in Section 3 a particular partially ordered set is useful in showing a correspondence
between the Languages E and A.

4

De�nition 2 [Fluent literal] A uent literal of E is an expression either of the
form F or of the form :F , where F 2 �. 2

Three types of statements are possible within E . C-propositions (\c" for
\causes") express the conditions under which particular actions can potentially
initiate or terminate periods in which a property holds. H-propositions (\h" for
\happens") indicate that a particular action occurs at a particular time, and
t-propositions (\t" for \time point") express that a particular property holds at
a particular time.

De�nition 3 [c-proposition] A c-proposition in E is an expression either of the
form

A initiates F when C

or of the form

A terminates F when C

where F 2 �, A 2 �, and C is a set of uent literals of E . 2

Notation:
We shall often write c-propositions of the form \A initiates F when ;" and
\A terminates F when ;" as \A initiates F" and \A terminates F" re-
spectively.

De�nition 4 [h-proposition] An h-proposition in E is an expression of the form

A happens-at T

where A 2 � and T 2 �. 2

De�nition 5 [t-proposition] A t-proposition in E is an expression of the form

L holds-at T

where L is a uent literal of E and T 2 �. 2

De�nition 6 [Domaindescription] A domain description in E is a triple h; �; � i,
where is a set of c-propositions, � is a set of h-propositions, and � is a set of
t-propositions in E . 2

The semantics for E is expressed by de�ning the notion of an interpreta-
tion, and stating when an interpretation quali�es as a model for a given domain
description. In the de�nitions below, an interpretation is de�ned simply as a
mapping of uent/time-point pairs to true or false (i.e. a holds relation). A
model is an interpretation that respects four properties. The �rst three of these
are intended to characterise a `commonsense' notion about the persistence of

5

properties as time progresses. In particular, they encapsulate the idea that all
points at which a property starts (ceases) to hold are earmarked by an initiating
(terminating) action occurrence { in other words, actions are the only mecha-
nisms for change2. This is stated explicitly in condition (1) of De�nition 10.
Conditions (2) and (3) con�rm that the terms initiate and terminate have their
intended meanings, relative to this `commonsense' principle.

De�nition 7 [Interpretation] An interpretation of E is a mapping

H : �� � 7! ftrue; falseg

2

De�nition 8 [Point satisfaction] Given a set of uent literals C of E and a time
point T 2 �, an interpretation H satis�es C at T i� for each uent constant
F 2 C, H(F; T) = true, and for each uent constant F 0 such that :F 0 2 C,
H(F 0; T) = false. 2

De�nition 9 [Initiation/termination point] Let H be an interpretation of E ,
let D = h; �; � i be a domain description, let F 2 � and let T 2 �. T is
an initiation-point (respectively termination-point) for F in H relative to D i�
there is an A 2 � such that (i) there is both an h-proposition in � of the form
\A happens-at T" and a c-proposition in of the form \A initiates F when

C" (respectively \A terminates F when C") and (ii) H satis�es C at T .3 2

De�nition 10 [Model] Given a domain description D = h; �; � i in E , an in-
terpretation H of E is a model of D i�, for every F 2 � and T; T 0; T1; T3 2 �
such that T1 � T3, the following properties hold:

1. If there is no initiation-point or termination-point T2 for F in H relative
to D such that T1 � T2 � T3, then H(F; T1) = H(F; T3).

2. If T1 is an initiation-point for F in H relative to D, and there is no
termination-point T2 for F in H relative to D such that T1 � T2 � T3,
then H(F; T3) = true.

3. If T1 is a termination-point for F in H relative to D, and there is no
initiation-point T2 for F in H relative to D such that T1 � T2 � T3, then
H(F; T3) = false.

2This principle might be considered too strong for some domains, e.g. those involving
continuous change. In this case, some distinction will be required between those properties
which naturally persist (frame uents in Lifschitz's notation) and those which do not.

3According to this de�nition, not all initiation and termination points will be points of
change of the uent within a particular model. For example, if a uent already holds before
an initiation-point it will remain unchanged. Thus in Sergot's terms [28] the semantics uses
\weak" initiation and termination (but see footnote, Appendix A.1).

6

4. For all t-propositions in � of the form \F holds-at T", H(F; T) = true,
and for all t-propositions of the form \:F holds-at T 0",H(F; T 0) = false.

2

De�nition 11 [Consistency] A domain description is consistent i� it has a
model. 2

De�nition 12 [Entailment] A domain description D entails the t-proposition
\F holds-at T", written \D j= F holds-at T", i� for every model H of D,
H(F; T) = true. D entails the t-proposition \:F 0 holds-at T" i� for every
model H of D, H(F 0; T) = false. 2

In keeping with our adopted methodology, two important simplifying as-
sumptions are implicity included in the above semantics. First, the information
about the general e�ects of actions, expressed as c-propositions, is assumed to
be complete. An analogous assumption is made about the e-propositions in a
Language A theory. Second, the information about the occurrence of actions,
expressed as h-propositions, is also assumed to be complete. (There is no di-
rectly analogous assumption in the de�nition of a Language A model, since the
notion of an action occurrence is not included in its ontology.) Clearly, both
these assumptions will be sources of nonmonotonicity in the language. The h-
propositions not only give complete information about which actions occur, but
(since � is assumed to be well-de�ned) also give complete information about
the order and timing of these occurrences4 .

Condition (4) in De�nition 10 above expresses pointwise constraints on a
model which arise from the inclusion of t-propositions in the domain descrip-
tion. We envisage other such constraints being added in future, more expressive
extensions of E . Such extensions might also require re�nements to the de�nitions
of an interpretation or of an initiation or termination point. But we expect the
characterisation of persistence encapsulated in conditions (1)-(3), which can be
regarded as the `core' of the semantics, to remain unaltered. To remain faithful
to the methodology we are using, we wish here to keep the syntax and seman-
tics of E as simple as possible, even at the loss of some expressivity. However,
to illustrate this modular aspect of the semantics we have included two simple
extensions to E in Appendix A (relating to `quali�cations' and `rami�cations'
of action occurrences).

The following two examples illustrate the e�ects of our model-theoretic char-
acterisation of persistence.

4Relaxing these assumptions would be an interesting area for future research, but would
inevitably lead to a more complex semantics. For example, it would be straightforward to allow
for incomplete knowledge about the order and timing of action occurrences by using temporal

variables in h-propositions, and including a fourth type of proposition in domain descriptions
with which to express ordering constraints between these variables. An interpretation would
then include a mapping (i.e. variable assignment) from temporal variables to time points as a
second component.

7

Example 1 This example is intended to illustrate the necessity of including
the �rst condition in De�nition 10 of a Language E model above. It concerns
vaccinations against a particular disease. Vaccine A only provides protection for
people with blood type O, and vaccine B only works on people with blood type
other than O. Fred's blood type is not known, so he is injected with vaccine A
at 2 o'clock and vaccine B at 3 o'clock. For simplicity we will model time as
the real number line with the usual ordering relation, so that for this example,
Ev = h<;�; fInjectA; InjectBg; fProtected; T ypeOgi. The domain description
Dv consists of two c-propositions, two h-propositions and a single t-proposition:

InjectA initiates Protected when fTypeOg

InjectB initiates Protected when f:TypeOg

InjectA happens-at 2

InjectB happens-at 3

:Protected holds-at 1

If we now consider some time later than 3 o'clock, say 4 o'clock, we can see intu-
itively that Fred should be protected. Now by condition (1), in all models of Dv

Fred's blood group remains constant, so that in any given model, by condition
(2), Fred becomes protected either at 2 o'clock or at 3 o'clock. Consequently,

Dv j= Protected holds-at 4

Had condition (1) not been included in the de�nition of a model, it would have
been possible to construct a model, for example, in which Fred's blood type
\mysteriously" changed from :TypeO to TypeO at 2.30, thus rendering both
vaccinations ine�ective. 2

Example 2 This example shows that the Language E can be used to infer
information about what conditions hold at the time of an action occurrence,
given other information about what held at times before and afterwards. Let
Eys = h<+;�; fShootg; fAlive; Loadedgi, where <+ signi�es the non-negative
real numbers, and let the domain descriptionDys consist of a single c-proposition,
a single h-proposition and twot-propositions:

Shoot terminates Alive when fLoadedg

Shoot happens-at 2

Alive holds-at 1

:Alive holds-at 3

8

Since by condition (4) in any model H of Dys, H(Alive; 1) 6= H(Alive; 3), then
by condition (1), in all models an action must occur at some time point between
1 and 3 whose initiating or terminating conditions for the property Alive are
satis�ed at that point. The only candidate is the Shoot occurrence at 2, whose
condition for terminating Alive is Loaded. Hence

Dys j= Loaded holds-at 2

Indeed, by applying condition (1) again, it is easy to see that for all n, n � 0,

Dys j= Loaded holds-at n

2

Two properties of E will prove useful later. The �rst is that E is monotonic
as regards addition of t-propositions to domain theories (although, as observed
earlier, not as regards addition of h-propositions or c-propositions). That is to
say, if H is a model of a domain description h; �; � i and � 0 � � , H is also a
model of h; �; � 0i. This follows directly from De�nition 10. The second prop-
erty of interest concerns the deterministic nature of actions' e�ects within a
narrative, and is somewhat analogous to Lin and Shoham's notion of epistemo-
logical completeness [22]. Provided the domain description under consideration
is consistent and contains no �nite intervals of time in which an in�nite number
of actions occur, then the set of uents which hold at any point T completely
determines the set of uents which hold at any later time point. This claim is
made precise in the following de�nition and proposition.

De�nition 13 [Occurrence Sparsity] Let D = h; �; � i be a domain description
written in a language E = h�;�;�;�i. D and � are occurrence-sparse i� for
any two points T1; T2 2 � there are only a �nite number of h-propositions in �

of the form\A happens-at T" such that T1 � T � T2. 2

Proposition 1 Let D be an occurrence-sparse domain description written in a
language E = h�;�;�;�i, and let T1; T2 2 � be such that T1 � T2. Let H and
H0 be models of D such that for all F 2 �, H(F; T1) = H0(F; T1). Then for all
F 2 �, H(F; T2) = H0(F; T2).

Proof See Appendix B.1 2

The occurrence of in�nite numbers of actions in a �nite period of time leads
to interesting and/or unexpected results in many formalisms for reasoning about
action. For a general discussion of this complex issue, the reader may refer to
Davis [7]. However, for the remainder of this paper, we restrict our attention to
domain descriptions which are occurrence-sparse, and thus deterministic in the
sense of Proposition 1.

9

3 Simulating the Language A as a Class of

Language E Domains

Because they use di�erent ontologies, any correspondence between the Lan-
guages A and E must inevitably be expressed in rather arti�cial terms. In this
section we show that Language A domains can be simulated or re-formulated
as Language E domains with a branching structure h�;�i of time points, anal-
ogous to the branching `tree' of situations often incorporated in formulations
of the Situation Calculus. Since the Language A is not narrative-based and so
does not directly include the notion of action occurrences, in our re-formulation
an appropriate action occurrence has to be `built in' at each point in this tree
structure. In situation calculus terms, we must ensure that for each situation S
in the tree, the action A `occurs' between the situations S and Result(A; S). To
express this, we need to insert an extra time-point between S and Result(A; S)
{ in graphical terms, we need to be able to refer to the arcs connecting the sit-
uation nodes in the tree. This is achieved in a simple way below by considering
`doubled' sequences of actions. Sequences of even length correspond to nodes of
the tree structure (i.e. to situations), and sequences of odd length correspond to
the inter-connecting arcs. A temporal ordering relation is then de�ned on both
nodes and arcs.

De�nition 14 [�-sequence] Given a set � of action constants, a �-sequence
of � is de�ned inductively as follows:

� The empty sequence hh ii is a �-sequence

� For each A;A0 2 �, the singleton sequence hhjAjii, the sequence hhjAj; Aii
and the sequence hhjAj; A; jA0jii are all �-sequences

� For each A1; : : : ; An 2 �, hhjA1j; A1; : : : ; jAnj; Anii is a �-sequence

� For each A0 2 � and for each �-sequence hhjA1j; A1; : : : ; jAnj; Anii,
hhjA1j; A1; : : : ; jAnj; An; jA0jii is a �-sequence

2

De�nition 15 [�-ordering] Given a set � of action constants and the corre-
sponding set �� of all �-sequences, the �-ordering �� over �� is de�ned as
follows

� For all S 2 ��, hh ii �� S

� For all hh�1; : : : ; �nii 2 �� and for all m such that 1 � m � n,
hh�1; : : : ; �mii �� hh�1; : : : ; �nii

2

10

Examples:
Suppose � = fWait; Load; Shootg. The �-sequence

hhjLoadj; Load; jWaitj;Wait; jShootj; Shootii

corresponds to the Situation Calculus term

Result(Shoot;Result(Wait;Result(Load; S0)))

and (regarding situations as arranged in a branching tree structure) the �-
sequence

hhjLoadj; Load; jWaitj;Wait; jShootjii

corresponds to the inter-connecting arc between the situations

Result(Wait;Result(Load; S0))

and

Result(Shoot;Result(Wait;Result(Load; S0)))

Regarding the ordering ��, it is easy to see that, for example

hhjLoadjii �� hhjLoadj; Loadii

hhjLoadj; Loadii �� hhjLoadj; Load; jWaitj;Wait; jShootj; Shootii

Notation:
We shall sometimes refer to the �-sequence

hhjA1j; A1; : : : ; jAnj; Anii

simply as A1; : : : ; An and refer to the �-sequence

hhjA1j; A1; : : : ; jAnj; An; jA0jii

as A1; : : : ; An; jA
0j. Notice that in this notation

A1; : : : ; An; jA0j �� A1; : : : ; An; A
0

The next de�nition allows us to express that, in general, the action A0 occurs
at A1; : : : ; An; jA0j, so that the e�ects of A0 are apparent at the following time
point A1; : : : ; An; A

0.

De�nition 16 [Complete occurrence set] Let E = h��;��;�;�i, where ��

is the set of �-sequences of � and �� is the �-ordering over ��. The set
��, called the complete occurrence set of �, is the set of all h-propositions of E
either of the form

A happens-at hhjAjii

11

or of the form

An happens-at hhjA1j; A1; : : : ; jAn�1j; An�1; jAnjii

2

The following proposition shows a sense in which the Language A may be
regarded as a special case of the Language E .

Proposition 2 Let DA be a consistent theory written in a language A in the
sense of [13], with a set of action constants � and a set of uent constants �.
Let E = h��;��;�;�i, where �� is the set of �-sequences of � and �� is the
�-ordering over ��. Let DE be the domain description h; ��; � i in E de�ned
as follows:

� �� is the complete occurrence set of �

� For each v-proposition in DA of the form \L after A1; : : : ;Am" there is
a t-proposition in � of the form \L holds-at A1; : : : ; Am", and for each
v-proposition in DA of the form \initially L" there is a t-proposition in
� of the form \L holds-at hh ii"

� For each F 2 �, then for each e-proposition in DA of the form \A causes

F if L1; : : : ; Ln" there is a c-proposition in of the form \A initiates F

when fL1; : : : ; Lng", and for each e-proposition in DA of the form \A0

causes :F if L01; : : : ; L
0
n" there is an c-proposition in of the form \A0

terminates F when fL01; : : : ; L
0
ng"

Then for each F 2 � and each A1; : : : ; An 2 �

� DE j= F holds-at hh ii if and only if
DA entails initially F

� DE j= :F holds-at hh ii if and only if
DA entails initially :F

� DE j= F holds-at A1; : : : ; An if and only if
DA entails F after A1; : : : ;An

� DE j= :F holds-at A1; : : : ; An if and only if
DA entails :F after A1; : : : ;An

Proof Let R be the unique transition function such that there is a model
(�0; R) of DA (for de�nitions see [13]). Let � � � be a set of uent constants.
For each F 2 � and A1; : : : ; An; A

0 2 � let the interpretation H[�;R] be de�ned
as follows:

� H[�;R](F; hh ii) = H[�;R](F; hhjA
0jii) = true if and only if F 2 �

12

� H[�;R](F; hhjA1j; A1; : : : ; jAnj; Anii) =
H[�;R](F; hhjA1j; A1; : : : ; jAnj; An; jA0jii) = true

if and only if F 2 R(An; R(An�1; : : : ; R(A1; �) : : :))

Clearly, for each � � �, H[�;R] is a model of h; �; ;i, and H[�;R] is a model of
DE = h; �; � i if and only if (�;R) is a model of DA in the sense of [13]. Since
DE is occurrence-sparse, by Proposition 1 all models of DE are of this form,
so that there is a one-to-one correspondence between models of DA and such
models of DE , and the proposition follows directly from the de�nition of H[�;R].
2

We conclude this section with some brief remarks about the relationship
between E and the Language L0 recently introduced by Baral, Gelfond and
Provetti in [5]. L0 is a `narrative' extension to A which uses A's underlying
Situation Calculus based ontology. Conceptually, it is close to the extension
of the Situation Calculus described by Pinto and Reiter in [27]. Both are con-
cerned with describing and reasoning about an `actual path' through the `tree
of situations'.

A model of an L0 domain description is a pair (;�). The \	" compo-
nent roughly corresponds to the notion of a (partial) \transition function" in a
Language A model. For a given domain, 	 is characterised by a collection of
e�ect laws in L0, which is equivalent to a set of e-propositions in A and may
be translated into a Language E domain description of the form h; ��; � i as
described in Proposition 2. Given such a translation, the \�" component of an
L0 model can be regarded as an assignment of the situation symbol sN (always
included in L0's vocabulary) to a particular �-sequence �N in ��, together
with an assignment of each other situation symbol si to a �-sequence �i such
that �i �� �N . (In Pinto and Reiter's terms, �N represents the `actual path of
situations'.) To be acceptable, the assignment �N must be of minimal length,
subject to certain constraints which are expressed as uent facts, occurrence
facts and precedence facts. For example, the occurrence fact \A1; A2 occurs-

at si" constrains �N to be of the form hh�1; : : : ; �i; jA1j; A1; jA2j; A2; : : : ; �nii
(where hh�1; : : : ; �iii is the �-sequence �i assigned to si), and the precedence
fact \si precedes sj" expresses the constraint �i �� �j . The minimal length
requirement for �N corresponds to the minimisation of the occurs predicate in
Pinto and Reiter's extended Situation Calculus.

4 Dealing with Inconsistent Domains by

Explanations

Like the Language A, the Language E provides a very rigid way of specifying
the e�ects of actions. Each separate e�ect has to be explicitly described by
a c-proposition (analogous to an e-proposition in the Language A), and the

13

de�nition of entailment does not facilitate the inference of any other e�ects.
For example, without an explicit representation of the statement \the action
occurrence A terminates the property P" the statement \P is true before A, but
false afterwards" gives rise to an inconsistency. This is in contrast to some other
approaches to representing persistence, such as representations in circumscribed
predicate calculus, which in this respect are more exible. The Language E is
similarly rigid in its representation of a narrative { all action occurrences must
be explicitly represented by an h-proposition.

However, greater exibility can be achieved, without altering the underly-
ing semantics of E , by introducing the notion of an explanation. Clearly, the
statement that \property P is true before A, but false afterwards" is easily
`explained' by the statement \A terminates P". In this section we model the
task of explanation as the task of restoring consistency, in some principled or
selective way, to an inconsistent collection of facts, represented as an inconsis-
tent domain description in E . Under this view, explanation is a form of belief
revision. The nonmonotonicity built into our language sometimes allows an in-
consistent domain theory to be `revised' simply by adding sets of propositions.
We will call such sets `explanations'. In the present context, explanations may
be either in narrative or in causal terms, or in both. In other words, a given set
of facts may be explained away in terms of what has happened and/or in terms
of what causes what.

In Sections 5 and 6 we will extend the notion of an explanation, showing
how in the context of narrative reasoning it is sometimes appropriate to regard
information about what holds at earlier times as an `explanation' of what holds
at later times.

4.1 Explanations in Terms of Action Occurrences

The �rst class of explanations we will consider are those which can be expressed
entirely in terms of action occurrences, i.e. extra h-propositions. We will use a
version of Kautz's Stolen Car problem [19] as an illustration.

Example 3 Let Esc = hN ;�; fPark; Stealg; fParkedgi, where N signi�es the
natural numbers, and let Dsc be the domain description consisting of the fol-
lowing two c-propositions, single h-proposition and single t-proposition:

Park initiates Parked

Steal terminates Parked

Park happens-at 2

:Parked holds-at 6

2

14

By itself, Dsc is inconsistent, since there is no terminating action occurrence for
the uent Parked between 2 and 6. However, we may restore consistency by
adding one or more h-propositions.

De�nition 17 [h-explanation] LetD = h; �; � i be a domain description. An h-
explanation forD is a (possibly empty) occurrence-sparse set �� of h-propositions,
such that h; � [��; � i is consistent. 2

For example, the following are all h-explanations for Dsc:

f Steal happens-at 3; Steal happens-at 4 g

f Steal happens-at 4; Park happens-at 8 g

f Steal happens-at 5 g

Indeed, it is obvious that we may construct an h-explanation for Dsc containing
as many h-propositions as we like. Clearly, extra mechanisms are needed which
enable us to prefer some explanations to others. The following de�nition reects
a very simple, set-theoretic notion of preference. However, the de�nition could
be modi�ed for speci�c domains, for example to reect the fact that we wish to
regard some types of occurrence as more likely than others.

De�nition 18 [Preferable h-explanation]5

Let �� and �0� be h-explanations for D. �� is preferable to �
0
� i� �� � �0�. 2

Having identi�ed a class of explanations, such as the class of h-explanations
in De�nition 17, and a preference criterion such as that of De�nition 18, it is
possible to construct a corresponding meta-level, explanation-based `semantics'
similar to the semantics of Abductive Logic Programming [15], [16], [10]. We
consider all possible extensions of a given domain description D with optimal
explanations and accept conclusions if and only if these hold in each such ex-
tension. This semantics can then be used to decide what can be safely `inferred'
from a seemingly inconsistent domain description.

De�nition 19 [Optimal h-explanation] �� is an optimal h-explanation for D i�
�� is an h-explanation for D and there is no other h-explanation �0� for D such
that �0� is preferable to ��. 2

De�nition 20 [h-model] Let D = h; �; � i be a domain description. H is an
h-model of D i� there exists an optimal h-explanation �� for D such that H is
a model of h; � [��; � i 2

De�nition 21 [h-consistency] A domain description is h-consistent i� it has at
least one h-model. 2

5In this de�nition and throughout the paper \�" is intended to mean \is contained in and
not equal to".

15

De�nition 22 [h-entailment] The domain description D = h; �; � i h-entails
the t-proposition \F holds-at T", written \D j=h F holds-at T", i� for every
h-model H of D, H(F; T) = true. D h-entails the t-proposition \:F 0 holds-at

T" i� for every h-model H of D, H(F 0; T) = false. 2

H-entailment is an abductive notion in the sense that optimal h-explanations
are not derived from or entailed by a domain description, but are added to it
(according to an external preference criterion). It also has a `deductive avour'
in the sense that a t-proposition is entailed from a domain description simply if
it is true in all h-models. And any procedure for verifying truth in all h-models
will, explicitly or implicitly, have to take into account all optimal h-explanations.

The important point is that h-entailment is a meta-level concept, whereas the
entailment relation de�ned in Section 2 is object-level. H-entailment is de�ned
both in terms of object-level entailment and a particular preference criterion
among explanations. Notice that De�nitions 19 to 22 would still be applicable
even if `h-preferability' were to be de�ned di�erently (perhaps according to
domain-speci�c considerations), but would yield di�erent results.

A desirable property of any such meta-level entailment is that it should con-
cide with object-level entailment whenever the domain description is consistent.
The following proposition shows that for h-entailment as de�ned De�nition 22
above, this is indeed the case.

Proposition 3 Let D be a consistent domain description. Then H is a model
of D if and only if H is an h-model of D.

Proof The proposition follows directly from the observation that since D
is already consistent, it has a unique optimal h-explanation ;. 2

Returning to the Stolen Car problem, Dsc has three optimal h-explanations:

f Steal happens-at 3 g

f Steal happens-at 4 g

f Steal happens-at 5 g

Dsc is therefore h-consistent, and has a total of six h-models (two correspond-
ing to each optimal h-explanation), since in any h-model H, H(Parked; 0),
H(Parked; 1) and H(Parked; 2) may either all be true or all be false. It is
easy to see, therefore, that

Dsc j=h Parked holds-at 3

and for all n � 6,

Dsc j=h :Parked holds-at n

16

Hence this example illustrates how the notion of h-entailment exploits the nar-
rative ontology of E to give a natural and simple way to handle such apparently
inconsistent domains.

H-entailment corresponds closely to Shanahan's formulation of explanation-
based temporal reasoning in [29]. The main di�erence is that whereas Shana-
han's concern is to abduce a single explanation for a given fact or observation,
ours is to `safely' infer new information by considering all (optimal) explana-
tions. Shanahan's work was partly based on earlier work by Eshghi [12] showing
how planning could be formulated within an abductive Event Calculus frame-
work. In Language E terms, an initial state I and goal state G can both be
represented as sets �I and �G of t-propositions, domain information can be
modelled as a set of c-propositions, and a plan can be regarded as a single
(optimal) h-explanation for h; ;; �I [�Gi.

Our notion of an h-model is also somewhat analogous to the description
of a Language L0 model given by Baral, Gelfond and Provetti in [5] (see end
of Section 3). An important di�erence here is that, whereas the requirement
that action occurrences be minimal is `hardwired' into L0's object-level seman-
tics, our minimality requirement is to be found in the particular de�nition of
h-preference, which could potentially be replaced by or extended with other,
domain-speci�c preference criteria. Indeed, in the following section we give an
example of a preference criterion among a class of explanations which is not
entirely based around a simple notion of minimality.

4.2 Explanations in Terms of New Causal Rules

It will not always be possible to �nd an h-explanation for an inconsistent domain
description D. In this section we briey explore the possiblities of including
both c-propositions and h-propositions in explanations. The discussion here
is intended only to illustrate some of the problems relating to this { we are
obviously trespassing into the related A.I. topic of learning. We will use the
following (deliberately abstract) example to motivate the discussion:

Example 4 Let Eex = hN ;�; fA1; A2g; fF1; F2gi, where N signi�es the natural
numbers, and let the domain description Dex consist of three t-propositions:

F1 holds-at 4

F2 holds-at 5

:F2 holds-at 10

2

This example is neither consistent nor h-consistent. To establish consistency
in this case we need to consider explanations which include both narrative and
causal information.

17

De�nition 23 [hc-explanation] Let D = h; �; � i be a domain description. An
hc-explanation for D is a pair h�; ��i, where � is a (possibly empty) set of c-
propositions and �� is a (possibly empty) occurrence-sparse set of h-propositions,
such thath [�; � [��; � i is consistent. 2

For example, according to De�nition 23 the following are all hc-explanations
for Dex:

1. hfA1 terminates F2 when fF1gg; fA1 happens-at 8gi

2. hfA1 terminates F2g; fA1 happens-at 8gi

3. hfA1 terminates F2 when f:F1g; A2 terminates F1g,
fA2 happens-at 7; A1 happens-at 8gi

What quali�es as a `reasonable' preference criterion among hc-explanations?
In practice such a criterion will probably be domain-speci�c. Nevertheless, it is
interesting to speculate at an abstract level, if only to discover the complexity
of some of the issues involved. A simple or liberal view (in the sense that it
would allow a wide class of optimal hc-explanations) would be to prefer hc-
explanation � over hc-explanation �0 only if �'s set of c-propositions was strictly
contained in �0's. However, this policy would not yield any preferences between
the three hc-explanations in Example 4 above. Regarding Dex as representing
three observations at di�erent time points, it seems reasonable that we should
prefer explanations which account for the observed change in F2 but allow F1

to persist. This would, for example, cut out explanation (3) above.
For the purposes of illustration, we will formulate a de�nition of preference

between two hc-explanations which gives preference to hc-explanation (1) above
over both (2) and (3). For the sake of argument, we will suppose that we want to
prefer the inclusion in an hc-explanation of the c-proposition \A1 terminates

F2 when fF1g" to the inclusion of the c-proposition \A1 terminates F2" be-
cause the former is more speci�c { it necessitates changes in a smaller variety of
circumstances. We will also suppose that we wish to prefer hc-explanation (1)
to hc-explanation (3) because the latter contains the `extra' c-proposition \A2

terminates F1". To state this last type of preference we will need a way of
expressing that two hc-propositions such as \A1 terminates F2 when fF1g"
and \A1 terminates F2 when f:F1g" are in some sense equivalent, or can be
`traded-o�' with each other when evaluating a potential preference between two
hc-explanations. These considerations motivate the following de�nitions.

De�nition 24 [uent complement] Given a uent literal L of E = h�;�;�;�i,
the complement of L, written L, is de�ned to be

� :F if L = F for some F 2 �

� F 0 if L = :F 0 for some F 0 2 �

18

2

De�nition 25 [c-speci�city] Given the four c-propositions

P1 = A initiates F when C1

P2 = A initiates F when C2

P3 = A terminates F when C1

P4 = A terminates F when C2

P1 is as c-speci�c as P2, and P3 is as c-speci�c as P4, i� for every uent literal
L 2 C2, either L 2 C1 or L 2 C1. 2

De�nition 26 [c-containment] Let and 0 be two sets of c-propositions. Then
 is c-contained in 0, written �c 0 i� for every P 2 there is a P 0 2 0

such that P is as c-speci�c as P 0. Otherwise, is not c-contained in 0, written
 6�c 0. 2

We can now state our desired preference criterion between hc-explanations.
Clearly, the de�nition of hc-preference given below could be used as a substitute
for h-preference in De�nitions 19 to 22 of the previous section, giving rise to an
analogous notion of \hc-entailment".

De�nition 27 [Preferable hc-explanation] Let � = h�; ��i and �0 = h0�; �
0
�i be

hc-explanations for D. � is hc-preferable to �0 i� either (i) � �c
0

� and
0

� 6�c �,
or (ii) � �c 0�,

0

� �c �, and �� � �0�. 2

5 Projection Domain Descriptions

In the following two sections, and again in Section 8, we focus attention on a
particular sub-class of languages and domain descriptions, which we will call
the class of projection languages and the class of projection domain descriptions
respectively6. We have three reasons for doing so. In this section, we will
show that it is possible to state syntactically veri�able conditions under which
projection domain descriptions are consistent. In Section 6 we will show how
we can use projection domain descriptions to formulate a notion of explanation
complementary to that of Section 4. And in Section 8 we will show how for a
particular class of domains we can build on this idea to develop meta-level Prolog
implementations which facilitate a `complete' form of automated reasoning both
backwards and forwards in time.

The de�ning characteristic of a projection language is that the set of time
points includes a null or least element, which is given a special status as regards
formulation of projection domain descriptions.

6Note that the class of Situation-Calculus-style languages of the form h��;��;�;�i de-
�ned in Proposition 2 of Section 3 are all examples of projection languages.

19

De�nition 28 [Projection Language] A projection language is a domain lan-
guage h�;�;�;�i, where � includes an element T0 (a null or least element)
such that for all T 2 �, T0 � T . 2

In this section and the next, we assume that E = h�;�;�;�i is a projection
language, and that T0 is the null element of �. It will be convenient to identify
a particular type of t-proposition which we will call an i-proposition (\i" for
\initial").

De�nition 29 [i-proposition] An i-proposition in E is a t-proposition of the
form

L holds-at T0

where L is a uent literal of E . We shall sometimes write this expression as

initially L

2

De�nition 30 [Projection domain description] A projection domain descrip-
tion in E is a triple h; �; �ii, where is a set of c-propositions, � is a set of
h-propositions, and �i is a set of i-propositions in E . 2

Example 5 The following projection domain description uses the projection
domain language Eys = h<+;�; fShootg; fAlive; Loadedgi of Example 2, where
<+ signi�es the non-negative real numbers (so that T0 = 0).

Shoot terminates Alive when fLoadedg

Shoot happens-at 2

initially Alive

initially Loaded

2

At �rst sight it appears that the restriction of the set �i in the de�nition
above to contain only i-propositions is a major limitation. However, in Section 6
we will describe a mode of reasoning involving both projection domain descrip-
tions and extra sets of t-propositions which have been identi�ed as `observations'
requiring explanation.

As stated above, one advantage of projection domains is that it is possible
to characterise a whole class of such domains whose consistency can be easily
veri�ed. To state the appropriate proposition, we �rst need some extra de�ni-
tions.

20

De�nition 31 [Initial consistency] Let D = h; �; �ii be a projection domain
description. D is initially-consistent i� there is no uent constant F such that
both the i-proposition \initially F" and the i-proposition \initially :F" are
in �i. 2

The next de�nition is related to the notion of \e-consistency" de�ned by
Deneker and De Schreye [9] in the context of the Language A.

De�nition 32 [Conicting actions] Let D be a domain description. The action
constants A1 and A2 conict in D i� D contains two c-propositions of the form
\A1 initiates F when C1" and \A2 terminates F when C2" and there is no
uent symbol F 0 in E such that both F 0 2 C1 [C2 and :F 0 2 C1 [C2. When
A1 = A2 = A we say that the action constant A self-conicts in D. 2

De�nition 33 [Fluent independence] Let D be a projection domain descrip-
tion. D is uent-independent i� (i) there is no time point t and pair of h-
propositions in D of the form \A1 happens-at t" and \A2 happens-at t"
such that A1 and A2 conict in D, and (ii) there is no h-proposition in D of the
form \A happens-at t" such that A self-conicts in D. 2

De�nition 34 [Non-convergence] Let D be a domain description written in a
language E = h�;�;�;�i. D and E are non-converging i� for every three (not
necessarily distinct) time points T1, T2 and T3 in � such that T1 � T3 and
T2 � T3, then either T1 � T2 or T2 � T1. 2

Proposition 4 Let D be a projection domain description which is occurrence-
sparse, non-converging, initially-consistent, and uent-independent. Then D is
consistent.

Proof See Appendix B.2. 2

6 Observations and Explanations

In Section 4 we linked the notion of an explanation to the idea of transforming
an inconsistent domain description into a consistent one. Another aspect of
explanation that we might want to capture in the context of temporal domains
is to explain what holds at a later time in terms of what holds at an earlier
time. For example, we might wish to consider the statement \Fred is not alive"
as explained by the statement \the gun was loaded when he was shot". This
is an explanation of what holds at a later time in terms of what holds at an
earlier time. In this section we model this type of explanation by regarding
information about what holds at the least time point T0 of a projection domain
description as a potential explanation for observations about what holds at all
later times. Thus we re-introduce t-propositions not simply as additional state-
ments of the domain description but as observations that need to be explained.

21

This separation of observations from other parts of the domain theory appears
elsewhere (see [6] for a discussion). In particular, it is used in [9] in the study
of translations of A domains into logic programs.

De�nition 35 [o-proposition] An o-proposition in E is a t-proposition of the
form

L holds-at T

where T 6= T0. 2

De�nition 36 [Observation set] An observation set is a non-empty set of o-
propositions. 2

De�nition 37 [i-explanation] Let D = h; �; �ii be a projection domain de-
scription and let �ob be an observation set. An i-explanation for �ob in D is a
set �i� of i-propositions such that h; �; �i [�i�i is consistent and such that for
each p 2 �ob,

h; �; �i [�i�i j= p

2

For simplicity, and in contrast to the discussion of Section 4, we do not in-
clude here any de�nition of preference between i-explanations, or any de�nition
of optimality of an i-explanation. Our motivation for de�ning `i-entailment' be-
low is simply to maintain the distinction between observations and other aspects
of the domain theory while allowing conclusions arising from observations to be
properly characterised. As with h-entailment, we are concerned with capturing
a `safe' form of inference { in terms of abduction, we want to i-entailment to
correspond to `entailment in all abductive extensions'.

It is important to point out, however, that for speci�c domains we might well
wish to introduce a de�nition of preference among i-explanations, and build this
into the de�nition of i-entailment in exactly the same way as h-preference is in-
corporated in the de�nition of h-entailment. For example, given the observation
that \the car didn't start after the ignition was turned", we might prefer the
explanations that \the battery was dead" or that \the car had no petrol" to the
explanation that \the car had no engine".

De�nition 38 [i-model] Let D = h; �; �ii be a projection domain description
and let �ob be an observation set. H is an i-model of D with �ob i� there exists
an i-explanation �i� for �ob in D such that H is a model of h; �; �i [�i�i. 2

De�nition 39 [i-consistency] Let D be a projection domain description and
let �ob be an observation set. D is i-consistent with �ob i� there is at least one
i-model of D with �ob. 2

22

De�nition 40 [i-entailment] Let D be a projection domain description and let
�ob be an observation set. D with �ob i-entails the t-proposition \F holds-at

T", written \D; �ob j=i F holds-at T", i� for every i-model H of D with �ob,
H(F; T) = true. D with �ob i-entails the t-proposition \:F 0 holds-at T" i� for
every i-model H of D with �ob, H(F 0; T) = false. 2

The following proposition shows that the particular de�nition of i-entailment
above amounts to a re-characterisation of entailment as de�ned in Section 2,
keeping the distinction between observation sets and projection domain de-
scriptions. Note, however, that the proposition would not necessarily hold if we
were to incorporate a (domain-speci�c) notion of i-perference in the de�nitions
above.

Proposition 5 Let D = h; �; �ii be an occurrence-sparse projection domain
description and let �ob be an observation set. Then H is a model of h; �; �i[�obi
if and only if H is an i-model of D with �ob.

Proof See Appendix B.3 2

Example 6 Let Eysp = h<+;�; fShootg; fAlive; Loadedgi, where <+ signi�es
the non-negative real numbers, and let the projection description Dysp consist
of a single c-proposition and a single h-proposition:

Shoot terminates Alive when fLoadedg

Shoot happens-at 2

Let �ysp be the observation set containing the following two o-propositions:

Alive holds-at 1

:Alive holds-at 3

It is easy to see that there is a unique i-explanation for �ysp in Dysp:

f initially Loaded; initially Alive g

Hence for all n � 0

Dysp; �ysp j=i Loaded holds-at n

2

The notions of i-explanation and h-explanation described in this section and
in Section 4 are complementary and can be combined in an obvious way. After
giving the appropriate de�nitions below, we conclude this section with an exam-
ple involving explanations in terms of both i-propositions and h-propositions.

23

De�nition 41 [ih-explanation] Let D = h; �; �ii be a projection domain de-
scription and let �ob be an observation set. An ih-explanation for �ob in D is a
pair h��; �i�i, where �� is an occurrence-sparse set of h-propositions and �i� is a
set of i-propositions, such that h; �[��; �i[�i�i is consistent and such that for
each p 2 �ob,

h; � [��; �i [�i�i j= p

2

De�nition 42 [Preferable ih-explanation]
Let � = h��; �i�i and �0 = h�0�; �

0
i�i be ih-explanations for �ob in D. � is ih-

preferable to �0 i� �� � �0�. 2

De�nition 43 [Optimal ih-explanation] � is an optimal ih-explanation for �ob
in D i� � is an ih-explanation for �ob in D and there is no other ih-explanation
�0 for �ob in D such that �0 is ih-preferable to �. 2

De�nition 44 [ih-model] Let D = h; �; �ii be a projection domain description
and let �ob be an observation set. H is an ih-model of D with �ob i� there exists
an optimal ih-explanation � = h��; �i�i for �ob in D such that H is a model of
h; � [��; �i [�i�i 2

De�nition 45 [ih-entailment] Let D be a projection domain description and
let �ob be an observation set. D with �ob ih-entails the t-proposition \F holds-

at T", written \D; �ob j=ih F holds-at T", i� for every ih-model H of D with
�ob, H(F; T) = true. D with �ob ih-entails the t-proposition \:F 0 holds-at T"
i� for every ih-model H of D with �ob, H(F 0; T) = false. 2

Example 7 This example involves a video-recorder with an automatic timer.
Suppose Fred returns home one evening and wishes to check if his video-recorder
has automatically started recording his favourite TV show. Although he cannot
look inside the recording machine to check if it is recording directly, he knows
that if the machine is working, when the timer triggers it will both turn the
`record' light on and begin recording. Initially (when Fred left home) the record
light was not on. When he returns, the light is on, and Fred concludes that the
machine is recording.

We can regard the time that Fred left home as the least time point T0 in
the language, and represent Fred's domain knowledge with a projection domain
description Drec consisting of two c-propositions and an i-proposition:

T imerTrigger initiates LightOn when fWorkingg

T imerTrigger initiates Recording when fWorkingg

initially :LightOn

24

Fred's observation that the recoding light is on when he returns home is repre-
sented by the singleton observation set �rec:

fLightOn holds-at TRg

where TR 2 � represents the time at which Fred returned home. It is easy to
see that all optimal ih-explanations for �rec in Drec are of the form

hfT imerTrigger happens-at Tg; finitially Workinggi

for some T 2 � such that T0 � T � TR, so that

Drec; �rec j=ih Recording holds-at TR

and hence the notion of ih-entailment correctly models Fred's reasoning. 2

7 Logic Programs for E Domains

In the following two sections we discuss the implementation of Language E
domains. In this section we study how we can construct Event Calculus style
logic programs from domain descriptions in general. In Section 8 we show
how, for a class of projection domain descriptions, (simpli�ed versions of) these
programs can be enhanced using standard Prolog `second-order' programming
techniques.

In the original Event Calculus there was an implicit assumption that all
predicate de�nitions were complete. In other words, it was assumed that for
each predicate its negation (negation as failure) was true whenever the positive
instance did not hold. Although the semantics of E incorporates and analo-
gous assumption for h-propositions and c-propositions, this assumption does
not extend to t-propositions (equivalent to Holds or HoldsAt literals in Event
Calculus programs) { it is possible for a domain description D to be `incomplete'
in the sense that, for some uent constant F and time T , neither \F holds-at

T" nor \:F holds-at T" is entailed by D.
However, we can partly avoid the implementation di�culties that this cre-

ates by representing negative uent literals inside the HoldsAt predicate. In
the program translations de�ned below, the t-proposition \:F holds-at T" is
represented by the positive literal HoldsAt(Neg(F); T), whereas the negative
literal not HoldsAt(F; T) is simply interpreted as `the t-proposition \F holds-

at T" is not provable'. In this and other respects, the translation method here
is similar to that in [24]. Analogous techniques are used in [13], [11] and [4],
although not with Event Calculus style programs.

Given that our aim is to develop programs able to deal correctly with the
form of incompleteness described above, it is useful to �rst consider incomplete
or partial interpretations for a domain description and examine what can be
computed from these.

25

De�nition 46 [Partial interpretation] A partial interpretation of E is a partial
mapping

I : �� � 7! ftrue; falseg

2

In the discussion which follows, we assume that De�nitions 8 and 9 of `point
satisfaction' and an `initiation' or `termination point' are extended to cover par-
tial interpretations as well as interpretations. In addition, we need counterparts
to these notions which deal with cases where I(F; T) is unde�ned.

De�nition 47 [Possible point satisfaction] Given a set of uent literals C of E
and a time point T 2 �, a partial interpretation I possibly satis�es C at T i�
for each uent constant F 2 C, I(F; T) 6= false, and for each uent constant
F 0 such that :F 0 2 C, I(F 0; T) 6= true. 2

De�nition 48 [Possible initiation/termination point] Let I be a partial inter-
pretation of E , let D be a domain description, let F 2 � and let T 2 �. T

is a possible initiation-point (respectively possible termination-point) for F in I
relative to D i� there is an A 2 � such that (i) there is both an h-proposition
in � of the form \A happens-at T" and a c-proposition in of the form \A
initiates F when C" (respectively \A terminates F when C") and (ii) I
possibly satis�es C at T . 2

Let us denote the set of all partial interpretations by I. Motivated by Def-
inition 10 of a model for a domain D, we can de�ne an associated (partial)
operator on I as follows.

De�nition 49 [Operator F] Given a domain description D = h; �; � i the par-
tial operator F : I 7! I is de�ned as follows: For any partial interpretation
I 2 I, and any F 2 �, T 2 �,

1. (a) For any T1 2 � such that T1 � T , if there is no possible initiation-
point or possible termination-point T2 for F in I relative to D such that
T1 � T2 � T , then (F)(I)(F; T) = I(F; T1).

(b) For any T2 2 � such that T � T2, if there is no possible initiation-
point or possible termination-point T1 for F in I relative to D such that
T � T1 � T2, then (F)(I)(F; T) = I(F; T2).

2. If T1 is an initiation-point for F in I relative to D, T1 � T and there
is no possible termination-point T2 for F in I relative to D such that
T1 � T2 � T , then (F)(I)(F; T) = true.

3. If T1 is a termination-point for F in I relative to D, T1 � T and there is no
possible initiation-point T2 for F in I relative to D such that T1 � T2 � T ,
then (F)(I)(F; T) = false.

26

4. If there is a t-proposition in � of the form \F holds-at T", then

(F)(I)(F; T) = true,

and if there is a t-proposition of the form \:F holds-at T 0",

(F)(I)(F; T 0) = false.

5. Otherwise (F)(I)(F; T) is unde�ned.

2

Note that this operator is not always de�ned, as it is possible for these rules
to require the assignment of both true and false to(F)(I)(F; T) for some F and
T .

It is easy to see that conditions (1) to (4) in the de�nition above correspond
closely to conditions (1) to (4) of De�nition 10 of a model. The following three
propositions show the relationship between Language E models and the operator
F .

Proposition 6 Let D be a domain description. If D is consistent then any
model H of D is a greatest (with respect to subset relation7) �xed point of F .

Proof The proof follows directly from the construction of F and the obser-
vation that since H is a total mapping the de�nition for possible initiation-point
(respectively possible termination-point) concides with that of intiation-point
(respectively termination-point). 2

When a domain D is consistent we can apply the operator F iteratively to
compute a partial interpretation that would be a subset of any model of D.

Proposition 7 Let D be a consistent domain desciption, let H be a model of
D and let I be a partial interpretation such that I � H. Then F(I) � H.

Proof The proof follows by comparing the di�erent cases under which F
applies with conditions (1){(4) in De�nition 10 of a model, and noticing that the
following two properties hold for every T 2 � and F 2 �: (i) if T is an initiation-
point (resp. termination-point) for F in I then T is an initiation-point (resp.
termination-point) for F in H and (ii) if T is not a possible initiation-point
(resp. possible termination-point) for F in I then T is not an initiation-point
(resp. termination-point) for F in H. 2

Proposition 8 Let D be a consistent domain desciption and let I+ be the least
�xed point of the following sequence of partial interpretations:

7For any two partial interpretations I1 ; I2 2 I, I1 is a subset of I2 , written I1 � I2, i� for
any F and T if I1(F; T) = true then I2 = true and if I1(F; T) = false then I2(F; T) = false.

27

� I0 = ;

� In+1 = In [F(In) for each countable ordinal n > 0.

ThenD entails any t-proposition of the form \F holds-atT" (resp. \:F holds-

at T") such that I+(F; T) = true (resp. I+(F; T) = false).

Proof By Proposition 7 when D is consistent this sequence is well de�ned
and I+ � H for any model H of D. 2

Given Proposition 8, we can use De�nition 49 to `read o�' a logic program
that implements F and computes consequences belonging to I+. To simplify
our de�nitions we assume that some logic program or external de�nition of the
order relation � is available.

De�nition 50 [Ordering program] Given the language E = h�;�;�;�i, the
programP (�;�) is an ordering program for E i�

� for all T; T 0 2 �, P (�;�) succeeds on the query T � T 0 if and only if
T � T 0, and �nitely fails otherwise.

� for all T; T 0 2 �, P (�;�) succeeds on the query T � T 0 if and only if
T � T 0, and �nitely fails otherwise.

� None of the following predicate symbols appear in P (�;�):
HoldsAt, Given, ClippedBetween, HappensAt, PossiblyInitiates,
Initiates, PossiblyT erminates, Terminates, AffectedBetween.

2

We will also need the following preliminary de�nitions.

De�nition 51 [lp-term and lp-complement] Given a uent literal L of E =
h�;�;�;�i, the lp-term of L, written �(L), is de�ned to be

� F if L = F for some F 2 �

� Neg(F 0) if L = :F 0 for some F 0 2 �

and the lp-complement of L, written �(L), is de�ned to be

� Neg(F) if L = F for some F 2 �

� F 0 if L = :F 0 for some F 0 2 �

2

De�nition 52 [Finite domain description] The domain description h; �; � i is
�nite i� , � and � are all �nite, and for each c-proposition in either of the
form \A initiates F when C" or of the form \A terminates F when C", C
is also �nite. 2

28

Our translation from domain descriptions to logic programs can now be
given. In the de�nition below, the �ve clauses de�ning HoldsAt correspond
to rules (1a){(4) in De�nition 49 of the operator F . The use of negation-as-
failure and uent converses in the domain-speci�c clauses de�ning the predicates
PossiblyInitiates and PossiblyT erminates reects De�nition 48 of a possible
initiation and possible termination point.

De�nition 53 [LP [D;P (�;�)]]Given a �nite domain descriptionD = h; �; � i
written in the language E = h�;�;�;�i, and an ordering program P (�;�), the
logic program LP [D;P (�;�)] is de�ned as the program P (�;�) augmented
with the following general clauses

HoldsAt(l; t3) (LP1a)
Given(l; t1); t1 � t3; not AffectedBetween(t1 ; l; t3):

HoldsAt(l; t1) (LP1b)
Given(l; t3); t1 � t3; not AffectedBetween(t1 ; l; t3):

HoldsAt(l; t3) (LP2)
l 6= Neg(f); HappensAt(a; t1); t1 � t3; Initiates(a; l; t1);
not ClippedBetween(t1; l; t3):

HoldsAt(Neg(f); t3) (LP3)
HappensAt(a; t1); t1 � t3; T erminates(a; f; t1);
not ClippedBetween(t1; Neg(f); t3):

HoldsAt(l; t) Given(l; t): (LP4)

ClippedBetween(t1; l; t3) (LP5)
l 6= Neg(f); HappensAt(a; t2); t1 � t2; t2 � t3;

P ossiblyT erminates(a; l; t2):

ClippedBetween(t1; Neg(f); t3) (LP6)
HappensAt(a; t2); t1 � t2; t2 � t3;

P ossiblyInitiates(a; f; t2):

AffectedBetween(t1 ; l; t3) ClippedBetween(t1; l; t3): (LP7)

AffectedBetween(t1 ; Neg(f); t3) ClippedBetween(t1; f; t3): (LP8)

AffectedBetween(t1 ; f; t3) (LP9)
f 6= Neg(f1); ClippedBetween(t1; Neg(f); t3):

and the following domain-speci�c clauses

29

� For each t-proposition \L holds-at T" in � , the clause

Given(�(L); T):

� For each h-proposition \A happens-at T" in �, the clause

HappensAt(A; T):

� For each c-proposition \A initiates F when fL1; : : : ; Lng" in ,
the clause

Initiates(A;F; t)
HoldsAt(�(L1); t); : : : ;HoldsAt(�(Ln); t):

and the clause

PossiblyInitiates(A;F; t)

not HoldsAt(�(L1); t); : : : ; not HoldsAt(�(Ln); t):

� For each c-proposition \A terminates F when fL1; : : : ; Lng" in ,
the clause

Terminates(A;F; t)
HoldsAt(�(L1); t); : : : ;HoldsAt(�(Ln); t):

and the clause

PossiblyT erminates(A;F; t)

not HoldsAt(�(L1); t); : : : ; not HoldsAt(�(Ln); t):

2

Intuitively, given Propositions 6, 7 and 8 it is easy to see that the pro-
grams described above behave correctly for consistent domain descriptions,
since Clauses (LP1a){(LP4) correspond exactly to conditions (1a){(4) in De�-
nition 49. The following proposition con�rms this intuition.

Proposition 9 Let P (�;�) be an ordering program for E , and let D be a �nite
domain description. Then for any uent literal L of E and any T 2 �, if

LP [D;P (�;�)] `SLDNF HoldsAt(�(L); T)

then

30

D j= L holds-at T

Proof See Appendix B.4 2

To a certain extent, the above logic programs overcome the limitations of
formalizations of action in normal logic programming identi�ed by Gelfond and
Lifschitz in [13]. If the values of some uents at one or more time points are
given, they facilitate automated reasoning about what holds at other time points
before, afterwards or in between. As shown by Proposition 9, the programs
behave correctly even when the information entailed by their Language E spec-
i�cations is incomplete.

However, although they are sound, the above logic programs do not compute
all consequences of every domain under its semantics as given by De�nition 10.
This potential incompleteness is illustrated by the following example.

Example 8 Let Ev and Dv be the domain language and domain description
respectively of Example 1, and suppose that P (<;�) is an ordering program for
Ev. Then the logic program LP [Dv; P (<;�)] consists of the program P (<;�)
together with clauses (LP1a){(LP9) of De�nition 53 and the domain-speci�c
clauses

Initiates(InjectA; Protected; t)
HoldsAt(TypeO; t):

P ossiblyInitiates(InjectA; Protected; t)
not HoldsAt(Neg(TypeO); t):

Initiates(InjectB; Protected; t)
HoldsAt(Neg(TypeO); t):

P ossiblyInitiates(InjectB; Protected; t)
not HoldsAt(TypeO; t):

HappensAt(InjectA; 2):

HappensAt(InjectB; 3):

Given(Neg(Protected); 1):

2

As it stands, the query HoldsAt(Protected; 4) will fail on this program even
though the corresponding t-proposition is entailed by its speci�cation. Notice
however that the query can be made to succeed by adding either Given(TypeO; n)
or Given(Neg(TypeO); n) to the program for some time point n < 2. The

31

example also illustrates the necessity of using the predicates PossiblyInitiates
and PossiblyT erminates. Had the program de�nition of ClippedBetween been
given simply in terms of Initiates and Terminates, the query

HoldsAt(Neg(Protected); 4)

would succeed, even though the t-proposition \:Protected holds-at 4" is not
entailed by Dv. Finally, notice that the success of the goal

HoldsAt(Neg(Protected); 0)

(trivially) demonstrates the utility of this type of program for reasoning back-
wards in time.

8 Meta-level Programs for Computing

I-entailment

In this section we show how, for a class of domains, we can exploit the meta-level
characterisation of i-entailment given in Section 6 to build meta-level programs
which facilitate a more `complete' form of reasoning (both backwards and for-
wards in time) than the object-level programs of the previous section. The
important characteristic of the programs given below is that they maintain the
distinction between observations, which are dealt with at the meta-level, and
other parts of the domain theory.

The object-level programs upon which our meta-level implementation is built
are simpli�ed versions of the programs described in Section 7. The simpli�cation
is possible because of the following property of projection domain descriptions.
If D is a projection domain description which contains either the i-proposition
\initially F" or the i-proposition \initially :F" for every uent constant F ,
then D is `complete' in the sense that it has at most one model (this follows
from Proposition 1). If E is non-converging, and D is uent-independent, D has
exactly one model (this follows from Proposition 4). Hence, in the case where
D is also �nite (so that there are only a �nite number of uent constants in
E), it is not hard to construct a simpli�ed Event Calculus style program for D
enabling complete automated reasoning forwards in time from the initial time
point T0. For reasons which will shortly become apparent, we will represent
the (`complete' set of) i-propositions of D in list form inside a three-argument
version of the HoldsAt predicate, rather than with a Given predicate as pre-
viously. In De�nition 55 below, HoldsAt(M;F; T) should be read as \D j= F

holds-at T , where M is (a list representation of) the set of i-propositions in
D".

It is easy to see that clauses (EC7){(EC11) which de�ne HoldsAt are a
simpli�cation of clauses (LP1a){(LP9) in De�nition 53. Here it is not nec-
essary to distinguish between the predicates Initiates (resp. Terminates) and

32

PossiblyInitiates (resp. PossiblyT erminates), and clauses (LP1a), (LP1b) and
(LP4) can be condensed into the single clause (EC7). This is because, at the
(object) level of calls to the HoldsAt predicate, complete information is avail-
able about what holds at the initial time point T0, and we are only interested
in reasoning forwards in time from this point. Incompleteness and reasoning
backwards in time are instead dealt with at the meta-level.

We wish to construct a program able to test whether a particular t-proposition
is i-entailed by some projection domain description D0 (which, unlike D above,
may not have an i-proposition for each uent) together with some observation
set �ob. All that remains to be done is to de�ne a meta-level program able to use
the HoldsAt predicate to test the truth of the t-proposition in each extension
of D0 with a `maximal' i-explanation for �ob. (It is su�cient to consider only
maximal i-explanations, i.e. those which mention every uent in the language,
because of the monotonicity of E as regards addition of t-propositions to any
domain description { see the remarks at the end of Section 2.) This is achieved
in a straightforward way by clauses (EC1){(EC6) in De�nition 55 below. In
this de�nition, IHoldsAt(F; T) should be read as \D0; �ob j=i F holds-at T".
IExplanation(M) should be read as \M is a (maximal) i-explanation for �ob in
D0".

In De�nition 55, a Prolog-like syntax for lists is used. Thus the term []
represents the empty list and the term [HeadjRemainder] represents a non-
empty list whose �rst element is Head. Suitable de�nitions of the standard list
predicates Member and Append are assumed. The two meta-level (or `second-
order') predicates Setof and Forall are also used. To summarise their func-
tions, Forall(Condition;Goal) succeeds if for all solutions of Condition, Goal
succeeds. Setof(X;Goal; Instances) succeeds if Instances is the set of in-
stances of X for which Goal succeeds, where sets are represented as (possibly
empty) lists without repetitions. For practical details of the use of these predi-
cates in the context of Prolog programming, the reader may consult [31]. (It is
also assumed that the predicates IholdsAt, IExplanation, Permutation, and
ConsistentWithObservations do not appear in the ordering program P (�;�).)

De�nition 54 The domain language E = h�;�;�;�i is uent-�nite i� the set
� is �nite. 2

De�nition 55 [EC[D; �ob; P (�;�)]]
Let D = h; �; � i be a �nite projection domain description written in a uent-
�nite projection language E = h�;�;�;�i. Let T0 be the null element of �,
and let P (�;�) be an ordering program for E . Let �ob be a �nite observation
set. The logic program EC[D; �ob; P (�;�)] is de�ned as the program P (�;�)
augmented with the following general clauses

IholdsAt(l; t) (EC1)
Forall(IExplanation(m);HoldsAt(m; l; t)):

33

IExplanation(m) (EC2)
Setof(l; (Initially(l)); i);
Setof(f; (F luent(f); not Initially(f); not Initially(Neg(f))); p);
P ermutation(p; c); Append(c; i;m);
ConsistentWithObservations(m):

P ermutation([]; []): (EC3)

Permutation([f jr1]; [f jr2]) Permutation(r1; r2): (EC4)

Permutation([f jr1]; [Neg(f)jr2]) Permutation(r1; r2): (EC5)

ConsistentWithObservations(m) (EC6)
Forall(Observation(l; t);HoldsAt(m; l; t)):

HoldsAt(m; l; t3) (EC7)
Member(l;m); not ClippedBetween(m;T0; l; t3):

HoldsAt(m; l; t3) (EC8)
l 6= Neg(f); HappensAt(a; t1); t1 � t3; Initiates(m; a; l; t1);
not ClippedBetween(m; t1; l; t3):

HoldsAt(m;Neg(f); t3) (EC9)
HappensAt(a; t1); t1 � t3; T erminates(m; a; f; t1);
not ClippedBetween(m; t1; Neg(f); t3):

ClippedBetween(m; t1; l; t3) (EC10)
l 6= Neg(f); HappensAt(a; t2); t1 � t2; t2 � t3;

T erminates(m; a; l; t2):

ClippedBetween(m; t1; Neg(f); t3) (EC11)
Happens(a; t2); t1 � t2; t2 � t3;

Initiates(m; a; f; t2):

and the following domain-speci�c clauses

� For each uent constant F 2 �, the clause

F luent(F):

� For each i-proposition \initially L" in �i, the clause

Initially(�(L)):

34

� For each o-proposition \L holds-at T" in �ob, the clause

Observation(�(L); T):

� For each h-proposition \A happens-at T" in �, the clause

HappensAt(A; T):

� For each c-proposition \A initiates F when fL1; : : : ; Lng" in ,
the clause

Initiates(m;A;F; t)
HoldsAt(m;�(L1); t); : : : ;HoldsAt(m;�(Ln); t):

� For each c-proposition \A terminates F when fL1; : : : ; Lng" in ,
the clause

Terminates(m;A;F; t)
HoldsAt(m;�(L1); t); : : : ;HoldsAt(m;�(Ln); t):

2

Example 9 Let Eysp, Dysp and �ysp be the domain language, domain descrip-
tion and observation set respectively of Example 6. Let P (<+;�) be an ordering
program for Eysp. Then the logic program EC[Dysp; �ysp; P (<+;�)] consists of
the program P (<+;�) together with clauses (EC1){(EC11) of De�nition 55 and
the domain-speci�c clauses

Terminates(m;Shoot; Alive; t) HoldsAt(m;Loaded; t):

F luent(Alive):

F luent(Loaded):

Observation(Alive; 1):

Observation(Neg(Alive); 3):

HappensAt(Shoot; 2):

2

35

Although potentially somewhat ine�cient, the programs described in De�ni-
tion 55 are of interest because they enable sound derivations8 of t-propositions
which would not be possible with the object-level logic programs given in the
previous section. For example, it is easy to verify, either by inspection or using
a Prolog interpreter, that

EC[Dysp; �ysp; P (<+;�)] `SLDNF IHoldsAt(Loaded; 0)

Indeed, for a wide class of domains they are both sound and `complete', in the
sense of Proposition 10 below. Since any �nite, consistent Language A domain
as de�ned in [13] may be translated directly into a Language E projection domain
description together with an observation set (see Section 3), �nite A domains
may also be given a meta-level implementation of this type9.

Proposition 10 Let E = h�;�;�;�i be a uent-�nite, non-converging projec-
tion language, let P (�;�) be an ordering program for E , and let D = h; �; �ii
be a �nite, initially-consistent, uent-independent projection domain descrip-
tion in E . Let �ob be a �nite observation set. Then for any uent literal L of E
and any T 2 �,

EC[D; �ob; P (�;�)] `SLDNF IHoldsAt(�(L); T)

if and only if

D; �ob j=i L holds-at T

Proof See Appendix B.5 2

As stated in Proposition 4, it is possible to verify the consistency of the class
of projection domain descriptions described in Proposition 10 by a syntactic
check. Note that we can now build on this proposition to check for i-consistency
with a given observation set, simply by verifying the success of the unground call
IExplanation(m). Finally, the style of the programs described in this section
o�ers some clue as to how we might in principle implement a preference criterion
added to the de�nition if i-entailment, by appropriately extending the program
de�nition of IExplanation.

8In order to continue to refer to `SLDNF derivations', we assume that the meta-level
primitives Setof and Forall are appropriately re-interpreted (see [31] for details).

9Strictly speaking, the translation method described in De�nition 55 is not applicable
to the Language A type domain descriptions described in Section 3 Proposition 2. This is
because the \complete occurrence set" of h-propositions is in�nite (see De�nition 16). But
the appropriate modi�cation to De�nition 55 is trivial, and does not necessitate a signi�cant
change to the proof of Proposition 10. An example ordering program P (��;��) is given in
Appendix C together with the necessary changes to De�nition 55.

36

9 Conclusions and Further Work

Following the methodology of the Language A introduced in [13], we have pre-
sented a simple declarative language, E , for describing narratives with actions.
E is based on a narrative ontology inherited from the Event Calculus, thus
demonstrating that this methodology is not limited to the particular ontology
of A. E 's semantics is based around a simple characterisation of persistence
which facilitates a modular approach to extending the expressivity of the lan-
guage. This characterisation relies heavily on the notion of a ow of time which
is independent from any actions which may occur. The bene�ts of this become
particularly apparent when representing domains where periods of time elapse
in which a change may or may not have taken place. It is not necessary to `�ll
in' time with an arti�cial `action' such as a `Wait'.

The explicit notion of an action occurrence incorporated in E allows an im-
portant class of `narrative' explanations (h-explanations) to be characterised in
a simple way. These enable us to extend an otherwise inconsistent theory writ-
ten in E so as to establish consistency, thus providing a natural method, in many
cases, to account for conicting sets of information about the domain. More gen-
erally, our formalisation of various notions of explanation within E illustrates
that commonsense reasoning need not always be modelled as deduction at a
single object level. Our results are built upon much previous work concerning
the role of abduction in Arti�cial Intelligence and related areas. Once again we
have demonstrated that reasoning from cause to e�ect can be modelled at the
object level, whereas reasoning from e�ect to cause can be regarded as an essen-
tially meta-level (for example abductive) activity. In the context of reasoning
about action, causation is temporally directed. Hence in our work this distinc-
tion manifests itself in the fact that reasoning forwards in time is modelled as
object-level deduction, whereas reasoning backwards in time is captured at the
meta-level. The success of this approach lends extra weight to a developing
concensus (see [6] for a general discussion) that observations should somehow
be treated separately from other aspects of theories of action.

We have also shown how domains in E can be implemented in normal logic
programming with extended versions of Event Calculus programs that behave
correctly even when the knowledge entailed by the domain description is incom-
plete. These programs have the capability of reasoning backwards as well as
forwards in time.

We can envisage at least three areas of future research relating to E . Firstly,
in line with the methodology described in our introduction, we could use E as
a `measuring stick' to show correspondences between various narrative-based
formalisms for reasoning about action, perhaps in the manner of Katha in [17].
Example candidates for comparison are the formalisms in [25], [27] and [30].

Secondly, it would be interesting to investigate di�erent styles of implemen-
tation as regards E domains. The approaches followed in this paper are based
on a relatively simple use of normal logic programming and standard techniques

37

within this. We could develop a more general implementation for computing
entailment or i-entailment using abductive logic programming, building on the
work in [8], [9], [15] and [16]. The `abductive avour' of our de�nition of h-
entailment suggests that abductive logic programming could be a useful imple-
mentation tool here as well.

Thirdly, the expressivity of E could be increased in various ways. We have
already briey indicated how E might be extended to partially deal with rami�-
cations and quali�cations (see Appendix A). Since E already allows for actions
to occur concurrently within a narrative, it seems likely that the language could
also be extended to allow for a theory of cancelling and combined e�ects of
actions similar to that in [4]. It has already been pointed out in [26] that a
narrative based approach o�ers alternative ways to model non-deterministic ef-
fects of actions. Finally, we might extend the syntax and semantics of E to deal
with incomplete information about the order and timing of action occurrences,
perhaps introducing temporal variables into the language in a manner similar
to [5].

The utility and appeal of specialised declarative languages such as A and
E lies in their simplicity. They are of su�ciently `high level' to allow various
issues to be aired without immediately becoming involved in technical details,
and are perhaps best regarded as useful stepping stones towards the ultimate
goal of developing comprehensive formal theories of action using general purpose
representational mechanisms. Hence their capacity for retaining their simplicity
when extended to cover more complex domains is a cruicial measure of their
utility.

Acknowledgements

We would particularly like to thank Marc Deneker, Yannis Dimopoulos, David
Evans, Alessandra Russo, Fariba Sadri, and Murray Shanahan for helpful dis-
cussions on the topic of this paper, and for careful reading of earlier drafts.

References

[1] James Allen, Towards a General Theory of Action and Time, Arti�cial
Intelligence 23, Elsevier Science Publishers, pages 123-154, 1984.

[2] Jonathan Amsterdam, Temporal Reasoning and Narrative Conventions,
Proceedings of the 2nd International Conference on Knowledge Representa-
tion (KR 91), ed.s J. Allen, R. Fikes and E. Sandewall, Morgan Kaufmann,
pages 15{21, 1991.

38

[3] Andrew Baker, Nonmonotonic Reasoning in the Framework of the Situa-
tion Calculus, Arti�cial Intelligence 49, Elsevier Science Publishers, page
5, 1991.

[4] Chitta Baral and Michael Gelfond, Representing Concurrent Actions in
Extended Logic Programming, Proceedings IJCAI 93, Morgan Kaufmann,
page 866, 1993.

[5] Chitta Baral, Michael Gelfond and Alessandro Provetti, Representing Ac-
tions - I: (Laws, Observations and Hypotheses, in Working Notes of the
AAAI Spring Symposium: Extending Theories of Action - Formal Theory
and Practical Applications, Stanford University, California, USA, 1995.

[6] James Crawford and David Etherington, Observations on Observations in
Action Theories, in Working Notes of the AAAI Spring Symposium: Ex-
tending Theories of Action - Formal Theory and Practical Applications,
Stanford University, California, USA, 1995.

[7] Ernest Davis, In�nite Loops in Finite Time: Some Observations, Proceed-
ings KR 92 (3rd International Conference on Principles of Knowledge Rep-
resentation and Reasoning), Cambridge, Massachusetts, ed.s B. Nebel, C.
Rich and W. Swartout, Morgan Kaufmann, 1992.

[8] Marc Deneker, Lode Missiaen and Maurice Bruynooghe, Temporal Rea-
soning with Abductive Event Calculus, in Proceedings ECAI 92, Vienna,
1992.

[9] Marc Deneker and Danny De Schreye, Reperesenting Incomplete Knowl-
edge in Abductive Logic Programming, in Proceedings of the International
Symposium on Logic Programming, 1993.

[10] Marc Deneker, A Terminological Interpretation of (Abductive) Logic
Programming, in Proceedings of the Third InternationalConference on
Logic Programming and Non-monotonic Reasoning, Lexington, KY, USA,
Springer Verlag, 1995.

[11] Phan Minh Dung, Representing Actions in Logic Programming and its
Applications in Database Updates, Proceedings of the Tenth International
Conference on Logic Programming, ed David S. Warren, MIT Press, pages
222-238, 1993.

[12] Kave Eshghi, Abductive Planning with Event Calculus, Proceedings of the
5th International Conference and Symposium on Logic Programming, ed.s
Robert Kowalski and Kenneth Bowen, MIT Press, pages 562{579, 1988.

[13] Michael Gelfond and Vladimir Lifschitz, Representing Actions in Extended
Logic Programming, Proceedings of the Joint International Conference and

39

Symposium on Logic Programming, ed. Krzysztof Apt, MIT Press, page
560, 1992.

[14] David Harel, Dynamic Logic, In Handbook of Philosophical Logic II: Exten-
sions of Classical Logic, ed.s D. Gabbay and F. Guenther, Reidel, Boston,
USA, pages 497-604, 1984.

[15] Antonios Kakas and Paolo Mancarella, Generalized Stable Models: a Se-
mantics for Abduction. Proceedings of the 9th European Conference on
Arti�cial Intelligence, Stockholm, ed. L. Aiello, pages 385-391, 1990.

[16] Antonios Kakas, Robert Kowalski and Francesca Toni, Abductive logic pro-
gramming, Journal of Logic and Computation vol. 2 no. 6, pages 719-770,
1993.

[17] G. Neelakantan Kartha, Soundness and Completeness Theorems for Three
Formalizations of Action, Proceedings IJCAI 93, page 724, 1993.

[18] G. Neelakantan Kartha, Two Counterexamples Related to Baker's Approach
to the Frame Problem, Arti�cial Intelligence 69, Elsevier Science Publishers,
pages 379-392, 1994.

[19] Henry Kautz, The Logic of Persistence, Proceedings AAAI 86, page 401,
1986.

[20] Robert A. Kowalski and Marek J. Sergot, A Logic-Based Calculus of Events,
New Generation Computing, vol 4, page 267, 1986.

[21] Vladimir Lifschitz, A Language for Describing Actions, in Working Papers
of Common Sense '93: The Second Symposium on Logical Formalizations
of Commonsense Reasoning, pages 103-113, Austin, Texas, U.S.A., 1992.

[22] Fangzhen Lin and Yoav Shoham, Provably Correct Theories of Action, in
Proceedings AAAI 91, page 349, MIT Press, 1991.

[23] John McCarthy and Patrick Hayes, Some Philosophical Problems from
the Standpoint of Arti�cial Intelligence, in Machine Intelligence 4, ed.s D.
Michie and B. Meltzer, Edinburgh University Press, 1969.

[24] Rob Miller, Situation Calculus Speci�cations for Event Calculus Logic Pro-
grams, in Proceedings of the Third International Conference on Logic Pro-
gramming and Non-monotonic Reasoning, Lexington, KY, USA, Springer
Verlag, 1995.

[25] Rob Miller and Murray Shanahan, Narratives in the Situation Calculus, in
Journal of Logic and Computation, Special Issue on Actions and Processes,
vol 4 no 5, Oxford University Press, 1994.

40

[26] Javier Pinto, Temporal Reasoning in the Situation Calculus, PhD. Thesis,
University of Toronto, 1994.

[27] Javier Pinto and Raymond Reiter, Temporal Reasoning in Logic Program-
ming: A Case for the Situation Calculus, Proceedings ICLP 93, page 203,
1993.

[28] Marek Sergot, An Introduction to the Event Calculus, in Lecture Notes
of the GULP Advanced School on Foundations of Logic Programming,
(unpublished), Alghero, Sardinia, 1990.

[29] Murray Shanahan, Prediction Is Deduction but Explanation Is Abduction,
Proceedings IJCAI 89, pages 1055-1060, 1989.

[30] Murray Shanahan, A Circumscriptive Calculus of Events, Arti�cial Intelli-
gence, vol 75 no 2, Elsevier Science Publishers, 1995.

[31] Leon Sterling and Ehud Shapiro, The Art of Prolog, MIT Press, 1986.

Appendices

A Extending the Expressivity of E

Two extensions to the syntax and semantics of E are given in this appendix.
This is in order to illustrate that the basic notion of a model, encapsulated in
De�nitions 7 to 10, may be modi�ed to accomodate extra types of propositions,
without altering the basic principle of persistence captured in conditions (1)-
(3) of De�nition 10. Both extensions are very simple, and although they are
obviously related to aspects of the quali�cation problem and rami�cation problem
respectively, it is not our intention to suggest that, in this short space, we have
developed a comprehensive approach to these subtle and complex issues.

A.1 Describing Conditions under which an Action Cannot
Occur

In some circumstances it may be possible to infer knowledge about the condi-
tions at the time of an action occurrence from the fact that the action did occur.
For example, given that we know that \at 2 o'clock the caretaker unlocked the
door", we might typically infer that (at 2 o'clock) \she had the key". This is be-
cause it is impossible to unlock a door without a key, which might be expressed
by a proposition such as

Unlock impossible-if f:HasKeyg

This motivates a general de�nition for a new type of proposition:

41

De�nition 56 [q-proposition] A q-proposition in E is an expression of the form

A impossible-if C

where A 2 �, and C is a set of uent literals of E . 2

Such propositions may be accomodated in the semantics of E by strengthen-
ing condition (4) of De�nition 10 (which expresses simple pointwise constraints
on a model), without changing in the basic notion of persistence encapsulated
in conditions (1)-(3). Assuming that domain descriptions are now de�ned as
a quadruple h; �; �; �i, where , � and � are as before, and � is a set of q-
propositions10, the condition now becomes:

(a) For all t-propositions in � of the form \F holds-atT",H(F; T) = true,
and for all t-propositions of the form \:F holds-at T 0",H(F; T 0) = false.

(b) For all pairs of h-propositions and q-propositions in �� � of the form
\A happens-at T" and \A impossible-if C", H does not satisfy C at
T .

A.2 Describing Indirect E�ects of Actions

The following extension to E is included to illustrate how De�nition 9 of an
initiation or termination point might be re�ned, without necessitating a change
in the basic notion of persistence encapsulated in conditions (1)-(3) of De�ni-
tion 10. Suppose that we wish to express simple constraints between uents. To
take a canonical example, suppose that we want to express that a room is stu�y
when the window is closed and the ventilator blocked. This might be expressed
by a proposition such as

Stu�y whenever fClosed;Blockedg

Hence we de�ne a new type of proposition as follows:

De�nition 57 [r-proposition] An r-proposition in E is an expression of the form

L whenever C

where L is a uent literal and C is a set of uent literals of E . 2

10Note that, if for every c-proposition \A initiates F when C" there is a q-proposition \A
impossible-if C [fFg", in any model all initiation points for F are actual points of change
for F . An analogous observation holds for termination points. Thus Sergot's notions of strong
initiation and strong termination [28] can be incorporated into E by addition of q-propositions
where appropriate.

42

We now need a recursive de�nition of an initiation point and of a termination
point, since, for example, if the ventilator is blocked, the action of closing the
window will (indirectly) initiate the property of the room being stu�y. The
modi�ed de�nitions below assume that domain descriptions are de�ned as a
tuple h; �; �; �; �i, where , � and � are as before, � is a set of q-propositions
and � is a set of r-propositions.

De�nition 58 [Initiation/termination point for domains with r-propositions]
Let H be an interpretation of E , let D = h; �; �; �; �i be a domain description,
let F 2 � and let T 2 �. T is an initiation-point (respectively termination-
point) for F in H relative to D i� one of the following two conditions holds.

1. There is an A 2 � such that (i) there is both an h-proposition in � of
the form \A happens-at T" and a c-proposition in of the form \A
initiatesF when C" (respectively \A terminates F when C") and (ii)
H satis�es C at T .

2. There is an r-proposition in � of the form \F whenever C" (respectively
\:F whenever C") and a partition fC1; C2g of C such that (i) C1 is
non-empty, for each uent constant F 0 2 C1, T is an initiation point for
F 0, and for each uent literal :F 0 2 C1, T is a termination point for F 0,
and (ii) H satis�es C2 at T .

2

Condition (4) of De�nition 10 is now:

(a) For all t-propositions in � of the form \F holds-atT",H(F; T) = true,
and for all t-propositions of the form \:F holds-at T 0",H(F; T 0) = false.

(b) For all pairs of h-propositions and q-propositions in �� � of the form
\A happens-at T" and \A impossible-ifC",H does not satisfy C at T .

(c) For all r-propositions in � of the form \L whenever C", if H sat-
is�es C at T then H satis�es fLg at T .

B Proposition Proofs

B.1 Proof of Proposition 1

Proposition statement: Let D be an occurrence-sparse domain description
written in a language E = h�;�;�;�i, and let T1; T2 2 � be such that T1 � T2.
Let H and H0 be models of D such that for all F 2 �, H(F; T1) = H 0(F; T1).
Then for all F 2 �, H(F; T2) = H0(F; T2).

43

Proof: Proof is by induction on the number n of h-propositions in � of the
form A happens-at T such that T1 � T � T2.

Base Case: If n = 0 then by the �rst condition in the de�nition of a model, for
all F 2 �, H(F; T2) = H(F; T1) = H0(F; T1) = H0(F; T2).

Inductive Step: Suppose that n > 0 and that the lemma is true for all m < n.
Let F 0 2 � be an arbitrary uent constant. It is su�cient to show that
H(F 0; T2) = H0(F 0; T2). Since D is occurrence-sparse there exists at least one
T 2 � such that (i) T1 � T � T2, (ii) there is at least one h-proposition in
� of the form \A happens-at T", and (iii) there is no h-proposition in � of
the form \A happens-at T 0" such that T � T 0 � T2. Let Th be such a time
point. By the inductive hypothesis, for all F 2 �, H(F; Th) = H0(F; Th) and
by construction there are no intiation or termination pointsT 0 (for any uent)
in H or H0 such that Th � T 0 � T2. There are three cases to consider:

Case one: There is not both an h-proposition in � of the form \A happens-

at Th" and a c-proposition in either of the form \A initiates F 0 when

C" or of the form \A terminates F 0 when C" such that H (and thus H0)
satis�es C at Th. Hence by the �rst condition in the de�nition of a model,
H(F 0; T2) = H(F 0; Th) = H0(F 0; Th) = H0(F 0; T2).

Case two: There is both an h-proposition in � of the form \A happens-at

Th" and a c-proposition in of the form \A initiatesF 0 when C" such that H
(and thus H 0) satis�es C at Th. Hence by the second condition in the de�nition
of a model, H(F 0; T2) = true = H0(F 0; T2).

Case three: There is both an h-proposition in � of the form \A happens-

at Th" and a c-proposition in of the form \A terminates F 0 when C" such
that H (and thus H0) satis�es C at Th. Hence by the third condition in the
de�nition of a model, H(F 0; T2) = false = H 0(F 0; T2).

B.2 Proof of Proposition 4

Proposition statement: Let D be an occurrence-sparse, non-converging,
initially-consistent, uent-independent projection domain description. Then D

is consistent.

Proof: Let D = h; �; �ii be written in the projection language E = h�;�
;�;�i, and let T0 be the null element of �.

Let M : � 7! ftrue; falseg be de�ned as follows. For each F 2 �,

44

� M (F) = true if there is an i-proposition in �i of the form \initially F",

� M (F) = false otherwise.

M will be used to construct a modelH ofD such that for all F 2 �, H(F; T0) =
M (F). Notice that since D is initially consistent, then for each F 2 � such that
there is an i-proposition in �i of the form \initially :F", M (F) = false.

Since D is occurrence-sparse and non-converging, each time point T 2 � has
a unique, maximal, �nite (possibly empty) sequence T1; : : : ; Tn associated with
it such that T1 � : : : � Tn � T and such that for each Ti there is an h-
proposition in � of the form \A happens-at Ti". Moreover, the unique such
sequence associated with Tn is T1; : : : ; Tn�1. Therefore, it is possible to de�ne
an interpretation H of D inductively as follows. For each T 2 � and F 2 �,

1. H(F; T) = M (F) if n = 0 (i.e. the sequence associated with T is empty),

2. H(F; T) = H(F; Tn) if n > 0 and there is no A 2 � such that there
is both an h-proposition in � of the form \A happens-at Tn" and a c-
proposition in either of the form \A initiates F when C" or of the
form \A terminates F when C" such that H satis�es C at Tn,

3. H(F; T) = true if n > 0 and there is an A 2 � such that there is both an
h-proposition in � of the form \A happens-at Tn" and a c-proposition in
 of the form \A initiates F when C" such that H satis�es C at Tn,

4. H(F; T) = false if n > 0 and there is an A 2 � such that there is both an
h-proposition in � of the form \A happens-at Tn" and a c-proposition in
 of the form \A terminates F when C" such that H satis�es C at Tn.

The fact that D is uent-independent guarantees that no uent/time-point pair
(F; T) satis�es both of conditions 3 and 4 above. Hence H is well de�ned, and
is clearly a model of D.

B.3 Proof of Proposition 5

Proposition statement: Let D = h; �; �ii be an occurrence-sparse projec-
tion domain description and let �ob be an observation set. Then H is a model
of h; �; �i [�obi if and only if H is an i-model of D with �ob.

Proof: Let D be written in the projection language E = h�;�;�;�i, and
let T0 be the null element of �.

\If" half: Suppose H is an i-model of D with �ob. Then by the de�nitions of
an model and of an i-model there exists some set �i� of i-propositions such that
H is a model of h; �; �i [�i� [�obi. Hence, by the monotonicity of E as regards

45

addition of t-propositions to domain descriptions (see the remarks at the end of
Section 2), H is a model of h; �; �i [�obi.

\Only if" half: Suppose H is a model of h; �; �i [�obi. Let the set �H of
i-propositions be de�ned as follows. For each F 2 �,

� initially F 2 �H i� H(F; T0) = true

� initially :F 2 �H i� H(F; T0) = false

Clearly H is a model of h; �; �i [�Hi and, by Proposition 1, h; �; �i [�H i j= p

for each p 2 �ob, so that �H is an i-explanation for �ob in D. Hence H is an
i-model of D with �ob.

B.4 Proof of Proposition 9

Proposition statement:

Let P (�;�) be an ordering program for E , and let D be a �nite domain de-
scription. Then for any uent literal L of E and any T 2 �, if

LP [D;P (�;�)] `SLDNF HoldsAt(�(L); T)

then

D j= L holds-at T

The proof of this proposition which is given below uses induction on the
`length' length(�) of the SLDNF derivation � ofHoldsAt(�(L); T), where length(�)
is de�ned in De�nition 59 below in terms of successful calls to HappensAt. It
is de�ned so that each SLDNF sub-derivation of a HoldsAt sub-goal within �

(which must have occurred within some call to Initiates, Terminates, PossiblyInitiates
or PossiblyT erminates) has `length' less than the top-level derivation �.

De�nition 59 [length(�)] Let � be a successful SLDNF derivation of the goal
HoldsAt(�(L); T) in LP [D;P (�;�)]. length(�) is de�ned inductively as fol-
lows:

length(�) = S +
X

�2B�

size(�)

where

� S is the number of successful calls to HappensAt at the top level of �, i.e.
not called within a (negation-as-failure) �nitely-failed subsidiary deriva-
tion of �.

46

� B� is the set of all �nitely-failed subsidiary derivations from negative calls
(to ClippedBetween or AffectedBetween) appearing at the top level of
�.

� size(�) = 0 if there is no successful call to HappensAt in any branch of
�.

� size(�) = 1 + max(flength(�0) j �0 2 A�g) if there is a successful
call to HappensAt inside �, where A� is the set of all successful SLDNF
derivations of a HoldsAt goal, called as a negated sub-goal in one of the
branches of �11.

2

Proof of proposition. Let � be a successful SLDNF derivation of the goal
HoldsAt(�(L); T) in LP [D;P (�;�)]. We will use induction on length(�) to
show that, given the �xed point I+ as de�ned in Proposition 8, if LP [D;P (�;�
)] `SLDNF HoldsAt(�(L); T) then if L = F for some F 2 � then I+(F; T) =
true, and if L = :F 0 for some F 0 2 � then I+(F 0; T) = false. The proposition
will then follow directly from Proposition 8.

Base Case (length(�) = 0):
Clearly, if length(�) = 0 the query HoldsAt(F; T) (respectively
HoldsAt(Neg(F 0); T)) can succeed only on clauses (LP1a), (LP1b) or (LP4),
as success on (LP2) or (LP3) would require length(�) � 1. We consider each of
these possiblities in turn:

(i) Success on (LP1a): Clearly, the success of Given(�(L); T1) for some
T1 < T means that \L holds-at T1" 2 D and so I+(F; T1) = true (respec-
tively I+(F 0; T1) = false) by rule (4) in the de�nition of F . Also, since
the call � to AffectedBetween fails with size(�) = 0, the unground sub-goal
HappensAt(a; t2) fails, so that there are no h-propositions in D. Hence there
are no possible initiation points or possible termination points between T1 and
T . Therefore, since I+ is a �xed point of F , rule (1a) of F applies to give
I+(F; T) = true (respectively I+(F 0; T) = false).

(ii) Success on (LP1b): The proof is exactly analogous to (i), but using rule
(1b) of F in place of rule (1a).

(iii) Success on (LP4): Trivially, I+(F; T) = true (respectively I+(F 0; T) =
false) by rule (4) in the de�nition of F .

Inductive Step (length(�) = n):
Suppose that the statement which we wish to prove is true for all SLDNF deriva-
tions �0 of allHoldsAt goals such that length(�0) < n. the query HoldsAt(F; T)
(respectivelyHoldsAt(Neg(F 0); T)) can succeed only on clauses (LP4), (LP1a),

11We assume the convention that max(;) = 0.

47

(LP1b) or (LP2) (respectively (LP3)). Again, we consider each of these possi-
blities in turn:

(i) Success on (LP4): Trivially, I+(F; T) = true (respectively I+(F 0; T) =
false) by rule (4) in the de�nition of F .

(ii) Success on (LP1a): Since the sub-goals Given(L; t1); t1 � T succeed,
I+(F; T1) = true (respectively I+(F 0; T1) = false) by rule (4) in the de�ni-
tion of F (where T1 is the binding to t1). It remains to show that there is
no possible initiation point or possible termination point for F (respectively
F 0) between T1 and T , so that rule (1a) in the de�nition of F may be ap-
plied. Trivially, if the sub-goals HappensAt(a; t2); T1 � t2 and t2 � T in
the body of each ClippedBetween clause collectively fail, there can be no such
point. Now suppose these sub-goals succeed, binding t2 to T2. Since the call
AffectedBetween(T1 ; L; T3) fails (so that the top level goal succeeds on clause
(LP1a)), both of the calls PossiblyInitiates(A;F; T2) and
PossiblyT erminates(A;F; T2) (respectively PossiblyT erminates(A;F

0 ; T2) and
PossiblyInitiates(A;F 0 ; T2)) fail. Hence, if there is a c-proposition in D of the
form \A initiates F when C" or \A terminates F when C" (respectfully
\A terminates F 0 when C" or \A initiates F 0 when C"), there is a uent
literal Lp 2 C such that not HoldsAt(�(Lp); T2) fails, i.e. HoldsAt(�(Lp); T2)
succeeds, say with SLDNF derivation �0, where length(�0) < n. By the induc-
tion hypothesis, if Lp = Fp then I+(Fp; T2) = false, and if Lp = :F 0

p then
I+(F 0

p; T2) = true. In either case, the c-proposition is therefore not applicable
in the de�nition of a possible initiation point or possible termination point of F
(respectively F 0) relative to I+. Hence rule (1a) in the de�nition of F applies
to give I+(F; T) = true (respectively I+(F 0; T) = false) as required.

(iii) Success on (LP1b): The argument in this case is exactly analogous to
case (ii), but using rule (1b) (instead of rule (1a)) in the de�nition of F .

(iv) Success on (LP2): In this case there exists a T1 2 �, T1 � T , such
that for some A 2 � the propositions \A happens-at T1" and \A initiates F

when fL1; : : : ; Lkg" belong to D, and each of the calls HoldsAt(�(L1); T1); : : : ;
HoldsAt(�(Lk); T1) succeed. The successful SLDNF derivations of each of these
calls are of length strictly less than n due to the successful call of
HappensAt(A; T1) in the root SLDNF derivation of HoldsAt(F; T). Hence by
the inductive hypothesis, for each Li = Fi, I

+(Fi; T1) = true, and for each
Lj = :Fj, I+(Fj; T1) = false. Hence T1 is an initiation point for F relative to
I+. By an argument exactly analogous to that in case (ii) above, we can show
from the �nite failure of ClippedBetween(T1; F; T) that there are no possible
termination points for F between T1 and T , so that rule (2) in the de�nition of
F applies to give I+(F; T) = true as required.

(v) Success on (LP3): The argument in this case is exactly analogous to case
(iv), but using rule (3) (instead of rule (2)) in the de�nition of F to show that
I+(F 0; T) = false.

48

B.5 Proof of Proposition 10

Lemma 1 Let E = h�;�;�;�i be a uent-�nite, non-converging projection
language, let P (�;�) be an ordering program for E , and let D = h; �; �ii be a
�nite, initially-consistent, uent-independent projection domain description in
E . Let H be a model of D. Let M be a ground list term such that the ground
query Member(�;M) succeeds i� there is a uent constant F 0 2 � such that
either � = Neg(F 0) and H(F 0; T0) = false or � = F 0 and H(F 0; T0) = true.
Then for all F 2 � and T 2 �,

EC[D; ;; P (�;�)] `SLDNF HoldsAt(M;F; T)

if and only if H(F; T) = true, and

EC[D; ;; P (�;�)] `SLDNF HoldsAt(M;Neg(F); T)

if and only if H(F; T) = false.

Proof Let T and F be an arbitrary time-point and uent constant. Since D
is �nite and non-converging, T has a unique, maximal, �nite (possibly empty)
sequence T1; : : : ; Tn associated with it such that T1 � : : : � Tn � T and such
that for each Ti there is an h-proposition in � of the form \A happens-at Ti".
Proof is by induction of the length n of this sequence.

Base Case:
Clearly, if n = 0 the queries HoldsAt(M;F; T) and HoldsAt(M;Neg(F); T)
can succeed only on clause (EC7), and will succeed if and only if the queries
Member(F;M) and Member(Neg(F);M) succeed respectively. By the second
condition in De�nition 10 of a model, H(F; T) = H(F; T0), so that by de�nition
of the list term M the lemma is true in the base case.

Inductive Step:
Suppose that the lemma is true for all time-points whose associated sequences
are of length m < n. Then in particular it is true for Tn whose associated
sequence is of length n � 1. There are three cases to consider:

Case one: There is both an h-proposition in � of the form \A happens-at

Tn" and a c-proposition in of the form \A initiates F when C" such that
H satis�es C at Tn. Hence by the third condition in the de�nition of a model,
H(F; T) = true.

In this case, by the inductive hypothesis and the program de�nition of
Initiates, the query HoldsAt(M;F; T) will succeed on clause (EC8) with the
program variable t1 in the body of the clause bound to Tn. The query
HoldsAt(M;Neg(F); T) will fail on clause (EC7) because the sub-goal
ClippedBetween(M;T0; Neg(F); T) will succeed on clause (EC11) with the pro-
gram variable t2 in the body of the clause bound to Tn. The query

49

HoldsAt(M;Neg(F); T) will fail on clause (EC9) because by the inductive hy-
pothesis and uent-independence of D it will fail on the sub-goal
Terminates(M; e; F; Tn) for all bindings of the variable e provided by solutions
to Happens(e; Tn). Hence in this case the lemma is true.

Case two: There is both an h-proposition in � of the form \A happens-at

Tn" and a c-proposition in of the form \A terminates F when C" such that
H satis�es C at Tn. Hence by the third condition in the de�nition of a model,
H(F; T) = false.

In this case, by the inductive hypothesis and the program de�nition of
Initiates, the query HoldsAt(M;Neg(F); T) will succeed on clause (EC9) with
the program variable t1 in the body of the clause bound to Tn. The query
HoldsAt(M;F; T) will fail on clause (EC7) because the sub-goal
ClippedBetween(M;T0; F; T) will succeed on clause (EC10) with the program
variable t2 in the body of the clause bound to Tn. The query HoldsAt(M;F; T)
will fail on clause (EC8) because by the inductive hypothesis and
uent-independence of D it will fail on the sub-goal Initiates(M; e; F; Tn) for
all bindings of the variable e provided by solutions to Happens(e; Tn). Hence
in this case the lemma is also true.

Case three: There is not both an h-proposition in � of the form \A happens-at

Tn" and a c-proposition in either of the form \A initiates F when C" or of
the form \A terminates F when C" such that H satis�es C at Tn. Hence by
the second condition in the de�nition of a model, H(F; T) = H(F; Tn).

Clearly in this case, by the inductive hypothesis and by the program de�ni-
tions of Initiates and Terminates, the queries HoldsAt(M;F; T) and
HoldsAt(M;Neg(F); T) can succeed on the clauses (EC8) and (EC9) respec-
tively only with the variable t1 in the body of each clause bound to some time-
point Ti < Tn. Moreover, by the same argument, for all T 0 < Tn, the queries
ClippedBetween(M;T 0; F; T) and ClippedBetween(M;T 0; Neg(F); T) succeed
if and only if the queries ClippedBetween(M;T 0; F; Tn) and
ClippedBetween(M;T 0; Neg(F); Tn) succeed respectively. Hence the queries
HoldsAt(M;F; T) andHoldsAt(M;Neg(F); T) succeed if and only if the queries
HoldsAt(M;F; Tn) and HoldsAt(M;Neg(F); Tn) succeed respectively. Hence
in this case the lemma is also true. 2

Statement of Main Proposition: Let E = h�;�;�;�i be a uent-�nite,
non-converging projection language, let P (�;�) be an ordering program for E ,
and let D = h; �; �ii be a �nite, initially-consistent, uent-independent projec-
tion domain description in E . Let �ob be a �nite observation set. Then for any
uent literal L of E and any T 2 �,

EC[D; �ob; P (�;�)] `SLDNF IHoldsAt(�(L); T)

if and only if

50

D; �ob j=i L holds-at T

Proof:

Let an initial assignment of D be de�ned as a function M : � 7! ftrue; falseg
such that M (F) = true whenever there is an i-proposition in D of the form
\initially F", and M (F) = false whenever there is an i-proposition in D of
the form \initially :F". Since D is initially consistent there exists at least
one such function, and by Propositions 1 and 4 there is a one-to-one correspon-
dence between initial assignments of D and models of D. We may therefore
unambiguously refer to the model H generated by the initial assignment M.

Clearly, successive solutions to the sub-goals

Setof(l; (Initially(l)); i);
Setof(f; (F luent(f); not Initially(f); not Initially(Neg(f))); p);
P ermutation(p; c); Append(c; i;m);

in clause (EC2) bind the variablem to an appropriate list representation of each
such initial assignment in turn. Given such a ground list termM 0, by Lemma 1,
clause (EC6) and the de�nition of Forall, the goal

ConsistentWithObservations(M 0)

will succeed if and only if the model of D its corresponding initial assignment
generates is consistent with each o-proposition in �ob. Hence successive solutions
to the goal IExplanation(m) bind the variable m to a list representation of
each initial assignment which generates an i-model of D with �ob. Hence the
proposition is true by clause (EC1), Lemma 1 and the de�nition of Forall.

C An Ordering Program for h��;��i

This appendix concerns the practical details of implementing Language A do-
mains as Event Calculus style Prolog programs in the manner of Section 8, given
the intermediate translations to E domain descriptions as de�ned in Section 3.

The following ordering program P (��;��) uses the Situation Calculus style
terms

Result(An; Result(: : : ; Result(A1; S0) : : :))

and

Branch(A0; Result(An; Result(: : : ; Result(A1; S0) : : :)))

to represent the �-sequences \A1; : : : ; An" and \A1; : : : ; An; jA0j" respectively:

t1 �� t2 ListForm(t2; l2); Append([hjr]; l1; l2); ListForm(t1; l1):

51

t �� t:

t1 �� t2 t1 �� t2:

ListForm(S0; []):

ListForm(Branch(a; t); [B(a)jl]) ListForm(t; l):

ListForm(Result(a; t); [R(a); B(a)jl]) ListForm(t; l):

In addition, the complete occurrence set of � is represented by a single clause
which replaces all the domain-dependent ground HappensAt clauses of De�ni-
tion 55:

HappensAt(a;Branch(a; t)):

The important feature of the above ordering program is that not only does
it correctly deal with ground queries of the form \T � T 0" (where T and T 0

are Situation Calculus style representations of �-sequences as described above),
but it also gives all correct solutions to queries of the form \t � T 0" (where t is a
variable). This enables the sub-goals in clauses (EC8){(EC11) to be re-ordered
as follows:

HoldsAt(m; l; t3) (EC80)
l 6= Neg(f); t1 � t3; HappensAt(a; t1); Initiates(m; a; l; t1);
not ClippedBetween(m; t1; l; t3):

HoldsAt(m;Neg(f); t3) (EC90)
t1 � t3; HappensAt(a; t1); T erminates(m; a; f; t1);
not ClippedBetween(m; t1; Neg(f); t3):

ClippedBetween(m; t1; l; t3) (EC100)
l 6= Neg(f); t2 � t3; t1 � t2; HappensAt(a; t2);
T erminates(m; a; l; t2):

ClippedBetween(m; t1; Neg(f); t3) (EC110)
t2 � t3; t1 � t2; Happens(a; t2); Initiates(m; a; f; t2):

This re-ordering avoids problems that would otherwise arise from calls toHappensAt

with an unground second argument.

52

