
Managing Inconsistent Speci�cations:

Reasoning, Analysis and Action�

Anthony Hunter and Bashar Nuseibeh

Department of Computing

Imperial College

London SW7 2BZ, UK

fabh, bang@doc.ic.ac.uk

October 13, 1995

Abstract

In previous work, we have advocated continued development of speci-
�cations in the presence of inconsistency. To support this, we have used
classical logic to represent partial speci�cations and to identify inconsis-
tencies between them. We now present an adaptation of classical logic,
which we term quasi-classical (QC) logic, that allows continued reason-
ing in the presence of inconsistency. The adaptation is a weakening of
classical logic that prohibits all trivial derivations, but still allows all re-
solvants of the assumptions to be derived. Furthermore, the connectives
behave in a classical manner. We then present a development called la-
belled QC logic that records and tracks assumptions used in reasoning.
This facilitates a logical analysis of inconsistent information. We discuss
the application of labelled QC logic in the analysis of multi-perspective
speci�cations. Such speci�cations are developed by multiple participants
who hold overlapping, often inconsistent, views of the systems they are
developing. Finally, we discuss further the notion of acting in the presence
of inconsistency, and examine the use of meta-level inconsistency handling
rules to support such action. The feasibility of automated support for this
kind of inconsistency handling is also discussed, and related work in the
area is critically reviewed.

1 Introduction

In a previous paper [FGH+94] we advocated the need to tolerate inconsistencies
in software development, and more importantly to be able to act in a context-

�Department of Computing Technical Report Number 95/15

1

dependent way in response to inconsistency. We proposed a framework in which
inconsistencies can be detected logically (using classical logic), and in which
the information surrounding each inconsistency can be used to focus continued
development.

While many software engineering formalisms can be translated into classical
logic, classical logic does not allow useful reasoning in the presence of incon-
sistency; the proof rules of classical logic allow any formula of the language to
be an inference. Hence, it does not provide a means for continued deduction
in the presence of inconsistency. Moreover, attempts to formalise the notion of
inconsistency, and approaches for handling it, have also been generally unsuc-
cessful since they take the view that inconsistency is undesirable and \unusable"
[GH91, GH93].

In this paper, we present a formal approach that supports continued action
(including reasoning) in the presence of inconsistency, and facilitates the record-
ing and tracking of (inconsistent) information during reasoning. The paper is
organised as follows.

Reasoning First, we address the notion of `tolerating inconsistency' by propos-
ing an adaptation of classical logic, which we term quasi-classical (QC)
logic, that allows useful reasoning in the presence of inconsistency. The
adaptation is a weakening of classical logic that prohibits all trivial deriva-
tions but still allows all resolvants of assumptions to be derived. We illus-
trate the use of the logic in this setting through some examples of multi-
perspective development in which inconsistencies arise between di�erent
developers who hold di�erent (inconsistent) views of a joint problem they
are addressing. Using this approach however, problems of analysing and
acting on inconsistent speci�cations remain: it is di�cult to isolate the
exact source of the inconsistency and to decide on appropriate changes, if
any. This work is covered in sections 4 and 5.

Analysis We then address the need to analyse inconsistent speci�cations in
the above setting. In particular, we propose the use of labelled QC logic
that records and tracks information used in reasoning. We illustrate how
the amended (labelled) proof rules of QC logic can be used to track in-
consistent information by propagating these labels (and their associated
information) during reasoning. We further demonstrate how speci�cations
in labelled QC logic can be analysed in a variety of ways in order to gain
a better understanding of the likely sources of inconsistencies that arise.
Using this approach we can provide a \logical analysis" of inconsistent
information. We can identify the likely sources of the problem, and use
this to suggest appropriate actions. This \auditing" is essential if we are
to facilitate further development in the presence of inconsistency. This
work is covered in section 6.

Action Finally, we discuss the need, and an approach, to acting in the pres-

2

ence of inconsistency. We suggest the use of meta-level rules of the form
\inconsistency implies action", but empasise that such inconsistency han-
dling actions need not necesarily remove the inconsistency. Rather, action
in this setting may include ameliorating, but not necessarily resolving, the
inconsistency. This work is covered in section 7.

We preface and conclude the paper with a discussion on the context of the
work, namely, multi-perspective software development within the \ViewPoints
framework". ViewPoints provide an organisational framework within which
multiple development participants hold multiple views on a problem or solu-
tion domain. Inconsistencies within and between di�erent ViewPoints typically
arise, and the work described in this paper provides a means of managing such
inconsistencies.

Our approach is necessary because we need to deal with inconsistent speci�-
cations in a way that allows us to analyse the likely sources of the inconsistencies,
allow us to continue reasoning in a rational fashion in the presence of inconsis-
tency, and provides a basis for acting on inconsistencies. We believe that our
work contributes to a better understanding of complex software development
processes in which an ideal state of consistency maintenance is neither practical
nor even desirable, and we conclude the paper with a critical review of related
work in the �eld.

2 Information for developing speci�cations

Information that is manipulated in an evolving speci�cation can be partitioned,
and is often represented, in di�erent ways. Since we assume that multiple de-
velopment participants might be involved in a development process, this infor-
mation is typically also distributed among these di�erent participants. Devel-
opment information includes:

Speci�cation information about the actual system (\product") being devel-
oped, which in previous work we have captured as a collection of partial
speci�cations denoted by loosely coupled, locally managed, distributable
objects called \ViewPoints" [FKN+92].

Method information about the process of development and the represen-
tation schemes used to express partial speci�cations. This information
also includes integrity constraints between representation schemes which
we have captured as \inter-ViewPoint rules" [NKF94]. These rules de-
scribe relationships between representation schemes, and thus the relation-
ships between partial speci�cations expressed using those representation
schemes.

Domain information which is incrementally captured in an evolving speci-
�cation process [EN95a, EN95b]. This information might pertain to the

3

problem domain in which the system will be installed (and which is usu-
ally captured and represented separately). Alternatively, it might pertain
to the solution domain (i.e., the product being speci�ed), in which case it
will be part of the speci�cation information.

All three kinds of information described above (and represented as facts,
rules, assumptions, graphs, etc.) can be translated into logical formulae, and
inconsistences can be detected logically. Additional assumptions can also be
used to facilitate this inconsistency detection process. For example, the Closed
World Assumption (CWA) can be used to make explicit negative information
by adding the negation of certain facts, if those facts are not present in the
speci�cation.

3 Capturing development information in logic

Di�erent kinds of development information can be translated into logical for-
mulae which can then be handled in a uniform manner [FGH+94]. We have
adopted a logic-based de�nition of inconsistency because of the very precise
and unambiguous way in which it can be de�ned (and subsequently detected).
An inconsistency in logic results from the simultaneous assertion of a fact � and
its negation, :�. Using this de�nition, translating software engineering speci-
�cations into logic facilitates the detection of inconsistencies and allows us to
concentrate on reasoning about these inconsistencies. Furthermore, we believe
that problems of translation are outweighed by the improvement in inconsis-
tency management.

For many software engineering formalisms, classical logic can be used to cap-
ture speci�cations. However, we do not assume that there is a unique form for
representing any given speci�cation. Rather, there are usually obvious ways of
presenting any speci�cation as a set of logical formulae. Consider, for example,
an entity-relationship description of a bank (which is based on a set of nodes,
denoting entities, and binary arcs, denoting relations between entities). We
can easily capture such a representation scheme as illustrated by the following
formulae:

holds(Bank;Account)
has(Customer;Account)
...
inheritance(Cashier-transaction; T ransaction)

The symbols Bank;Account; Customer;Account, Cashier-transaction, and
Transaction are objects in the logic, the holds, has, and inheritance symbols
are relations in the logic. In addition, we assume formulae that capture the
special nature of certain relations such as the following:

4

8X;Y; Z; inheritance(X;Y) ^ inheritance(Y; Z)! inheritance(X;Z)

Similarly, we can describe, various constraints on our formalisms, such as
the relationships between representation schemes or partial speci�cations. For
example, consider the following simple rule for ensuring consistency of use of
the syntax for multiplicity of association between two classes in an object model
[RBP+91]. Assume the relations has-exactly-one and has-exactly-two between
pairs of classes (for example, has-exactly-one(Son,Mother)). For these, we have
the following rule:

8X;Y; has-exactly-one(X, Y)$:has-exactly-two(X, Y)

Constraints can be useful as either speci�cation information or domain in-
formation. They can incorporate useful domain knowledge identi�ed by a de-
veloper, or they can be the result of some agreement between developers. Fur-
thermore, they can be added without their utility being immediately obvious.

4 Reasoning in the presence of inconsistency

Here we focus on the problem of reasoning with information that might be incon-
sistent. By this, we mean the ability to continue development of a speci�cation
irrespective of any inconsistency in that speci�cation, and irrespective of any
inconsistency between that speci�cation and some other related speci�cation.
We begin by briey motivating the use of logic for performing such reasoning.

4.1 Classical logic is appealing for speci�cations

Classical logic is very appealing for reasoning with speci�cations. A variety of
notations for representing speci�cations can be translated into classical logic,
including Z speci�cations, ER diagrams, dataow diagrams, and inheritance hi-
erarchies. Furthermore, classical reasoning is intuitive and natural. The natural
deduction rules and truth tables are very easy to understand. For example, if
� is true and � is true, then � ^ � is true. Similarly, if :� _ � is true and � is
true, then � is true.

The appeal of classical logic however, extends beyond the naturalness of
representation and reasoning. It has some very important and useful properties
which mean that it is well-understood and well-behaved, and that it is amenable
to automated reasoning. First, there are a variety of proof theories and seman-
tics - each with their own advantages - and these proof theories are all sound and
complete. Second, the logic is decidable for the propositional case. This means
that if we wish to know whether a particular formula holds in a speci�cation, we
can �nd this out in a �nite number of steps. Third, the logic is semi-decidable

5

for the �rst-order case. Whilst this is not as good as being decidable, it means
that if a formula does hold in a speci�cation, then we can �nd this out in a �nite
number of steps. Furthermore, for both the propositional and �rst-order cases,
it also means that we can construct a model of a consistent set of formulae.

In addition, there has been much progress in developing technology for classi-
cal reasoning. This includes automated reasoning systems for deriving inferences
from sets of formulae [Fit90], and model building systems for giving models of
consistent sets of formulae [CCB90, AC91].

4.2 Problems of reasoning with inconsistency

In practical reasoning, it is common to have too much information about some
situation. In other words, it is common for there to be classically inconsistent
information in a practical reasoning speci�cation (e.g., multiple contradictory
requirements about a system). The diversity of logics proposed for aspects of
practical reasoning indicates the complexity of this form of reasoning. However,
central to this is the need to reason with inconsistent information without the
logic being trivialised. Classical logic is trivialised because, by the de�nition of
the logic, any inference follows from inconsistent information (ex falso quodlibet)
as illustrated by the following example.

Example 4.1 From a speci�cation �, :�, � ! �, �, reasonable inferences
might include �, :�, � ! �, and � by reexivity; � by modus ponens; � ^ �

by and introduction; :� ! :� and so on. In contrast, trivial inferences might
include and ^ :�.

For classical logic, trivialisation renders the speci�cation useless, and there-
fore classical logic is obviously unsatisfactory for handling inconsistent informa-
tion. A possible solution is to weaken classical logic by dropping some of the
inferencing capability (reductio ad absurdum), such as for the C! paraconsistent
logic [dC74]. However, this kind of weakening of the proof rules means that the
connectives in the language do not behave in a classical fashion [Bes91]. For ex-
ample, disjunctive syllogism does not hold, ((�_ �) ^:�)! �, whereas modus
ponens does hold, as illustrated by the following example.

Example 4.2 Let Speci�cation-1 be f�_ �;:�g and Speci�cation-2 be f:� !
�;:�g then � does not follow from Speci�cation-1, but it does follow from
Speci�cation-2.

There are many similar examples that could be confusing and counter-
intuitive for users of such a practical reasoning system. An alternative com-
promise is quasi-classical (QC) logic [BH95]. In the following section we present
a development of QC logic called labelled QC logic that is oriented to reasoning
in the context of inconsistent speci�cations.

6

5 Quasi-classical logic

We begin this section with an informal presentation of QC logic, and conclude
with a formal de�nition of the labelled QC logic.

5.1 Introduction and example

The proof theory of QC logic is based on reasoning with formulae that are in
conjunctive normal form (CNF). These are formulae of the following form:

�1 ^ ::^ �n

where each �i is of the form:

�1 _ ::_ �m

and each �i is a literal.

The proof theory of QC logic provides the power to derive a CNF of any
formula, together with the power of resolution:

:� � _ �

�

Only as a last-step in any derivation is disjunction introduction allowed.
This means that any resolvant of a set of formulae can be derived, but no trivial
formulae can be derived. This proof theory is presented as a set of natural
deduction rules such as:

:(� _ �)

:�^ :�

All the QC natural deduction rules hold in classical logic, but the logic is
weaker than classical logic in the way it is used. QC logic is used by providing
any set of classical formulae as assumptions, and any classical formula as a query.
The query follows from the assumptions if and only if there is a derivation of a
CNF of the query from the assumptions using the QC natural deduction rules.
For example, returning to Speci�cation-1 and Speci�cation-2 in example 4.2, �
follows from both sets using the QC logic.

To illustrate the use of QC in a multi-perspective development setting, con-
sider the following example.

Example 5.1 Suppose, we have two partial speci�cations VP1 and VP2. In
VP1, there is the association:

has-exactly-one(Cashier; T erminal)

7

and in VP2 there is the association:

has-exactly-two(Cashier; T erminal)

Recall, the constraint:

8X;Y; has-exactly-one(X;Y)$:has-exactly-two(X;Y)

This \inter-ViewPoint rule" together with VP1 and VP2 is inconsistent.
However, the de�nitions of the relations has-exactly-one and has-exactly-two
also imply the following constraints.

8X;Y; has-exactly-one(X;Y)! has-one-or-more(X;Y)

8X;Y; has-exactly-two(X;Y)! has-one-or-more(X;Y)

These further constraints could be either additional useful domain knowledge,
discovered perhaps during development, or the result of agreements between de-
velopers. Hence for both VP1 and VP2, and despite the inconsistency between
them, we can derive the potentially useful non-trivial inference:

has-one-or-more(Cashier; T erminal)

Constraints therefore allow us to identify problems in the specifciation infor-
mation such as one partial speci�cation stating has-exactly-one(Cashier, Termi-
nal) and the other partial speci�cation stating has-exactly-two(Cashier, Termi-
nal). They also allow us to identify interesting rami�cations such as has-one-
or-more(Cashier, Terminal).

Reasoning such as in the above example is potentially useful for a range of
activities in the management of inconsistency. These include diagnosing the
source of the inconsistency (section 6), for supporting negotiation between par-
ticipants in software development, for continued development without imme-
diately resolving the inconsistency, and for deciding on actions to handle the
inconsistency (section 7).

5.2 Formal de�nition

In this section we provide a formal de�nition of labelled QC logic. We use
a labelled language to allow us to uniquely identify each item of development
information. We propagate the labels by labelling consequences with the union
of the labels of the premises. This means we can identify the rami�cations of
each item in the reasoning, since each inference will be labelled. Labels can be
used to di�erentiate di�erent types of development information and in particular
they can indicate the sources of information. We demonstrate the utility of the
labels in section 6.

8

5.2.1 Language of labelled QC logic

We assume a classical �rst-order language, though we restrict quanti�ers to just
ranging over constants. In other words we do not have function symbols. This
gives certain computational advantages. In particular, it renders consistency
checking decidable.

De�nition 5.1 Let P be a set of predicate symbols, V be a set of variable sym-
bols, and C a set of constant symbols. Let A be a set of atoms, where A =
fp(q1; :::; qn) j p 2 P and q1; :::; qn 2 V [Cg. We call p(q1; :::; qn) a ground atom
i� q1; :::; qn are all constant symbols, otherwise we call it unground.

Example 5.2 Let has-exactly-one be a predicate symbol; X,Y be variable sym-
bols; and Cashier, Terminal be constant symbols. Then has-exactly-one(X,Y)
is an unground atom, has-exactly-one(X,Terminal) is an unground atom, and
has-exactly-one(Cashier,Terminal) is a ground atom.

De�nition 5.2 Let F be the set of classical propositional formulae formed from
a set of atoms A, and the ^;_;! and : connectives. We abbreviate the formula
�^:� by the formula ?, which we read as \inconsistency". We call a formula
grounded i� it is made from only ground atoms, otherwise we call it unground.

De�nition 5.3 Let L be the set of formulae formed from F , where if � 2 F ,
and x1; ::; xn are the free variables in �, then 8x1; :::; 8xn� 2 L.

Hence the set L contains only universally quanti�ed formulae, where the
quanti�ers are outermost, and ground formulae. This restriction aids our expo-
sition. We provide a full classical language in a later paper.

De�nition 5.4 Let `x be some consequence relation for some logic X, de�ned
by some proof rules. Then, the logic X is trivialisable if and only if for all �; �
in the language of X, f�;:�g `x �.

Note that classical logic is trivialisable according to this de�nition. The
following two de�nitions are used to explain the proof theory concisely in the
next section.

De�nition 5.5 For each atom � 2 L, � is a literal and :� is a literal. For
�1 _ :: _ �n 2 L, �1 _ :: _ �n is a clause i� each of �1; ::; �n is a literal. For
�1^ ::^�n 2 L, �1 ^ ::^�n is in a conjunctive normal form (CNF) i� each of
�1; ::; �n is a clause.

De�nition 5.6 For �1 ^ :: ^ �n 2 L, and � 2 L, �1 ^ :: ^ �n is in CNF of �
i� �1 ^ ::^ �n ` � and � ` �1 ^ ::^ �n, and �1 ^ ::^ �n is in a CNF.

9

In general, a formula can appear complex: there may be many levels of
nesting of the connectives. Representing a formula in CNF removes this problem
since there is at most two levels of nesting. This then allows a straightforward
application of resolution.

For any � 2 L, a CNF of � can be produced by the application of dis-
tributivity, negation elimination, and de Morgan laws. Clearly this holds for
the grounded formulae. It also holds for the quanti�ed formulae since we have
restricted the language to universally quanti�ed formulae where the quanti�ers
are outermost.

De�nition 5.7 Let S be some set of atomic symbols such as an alphabet. If
i � S, and � 2 L, then i : � is a labelled formula. Let M be the set of labelled
formulae. All development knowledge that we are analysing is translated into
labelled formulae, where each formula has a unique label.

Example 5.3 Let S = fa; b; c; :::g. Then examples of labelled formulae include,

a : holds(bank; account)

b: performs(cashier,transaction) _ performs(ATM,transaction)

There are many strategies that we could adopt for labelling development
information. Options include combinations of the source of the item, and time
the item was inserted. For this, some mapping from labels to their associated
meaning needs to be recorded. For instance, di�erent developers could use
di�erent disjoint subsets of the labels.

5.2.2 Proof theory for labelled QC logic

The proof theory of QC logic provides the power to derive a CNF of any for-
mula, together with the power of resolution. As a \last step" in any derivation,
disjunction introduction is also allowed. This means that any resolvant of a set
of formulae can be derived, but no trivial formulae can be derived. This proof
theory is presented as a set of natural deduction rules. All the QC natural
deduction rules hold in classical logic, but some classical deduction rules, such
as ex falso quodlibet do not hold in QC logic.

We obtain labelled QC logic by using only labelled formulae as assumptions,
and by amending the natural deduction rules to propagate the labels. The label
of the consequent of a rule is the union of the labels of the premises of the rule.

De�nition 5.8 Assume that ^ is a commutative and associative operator, and
_ is a commutative and associative operator.

i : �^ � [Conjunct elimination] i : � _ � _ � [Disjunct contraction]
i : � i : �_ �

i : �_ � [Negation introduction] i : ::�_ � [Negation elimination]

i : ::�_ � i : �_ �

10

i : � _ (� !) i : � _ :(� !) [Arrow elimination]

i : � _:� _ i : � _ (� ^ :)

i : � ! i : :(� !)

i : :� _ i : � ^ :

i : 8x� [Universal instantiation, where � is obtained from � by
i : � replacing every occurrence of x by the same constant]

i : � _ � j : :� _ [Resolution]
i [j : � _

i : � j : :� _ � i : � _ � j : :�
i [j : � i [j : �

i : � _ (� ^) i : (� ^ �) _ (� ^) [Distribution]

i : (� _ �) ^ (� _) i : �^ (� _)

i : :(� ^ �) _ i : :(� _ �) _ [de Morgan laws]

i : :� _ :� _ i : (:� ^ :�) _

i : :(� ^ �) i : :(� _ �)

i : :� _ :� i : :� ^ :�

i : � [Disjunct introduction - but only

i : � _ � as a last step in a proof]

Labelled QC logic is used by providing any set of labelled formulae (ie. any
� �M) as assumptions, and any classical formula (ie. any � 2 L) as a query.
In this, all development information is a set of assumptions.

For a query that is a ground formula, it follows from the assumptions with
some label i (denoted � `Q i : �) if and only if there is a derivation of a CNF
of the query, labelled i, from the assumptions using the labelled QC natural
deduction rules, remembering that disjunction introduction is only allowed as
a last step in a derivation. For a query that is universally quanti�ed, form
a ground formula by instantiating it with constants that do not appear in the
assumptions, and then treat the query as above.

11

This proof theory allows any resolvant of a set of formulae to be derived,
but no trivial formulae can be derived. We give an example of labelled QC
reasoning for ground formulae below and an example with quanit�ed formulae
in section 9.

Example 5.4 Suppose we have the following development information, where
a is a constraint (e.g., an inter-ViewPoint rule), b is some domain knowledge,
and c and d denote fragments of partial speci�cation information,

fag : �_ :�

fbg : ! �

fcg : :�

fdg :

Clearly this development information is inconsistent. However, using the
QC proof rules, we can obtain a number of non-trivial inferences. Consider the
following proof,

Step 1 is fbg : : _ � from fbg : ! �

using arrow elimination

Step 2 is fb; dg : � from fdg : and Step 1
using resolution

Step 3 is fa; b; dg : � from fag : � _ :�
and Step 2 using resolution

Step 4 is fa; b; c; dg : ? from fcg : :� and Step 3

In Step 2, we obtain the formula � that is labelled with fb; dg. This formula
is non-trivial, and maybe useful for furthering the evolution of the speci�cation.
We show in section 6.1, how we use the label to qualify this inference. In qual-
ifying an inference, we indicate the relationship between the data used for the
inference and the inconsistent data in the development information: the closer
the relationship, the more we qualify the inference.

In Step 4, we obtain an inconsistency labelled fa; b; c; dg. This label tells
us which parts of the development information have given the inconsistency.
This label can be used for identifying the likely sources of an inconsistency, as
discussed in section 6.2, below.

12

6 Logical analysis of inconsistent speci�cations

So far we have shown how development information can be represented as logi-
cal formaulae, and shown how we can undertake non-trivial reasoning with such
formulae, even if they are mutually inconsistent. In this section we turn to
logical analysis of inconsistent speci�cations. In particular, we consider quali-
fying inferences from inconsistent speci�cations, and identifying likely sources
for an inconsistency. These are just two ways of providing a logical analysis of
inconsistent speci�cations.

6.1 Qualifying inferences from inconsistent information

When considering inconsistent information, we have more con�dence in some
inferences over others. For example, we may have more con�dence in an infer-
ence � from a consistent subset of the database if we can not also derive :�
from another consistent susbset of the database.

De�nition 6.1 Let � be a set of labelled formulae capturing development in-
formation. We form the following sets of sets of formulae,

CON (�) = f� � � j � 6`Q i : ?g

INC(�) = f� � � j � `Q i : ?g

Essentially, CON (�) is the set of consistent subsets of �, and INC(�) is
the set of inconsistent subsets of �.

De�nition 6.2 Let � be a set of labelled formulae capturing development in-
formation, then the function Labels is de�ned as follows,

Labels(�) = fi j i : � 2 �g

In the following de�nition, MI(�) is a set of sets of labels, where each
set of labels corresponds to a set of minimally inconsistent formulae. A set of
formulae is minimally inconsistent if every proper subset is consistent. Similarly,
MC(�) is a set of sets of labels, where each set of labels corresponds to a set
of maximally consistent formulae. A set of formulae is maximally consistent, if
the set is consistent and adding any further formulae to the set from � causes
the set to be inconsistent.

De�nition 6.3 Let � be a set of labelled formulae capturing development in-
formation. We form the following sets of sets of labels,

MI(�) = fLabels(�) j � 2 INC(�) and 8� 2 INC(�) � 6� �g

MC(�) = fLabels(�) j � 2 CON (�) and 8� 2 CON (�) � 6� �g

FREE(�) =
\

MC(�)

13

We can consider a maximally consistent subset of a database as capturing
a \plausible" or \coherent" view on the database. For this reason, the set
MC(�) is important in many of the de�nitions presented in the next section.
Furthermore, we consider FREE(�), which is equal to

T
MC(�), as capturing

all the \uncontroversial" information in �. In contrast, we consider the setS
MI(�) as capturing all the \problematic" data �. Note,

T
MC(�) is equal

to Labels(�) -
S
MI(�). So reasoning with FREE(�) is equivalent to revising

the database by removing all the \problematic" data. This means we have a
choice. We can either reason with the data directly using FREE(�) or we can
revise the data by removing the formulae corresponding to

S
MI(�).

We now use these concepts to de�ne three quali�cations for an inference
from inconsistent information. The approach is a derivative of argumentative
logics [EGH95].

De�nition 6.4 Let � be a set of labelled formulae capturing development in-
formation, and let � `Q i : � hold. We form the following quali�cations for
inferences,

� is an existential inference if 9k 2MC(�) such that i � k

� is an universal inference if
8k 2MC(�) 9j such that j � k and � `Q j : � holds

� is a free inference if i � FREE(�)

So a formula is an existential inference if it is an inference from a consistent
subset of the database. A formula is a universal inference if it is an inference from
each maximally consistent subset of the database, whereas a formula is a free
inference if it is an inference from the intersection of the maximally consistent
subsets of the database.

If � is a free inference, it is also a universal inference. Similarly, if � is a
universal inference, it is also an existential inference. Clearly, if � is only an
existential inference, then we are far less con�dent in it than if it was a universal
inference. If it is a free inference, then it is not associated with any inconsistent
information.

Example 6.1 Consider the following assumptions,

fag : � ^ �

fbg : :� ^ �

fcg :

14

This gives two maximally consistent subsets,

Set 1 Set 2

fag : �^ � fbg : :� ^ �

fcg : fcg :

From this, � and :� are only existential inferences, whereas is a free
inference, and � is universal inference.

These kinds of quali�cation are useful when reasoning with inconsistent in-
formation because they provide a clear and unambiguous relationship between
the inferences and problematic data. This could be useful in facilitating de-
velopment in the presence of inconsistency, since we would feel happier about
relying on the less quali�ed inferences. Furthermore, they provide a useful vo-
cabulary for participants in the development process to discuss the inconsistent
information.

Whilst there is an overlap for existential inferencing with the approach of
truth maintenance systems (for example [Doy79, Kle86]), we go beyond this by
adopting universal and free inferencing. Furthermore, by adopting labelling, we
integrate our inconsistency managementwith QC reasoning and with identifying
likely sources of inconsistency.

6.2 Identifying likely sources of an inconsistency

When we identify an inconsistency in our development information, we want to
analyse that inconsistency before we decide on a course of action (for example,
further reasoning, removing inconsistency, etc). Using labelled QC reasoning,
we obtain the labels of the assumptions used to derive an inconsistency. We use
the term `source' to denote the subset of the assumptions that we believe to be
incorrect.

Example 6.2 Suppose we have the speci�cation,

fag : �

fbg : :�_ :�

fcg : �

and suppose fag : � and fbg : :� _ :� have been a stable and well-accepted
part of the speci�cation for some time, and by contrast fcg : � is just a new
and tentative piece of speci�cation. Then for the inconsistency fa; b; cg : ?, we
could regard fcg : � as the source of the inconsistency.

15

Identifying the source facilitates appropriate actions to be invoked. We dis-
cuss this further below and discuss `acting on inconsistency' in the next section.

De�nition 6.5 Let � be a set of labelled formulae capturing development infor-
mation, and let i be some label of some inference from�. The set of assumptions
from � corresponding to the label is de�ned as follows,

Formulae(�; i) = fj : � 2 � j j � ig

De�nition 6.6 For an inconsistency i : ?, Formulae(�; j) is a possible source
of the inconsistency if j � i and Formulae(�; i� j) 2 CON (�).

Essentially, Formulae(�; j) is a possible source of the inconsistency if it
corresponds to a subset of the assumptions used to obtain the inconsistency,
and the remainder of the assumptions are consistent.

There maybe a large number of possible sources of an inconsistency, and
a number of options for addressing this, such as working only with the small-
est sources, or working with only the sources that have the least e�ect on the
number of inferences from the speci�cation. However, if we are to act on incon-
sistency, then we really need to identify the `likely' sources of inconsistency. To
address this, we assume that for any development information, there is some
ordering over that information, where the ordering captures the likelihood of the
information being erroneous. So, if i is higher in the ordering than j, then i : �
is less likely to be erroneous than j : �. We assume this ordering is transitive,
though not necessarily linear.

If we assume there is an ordering over assumptions, then a more likely source
is the smallest possible source that contains less preferred assumptions.

Example 6.3 Returning to example 6.2, we can use explicit ordering to for-
malise this reasoning. For the speci�cation above, fag : � and fbg : :�_:� are
both ordered higher than fcg : �. Hence � is a likely source.

Obviously, this approach does not guarantee that a likely source can be
uniquely determined from a set of possible sources.

Example 6.4 Consider the following data.

fag :

fbg : �

fcg : �

fdg : � ! :�

where a; b; c and d is a linear ordering such that a is most preferred and d is
least preferred. Here ffbg : �; fdg : � ! :�g and ffcg : �g are likely sources of
the inconsistency.

16

Assuming an ordering over development information is reasonable in software
engineering. First, di�erent kinds of information have di�erent likelihoods of
being incorrect. For example, method rules are unlikely to be incorrect, whereas
some tentative speci�cation information is quite possibly incorrect. Second, if
a speci�cation method is used interactively, a user can be asked to order pieces
of speci�cation according to likelihood of correctness.

There are number of ways that this approach can be developed. First, there
are further intuitive ways of deriving orderings over formulae and sets of formu-
lae. These include ordering sets of formulae according to their relative degree
of contradiction [GH95]. Second, there are a number of analyses of ways of
handling ordered formuale and sets of ordered formulae. These include the
use of speci�city [Poo85], ordered theory presentations [Rya92], and prioritized
syntax-based entailment [BDP93].

7 Acting in the presence of inconsistency

The logical analysis of inconsistency described in this paper is part of a wider
framework for handling inconsistency. The analysis described in the previous
section can be used to generate a \report" that identi�es inconsistencies and
provides \diagnosis" of these inconsistencies. Using this, we should be able to
say something about the possible actions that can be performed based on the
nature of the inconsistencies identi�ed.

Acting in the presence of inconsistencies may also require gathering a wider
appreciation of the nature and context of these inconsistencies. While further
work is still needed to examine the kinds of inconsistency handling actions that
are appropriate in di�erent situations, we have some preliminary results and
observations. We have explored the use of a meta-level approach to prescribe
inconsistency handling rules of the form:

Inconsistency implies Action

Our approach deploys an action-based temporal logic that allows us to spec-
ify the past context and source of an inconsistency in order to prescribe future
actions to handle the inconsistency [GH93, FGH+94]. Thus for example the
rule:

[data(�1) ^ data(�2)
^ union(�1;�2) ` ?
^ inconsistency-source(union(�1;�2); S)
^ likely-spelling-problem(S)
^ :LAST 1likely-spelling-problem(S)
^ :LAST 2likely-spelling-problem(S)]

! NEXT tell-user(\is there a spell problem?", S)

17

speci�es that the user should be prompted to check the inconsistent data for
spelling mistakes. This rule uses the temporal operators LASTn and NEXTn

to refer to n time units in the past or future, respectively. So for example,
if our time units are minutes, then LAST 5switched-machine-on would mean 5
minutes ago the machine was switched on. Also note that:

� data(�1) and data(�2) hold if the formulae in the databases �1 and �2,
respectively, are logical rewrites of some development information.

� union(�1;�2) ` ? holds if the union of the databases �1 and �2 classi-
cally implies inconsistency.

� inconsistency-source(union(�1;�2); S) holds if S is a minimally incon-
sistent subset of the union of �1 and �2, as de�ned in section 6.1. The
likely source, S, of the inconsistency may be identi�ed, for example, as
described in section 6.2.

� likely-spelling-problem(S) holds if the cause of the inconsistency is likely
to result from typographical errors in S. Since we are using a temporal
language at the meta-level, we can also include conditions in our rule that
we haven't checked this problem at previous points S in time. In this way,
the past history can a�ect future actions.

� tell-user(\is there a spell problem?", S) is an action that may be trig-
gered if the inconsistency is identi�ed as above. In this case, the action
is a message displayed to the user, together with the likely source of the
inconsistency.

Identifying the appropriate inconsistency handling action in a rule such as
the one described above remains a di�cult, but important, challenge. It de-
pends on the kinds of inconsistency that can be detected and the degree of
inconsistency tolerance that can be supported. We have identi�ed at least four
possible kinds of actions [Nus95]:

Ignoring the inconsistency completely and continuing development regardless.
This may be appropriate in certain circumstances where the inconsistency
is isolated and does not prevent further development from taking place.

Circumventing the inconsistent parts of the speci�cation being developed and
continuing development. This may be appropriate in order to avoid in-
consistent portions of the speci�cation and/or to delay resolution of the
inconsistency.

Removing the inconsistency altogether by correcting any mistakes or resolving
conicts. This depends on a clear identi�cation of the inconsistency and
assumes that the actions required to �x it are known. Restoring consis-
tency completely can be di�cult to achieve, and is quite often impossible
to automate completely without human intervention.

18

Ameliorating inconsistent situations by performing actions that \improve"
these situations and increase the possibility of future resolution. This
is an attractive approach in situations where complete and immediate
resolution is not possible (perhaps because further information is required
from another development participant), but where some steps can be taken
\�x" part or some of the inconsistent information. This approach requires
techniques for analysis and reasoning in the presence of inconsistency, such
as those described in this paper.

Deciding which kind of action is appropriate or feasible to perform in the
presence of inconsistency is the �rst step towards specifying e�ective inconsist-
necy handling rules.

Bearing in mind the above work, we are also interested in supporting multi-
perspective software development, that is, the development of systems in which
multiple development participants hold di�erent views on the systems they are
developing. Since we have adopted a decentralised approach in which multiple
ViewPoints represent di�erent participants and the views that they hold, we
have also examined decentralised process modelling, enactment and support in
this context. For example, we have attempted to analyse \work records" of
individual ViewPoints, in order to identify some key \situations" to which we
know how to react. We have implemented a prototype to support this which uses
regular expressions to specify particular situations and rules to associate actions
with these situations [LFKN95]. Further work is needed to incorporate the
kinds of logical analysis we have described in this paper within the ViewPoints
framework. Nevertheless the formal nature of our analysis makes it amenable
to automated support.

8 Autmated reasoning and tool support

There are three broad areas of inconsistency management that are amenable to
automated support. The �rst is in the area of inconsistency detection. Here,
the emphasis is on the actual process of consistency checking in which the tools
essentially detect if a rule has been broken. In a logic-based approach, this
amounts to the detection of a logical inconsistency in which both a fact, �,
and its negation, :�, are found to hold simultaneously. Numerous commercial
CASE tools adopt this strategy, and simple prototypes can be constructed easily
in logic-based languages such as Prolog.

The second area is that of inconsistency classi�cation. Here, the emphasis is
on identifying the kind of inconsistency that has been detected in, or between,
partial speci�cations. Tool support for this kind of activity is more limited,
because there is little work that attempts to classify inconsistencies. Some tools
(for example CONMAN [SK88], described in section 10) search for one of a
pre-de�ned number of kinds of inconsistency, and try to match the detected
inconsistency with one of these.

19

The third area is that of inconsistency handling, which o�ers varied and
challenging scope for tool support. For example, debuggers and negotiation-
support tools can be used to facilitate removing inconsistencies and resolving
conicts. There are fewer tools available however that explicitly support reason-
ing and analysis in the manner we have described in this paper. Nevertheless,
tools that support automated reasoning and deduction are available (for exam-
ple [Fit90]). Such tools can take assumptions, logic proof rules and queries as
input, and make automatic deductions from this information. In order to make
our approach feasible within the context of software development as a whole, we
envisage reasoning and analysis tools to operate \in the backgound" - trying to
make inferences and provide useful analyses of inconsistent speci�cations while
development participants are engaged in other development acticvities. Some
theorem provers [Lin88] provide inconsistency handling support in this way by
attempting to prove that a description (e.g., a speci�cation) satis�es a set of
properties or contains no contradictions. Therefore, these tools have the capa-
bility of reasoning about why an inconsistency exists when a proof cannot be
produced.

Our intention is to provide the kind of tool support described above within
our multi-perspective software development environment, The Viewer [NF92].
We have already extended The Viewer to support decentralised process enact-
ment, including consistency checking [LFKN95]. This extension allows con-
sistency checks between partial speci�cations (ViewPoints) to be invoked and
applied in a controlled way, by specifying actions that can take place in certain,
pre-de�ned, situations (as described in section 7). We intend to supplement
this with more sophisticated, Prolog-based, analysis and reasoning computa-
tional engines.

9 Applications

In order to validate our work, we have completed a series of examples that illus-
trate the reasoning, analysis and action described in this paper. The next step is
to apply our techniques to a large case study to examine how they scale-up in an
industrial setting. However, we do not intend to demonstrate such scalability by
simply applying our approach to very large speci�cations. Our techniques are
intended for use in conjunction with other traditional development approaches.
So, for example, we do not expect the wholesale translation of large, monolithic
speci�cations into QC logic on which we can then perform the kind of reasoning
we have described. Rather, our aim is to reduce the complexity of our reasoning
and analysis by restricting them to smaller partial speci�cations. Our earlier
work [NKF94] deliberately focussed on the partitioning of speci�cations into
mangeable units (ViewPoints) to which we now apply the techniques described.
Inconsistency management in this setting then, addresses inconsistencies within
and between selected ViewPoints. We have considerable academic and indus-

20

trial experience in using the ViewPoints framework and its support environment
(The Viewer), and therefore expect our logic-based inconsistency management
techniques to complement and support such a multi-perspective development
approach.

In the following, we present excerpts froma case study to develop software for
an order processing system. The intention is to illustrate the techniques we have
described in this paper in the context of a \real world" example. The exposition
is somewhat arti�cial in order to illustrate the issues and contributions presented
in the paper.

9.1 Requirements document

Consider the requirements for an order processing system for a wine warehouse.
During requirements elicitation a number of the sta� involved in order process-
ing are interviewed in order to generate requirements document. Stakeholder
analysis determines that the only valid proceedures are those authorized by one
of three \client authorities": the managing director, logistics manager or the
chief wine taster. The requirements document contains information such as the
following.

Managing Director

Good customers are either government customers or companies that
pay promptly.

If we receive an order V for X cases of item Y from company Z, and
Z is a good customer, then generate a warehouse request for X cases
of item Y, otherwise do credit checks on Z.

Logistics Manager

If we receive an order V for X cases of item Y from company Z, and
Z has a good credit rating, then generate a warehouse request for X
cases of item Y.

If we receive an order V for X cases of item Y from company Z,
and Z does not have a good credit rating, then do not generate a
warehouse request for X cases of item Y.

Chief Wine Taster

If we receive an order V for X cases of item Y, and Y is a wine that
is near the end of its shelf life, then generate a warehouse request V
for X cases of item Y.

Below we consider a preliminary version of a formal speci�cation of these re-
quirements.

21

9.2 Preliminary speci�cation

From the above requirements document, we can generate agent hierarchies,
dataow diagrams, action tabulations, object diagrams, and so on. Rather
than using a represention scheme that some readers are not familiar with, we
will instead just use QC logic (as presented in this paper), directly, to represent
this speci�cation information.

Managing Director

fag : 8X government-customer(X) _ prompt-customer(X)
$ good-customer(X)

fbg : 8V;X; Y; Z order(V;X; Y; Z) ^ good-customer(Z)
! warehouse-request(V;X; Y; Z)

fcg : 8V;X; Y; Z order(V;X; Y; Z) ^ :good-customer(Z)
! credit-check(V;X; Y; Z)

Logistics Manager

fdg : 8V;X; Y; Z order(V;X; Y; Z) ^ good-credit-rating(Z)
! warehouse-request(V;X; Y; Z)

feg : 8V;X; Y; Z order(V;X; Y; Z) ^ :good-credit-rating(Z)
! :warehouse-request(V;X; Y; Z)

Chief Wine Taster

ffg : 8V;X; Y; Z order(V;X; Y; Z) ^ end-shelf-life(Y)
! warehouse-request(V;X; Y; Z)

We are now in a position to analyse the preliminary requirements speci�ca-
tion using the inconsistency management techniques described in this paper.

9.3 Inconsistency management

For clarity of presentation, we work through our example in the same order
as the techniques described in sections 5, 6 and 7 were presented. We then
briey evaluate the techniques, highlighting strengths and weaknesses that have
emerged from our case study.

22

9.3.1 Reasoning

If we want to check certain scenarios with regard to the preliminary speci�cation,
we must add further relevant facts to model each scenario. First, consider the
following facts.

fpg : :government-customer(Acme)
fqg : :prompt-customer(Acme)
frg : :good-credit-rating(Acme)
fsg : order(278; 10; Bordeaux)
ftg : end-shelf-life(Bordeaux)

From this scenario, we can generate the following (inconsistent) inferences.

ff; s; tg : warehouse-request(Acme)

fe; r; sg : :warehouse-request(Acme)

We analyse this inconsistency in the next section (9.3.2).
Nevertheless, using QC logic, we can still continue reasoning with the above

facts, together with the preliminary speci�cation, to generate additional infer-
ences such as the following.

fa; c; p; q; sg : credit-check(Acme)

So even though the assumptions are inconsistent, we can generate a useful
inference. It is possible then, for example, to develop a de�nition for the cred-
itCheck procedure, without necessarily having to resolve the inconsistencies in
the preliminary speci�cation.

9.3.2 Analysis: Qualifying inferences

The following inference are only existential inferences, and hence need to be
treated with caution when the speci�cation is revised or analysed further.

ff; s; tg : warehouse-request(Acme)

fe; r; sg : :warehouse-request(Acme)

In contrast, the following inferences is a universal inference, and hence less
likely to be retracted when the speci�cation is revised.

fa; c; p; q; sg : credit-check(Acme)

There are no free inferences from these assumptions, which is an indication
of the preliminary nature of the speci�cation.

23

9.3.3 Analysis: Identifying sources of inconsistency

For the inconsistency identi�ed above, there are two sets of labels, in particular,
that refer to problematical data. These are the labels attached to the conict-
ing inferences generated above, ff; s; tg and fe; r; sg. There are many possible
sources of the inconsistency. However, if we assume the facts we added for the
scenario, labelled from the set fp; q; r; s; tg are not causing the problem, we order
these above the set of labels, fa; b; c; d; e; fg, refering to the preliminary speci-
�cation. Using this ordering, we obtain two likely sources of the inconsistency,
namely feg and ffg. These two pieces of proceedural information were elicited
from the Logistics Manager and the Chief Wine Taster, respectively. These par-
ticipants in the requirements engineering process need to be consulted in order
to rectify this problem (although we may also have some ordering of information
according to the particular participant from which it was elicited).

9.3.4 Action

Qualifying the kinds of inconsistency in our speci�cation information and iden-
tifying their possible sources, provides us with some insight (and possibly guid-
ance) about the kinds of handling actions that can be taken in the presence
of such inconsistency. So, for example, analysis of the inconsistency in issuing
warehouse requests was probably caused by the conicting rules laid down by
the Logistics Manager and the Chief Wine Taster. An action informing these
two individuals of the problem (and even invoking a negotiation support tool)
might be appropriate in this setting. More sophisticated actions could also
include the invocation of a decision support system that chose between alter-
natives (perhaps based on the seniority of the individuals involved). Meta-level
inconsistency handling rules such as those described in section 7 can be used to
specify such actions:

[data(�) ` ?
^inconsistency-source(data(�), S)
^likely-conict-between-sta�(S)
^LAST 1likely-conict-between-sta�(S)]

! NEXT invoke-a-decision-based-on-seniority(S)

This (simpli�ed) rule states that if a there is an inconsistency in the spec-
i�cation data, data(delta), and the likely source, S, of the inconsistency is a
conict between two development participants, and this problem has already
been established (in the last time unit), then suggest a decision based on the
seniority of the sta� involved in the conict (i.e., the boss is right!).

9.4 Evaluation

The application of the inconsistency management techniques to the above sce-
nario supports the thesis that our logic-based approach provides simple me-

24

chanical tools for living with, even making use of, inconsistent speci�cation
information. The techniques clearly allow continued classical reasoning in the
presence of inconsistency, and provide many additional analysis and tracking
tools so necessary for managing such reasoning. If one accepts that such tech-
niques should be used as part of a larger software engineering toolbox, then the
kind of guidance they provide can be invaluable to the speci�cation developer.

It is clear however, that deciding and modellingwhat kinds of action are most
appropriate in the presence of di�erent kinds of inconsistency are still di�cult
and open issues. Nevertheless, the additional analysis and reasoning that our
techniques provide can only be regarded as welcome input to the decision-action
process.

10 Related work

The overwhelming majority of work on consistency management has dealt with
tools and techniques for maintaining consistency and avoiding inconsistency.
Increasingly however, researchers have begun to study the notion of consistency
in software systems, and have recognised the need to formalise this notion.
For example, Hagensen and Kristensen have explicitly explored the consistency
perspective in software development [HK92]. The focus of their work is on
the structures for representing information (\descriptions") and the relations
between these structures. Consistency of descriptions is de�ned as relations
between interpretations of descriptions. Consistency handling techniques in
software systems modelled in terms descriptions, interpretations and relations,
are also proposed.

We are not aware of any related work on explicitly analysing inconsistent
speci�cations in the manner we have described. However, a number of re-
searchers have recognised the need to (1) tolerate inconsistency in software
development, and (2) provide ways of acting in the presence of inconsistency.

Schwanke and Kaiser have proposed an approach to \living with inconsis-
tency" during development (implemented in the CONMAN programming en-
vironment) by: identifying and tracking six di�erent kinds of inconsistencies
(without requiring them to be removed); reducing the cost of restoring type
safety after a change (using a technique called \smarter recompilation"); and,
protecting programmers from inconsistent code (by supplying debugging and
testing tools with inconsistency information) [SK88]. The analysis of inconsis-
tencies however is limited to identifying one of six prede�ned types of inconsis-
tency in programming code.

Balzer has proposed the notion of \tolerating inconsistency" by relaxing
consistency constraints during development [Bal91]. The approach suggests that
inconsistent data be marked by guards \pollution markers" that have two uses:
(1) to identify the inconsistent data to code segments or human agents that may
then help resolve the inconsistency, and (2) to screen the inconsistent data from

25

other segments that are sensitive to the inconsistencies. This approach however
provides little analysis of the kinds of inconsistency present, preferring to focus
on avoiding inconsistencies and leaving any analysis to external agents.

Narayanaswamy and Goldman proposed \lazy" consistency as the basis for
cooperative software development [NG92]. This approach favours software de-
velopment architectures where impending or proposed changes - as well as
changes that have already occurred - are \announced". This allows the con-
sistency requirements of a system to be \lazily" maintained as it evolves. The
approach is a compromise between the optimistic view in which inconsistencies
are assumed to occur infrequently and can thus be handled individually when
they arise, and a pessimistic approach in which inconsistencies are prevented
from ever occurring. A compromise approach is particularly realistic in a dis-
tributed development setting where conicts or \collisions" of changes made by
di�erent developers may occur. Most of the analysis supported by this approach
is pre-emptive in nature, that is, before actual inconsistencies are detected.

Zave and Jackson have proposed the construction of system speci�cations by
composing many partial speci�cations, each written in a specialised language
that is best suited for describing its intended area of concern [ZJ93]. They
further propose the composition of partial speci�cations as a conjunction of
their assertions in a form of classical logic. A set of partial speci�cations is
then consistent if and only if the conjunction of their assertions is satis�able.
The approach is demonstratedusing partial speci�cations written in Z and a
variety of state-based notations. The approach identi�es consistency checking
as problematic, an issue we have partly addressed in this paper. We have also
taken consistency checking a step further by adapting classical logic in order to
continue reasoning and analysis in the presence of inconsistency.

Work on programming languages which are supported by exception han-
dling mechanisms that deal with errors resulting from built-in operations (e.g.,
division by zero) is also relevant. Building on this work, Borgida proposed an
approach to handling violations of assumptions in a database [Bor85]. His ap-
proach provides for \blaming" violations on one or more database facts. In this
way, either a program can be designed to detect and treat \unusual" facts, or a
database can adjust its constraints to tolerate the violation in the data. Balzer's
approach described above is based on Borgida's mechanisms.

Feather has recently also proposed an approach to modularised exception
handling [Fea95] in which programs accessing a shared database of information
impose their own assumptions on the database, and treat exceptions to those
assumptions di�erently. The assumptions made by each program together with
their respective exception handlers are used to provide each program with its
own individual view of the database. Alternative - possibly inconsistent - views
of the same information can therefore be used to support di�erent users or
developers of a software system. Each program's view is derived from the shared
data in such a way as to satisfy all the program's assumptions. This is achieved
by a combination of ignoring facts that hold in the shared data and \feigning"

26

facts that do not hold.
Finally, a small body of work addresses inconsistencies that arise in software

development processes themselves. For example, an inconsistency may occur
between a software development process de�nition and the actual (enacted)
process instance [Dow93]. Such an inconsistency between \enactment state"
and \performance state" is often avoided by blocking further development ac-
tivities until some precondition is made to hold. Since this policy is overly
restrictive, many developers attempt to fake conformance to the process de�ni-
tion (for example, by fooling a tool into thinking that a certain task has been
performed in order to continue development). Cugola et al. [CNGM95] have
addressed exactly this problem in their temporal logic-based approach which is
used to capture and tolerate some deviations from a process description during
execution. Deviations are tolerated as long as they do not a�ect the correctness
of the system (if they do, the incorrect data must be �xed, or the process model
- or its active instance - must be changed). Otherwise, deviations are tolerated,
recorded and propagated - and \pollution analysis" (based on logical reasoning)
is performed to identify possible sources of inconsistency.

The framework we have described in this paper also provides more sophis-
ticated options than truth maintenance (such as [Doy79, Kle86]) for managing
inconsistency speci�cations. These include: (1) paraconsistent reasoning with
sets of inconsistent formulae; (2) labelling strategies to allow inconsistent for-
mulae to be tracked, and likely sources identi�ed using meta-level information;
and (3) reasoning with universal and free inferences in addition to reasoning
with existential inferences.

From the AI and logics communities there have been a number of other
proposals that are of relevance, including fuzzy sets and non-monotonic logics
(for a review, see [KC93]). Whilst they constitute important developments that
could be incorporated in our framework, they are not directly oriented to the
inconsistency management issues that we consider with in this paper. In the
main they are focussed on resolving inconsistency by �nding the best possible
inferences for any given set of information, whereas we really need to be able
to analyse inconsistent information, consider options, and track information to
�nd likely sources of inconsistency.

11 Discussion, summary and conclusions

Our earlier work began by providing a framework for multi-perspective soft-
ware development in which multiple development participants, and the partial
speci�cations they maintained, were represented by ViewPoints. The inconsis-
tencies that inevitably arose between multiple overlapping ViewPoints led us
to adopt an inconsistency handling approach that was tolerant of such incon-
sistencies. This approach relied on identifying inconsistencies, the context in
which they arose, and the actions that could be performed in their presence.

27

We further recognised that such actions did not need to remove inconsistencies
immediately, but rather allowed continued reasoning and development in their
presence. Keeping track of deductions made during reasoning, and deciding
what actions to perform in the presence of inconsistencies, identi�ed the need
to analyse inconsistencies in this context. This paper addressed such inconsis-
tency handling activities formally.

In this paper, we explored the use of a logic-based approach to reasoning
in the presence of inconsistency. We demonstrated how partial speci�cations
might be translated into classical logic in order to detect inconsistencies be-
tween them. To overcome the trivialisation of classical logic that results when
an inconsistency is detected, we proposed the use of QC logic which allows
continued development in the presence of inconsistency.

The use of logic provided us with a precise and unambiguous language in
which to identify inconsistencies in evolving multi-perspective speci�cations. It
also provided us with the means to address issues of inconsistency management
in a generic way that is independent of any particular software engineering
method or formalism. Furthermore, QC logic has provided us with a formal
foundation upon which we can build more sophisticated inconsistency handling
and reasoning mechanisms.

We also examined the use of labelled QC logic to \audit" reasoning results
and to \diagnose" inconsistencies. The labels facilitated the identi�cation of
likely sources of inconsistencies. Such logical analysis also provided us with
guidance about the actions one can perform in the presence of particular incon-
sistencies (for example, actions to resolve a conict, delay resolution, ameliorate
an inconsistent speci�cation, etc.). Our immediate research agenda is to exam-
ine these inconsistency handling actions further within our framework.

We believe that our work provides the foundations for supporting a soft-
ware speci�cation process in which inconsistencies are analysed to determine
the course of action needed for futher development. This recognises the evo-
lutionary nature of software development and provides a formal, yet exible,
mechanism for managing inconsistencies.

12 Acknowledgements

We would like to acknowledge the contributions and feedback of Alex Borgida,
Gianpaolo Cugola, Elisabetta Di Nitto, Martin Feather, Anthony Finkelstein,
Dov Gabbay, Carlo Ghezzi, Michael Goedicke, Je� Kramer and Jonathan Mof-
fett. This work was partially funded by the UK EPSRC as part of the Voila
project (GR J15483), the CEC as part of the Basic Research Actions Promoter
and Drums II, and the ISI project (ECAUS003).

28

References

[AC91] WAtkinson and J Cunningham. Proving properties of safety-critical
systems. IEE Software Engineering Journal, 6(2):41{50, 1991.

[Bal91] R Balzer. Tolerating inconsistency. In Proceedings of 13th Interna-
tional Conference on Software Engineering (ICSE-13), pages 158{
165. IEEE Computer Society Press, 1991.

[BDP93] S Benferhat, D Dubois, and H Prade. Argumentative inference
in uncertain and inconsistent knowledge bases. In Proceedings of
Uncertainty in Arti�cial Intelligence. Morgan Kaufmann, 1993.

[Bes91] Ph Besnard. Paraconsistent logic approach to knowledge represen-
tation. In M de Glas M and D Gabbay D, editors, Proceedings of the
First World Conference on Fundamentals of Arti�cial Intelligence.
Angkor, 1991.

[BH95] Ph Besnard and A Hunter. Quasi-classical logic: Non-trivializable
classical reasoning from inconsistent information. In C Froidevaux
and J Kohlas, editors, Symbolic and Quantitative Approaches to Un-
certainty, volume 946 of Lecture Notes in Computer Science, pages
44{51, 1995.

[Bor85] A Borgida. Language features for exible handling of exceptions in
information systems. Transactions on Database Systems, 10(4):565{
603, 1985.

[CCB90] M Costa, R Cunningham, and J Booth. Logical animation. In
Proceedings of the twelth International conference on software engi-
neering, pages 144{149, Nice, 1990. IEEE Computer Society Press.

[CNGM95] G Cugola, E Di Nitto, C Ghezzi, and M Mantione. How to deal
with deviations during process model enactment. In Proceedings of
17th International Conference on Software Engineering (ICSE-17),
pages 265{273, Seattle, USA, 1995. ACM Press.

[dC74] N C da Costa. On the theory of inconsistent formal systems. Notre
Dame Journal of Formal Logic, 15:497{510, 1974.

[Dow93] M Dowson. Consistency maintenance in process sensitive environ-
ments. In Proceedings of Workshop on Process Sensitive Environ-
ments Architectures, Boulder, Colorado, USA, 1993. Rocky Moun-
tain Institute of Software Engineering (RMISE).

[Doy79] J Doyle. A truth maintenance system. Arti�cial Intelligence,
12:231{272, 1979.

29

[EGH95] M Elvang-Goransson and A Hunter. Argumentative logics: Reason-
ing from classically inconsistent information. Data and Knowledge
Engineering Journal, 16:125{145, 1995.

[EN95a] S Easterbrook and B Nuseibeh. Managing inconsistencies in
an evolving speci�cation. In Proceedings of 2nd International
Symposium on Requirements Engineering (RE '95), pages 48{55,
York,UK, 1995. IEEE CS Press.

[EN95b] S Easterbrook and B Nuseibeh. Using viewpoints for inconsistency
management. IEE Software Engineering Journal, 1995. To appear.

[Fea95] M Feather. Modularized exception handling. Technical report,
USC/Information Sciences Institute, Marina del Rey, California,
USA, 1995.

[FGH+94] A Finkelstein, D Gabbay, A Hunter, J Kramer, and B Nuseibeh.
Inconsistency handling in multi-perspective speci�cations. Trans-
actions on Software Engineering, 20(8):569{578, 1994.

[Fit90] M Fitting. First-order Logic and Automated Theorem Proving.
Springer, 1990.

[FKN+92] A Finkelstein, J Kramer, B Nuseibeh, L Finkelstein, and
M. Goedicke. Viewpoints: A framework for multiple perspectives in
system development. International Journal of Software Engineer-
ing and Knowledge Engineering, Special issue on Trends and Future
Research Directions in SEE, 2(1):31{57, 1992.

[GH91] D Gabbay and A Hunter. Making inconsistency respectable 1: A
logical framework for inconsistency in reasoning. In Fundamentals
of Arti�cial Intelligence, volume 535 of Lecture Notes in Computer
Science, pages 19{32. Springer, 1991.

[GH93] D Gabbay and A Hunter. Making inconsistency respectable 2:
Meta-level handling of inconsistent data. In Proceedings of the
European Conference on Symbolic and Qualitative Approaches to
Reasoning and Uncertainty (ECSQARU`93), volume 747 of Lecture
Notes in Computer Science, pages 129{136. Springer, 1993.

[GH95] D Gabbay and A Hunter. Negation and contradiction. In What is
negation? Oxford University Press, 1995.

[HK92] T M Hagensen and B B Kristensen. Consistency in software system
development: Framework, model, techniques and tools. Software
Engineering Notes (Proceedings of ACM SIGSOFT Symposium on
Software Development Environments), 17(5):58{67, 1992.

30

[KC93] P Krause and D Clark. Representing Uncertain Knowledge. Intel-
lect, 1993.

[Kle86] J De Kleer. An assumption-based TMS. Arti�cial Intelligence,
28:127{162, 1986.

[LFKN95] U Leonhardt, A Finkelstein, J Kramer, and B Nuseibeh. Decen-
tralised process enactment in a multi-perspective development en-
vironment. In Proceedings of 17th International Conference on Soft-
ware Engineering (ICSE-17), pages 255{264, Seattle,USA, 1995.
IEEE CS Press.

[Lin88] P A Lindsay. A survey of mechanical support for formal reasoning.
Software Engineering Journal (special issue on mechanical support
for formal reasoning), 3(1), 1988.

[NF92] B Nuseibeh and A Finkelstein. Viewpoints: A vehicle for method
and tool integration. In Proceedings of 5th International Workshop
on Computer-Aided Software Engineering (CASE '92), pages 50{60,
Montreal, Canada, 1992. IEEE Computer Society Press.

[NG92] K Narayanaswamy and N Goldman. Lazy consistency: A basis for
cooperative software development. In Proceedings of International
Conference on Computer-Supported Cooperative Work (CSCW '92),
pages 257{264. ACM SIGCHI and SIGOIS, 1992.

[NKF94] B Nuseibeh, J Kramer, and A Finkelstein. A framework for ex-
pressing the relationships between multiple views in requirements
speci�cation. Transactions on Software Engineering, 20(10):760{
773, 1994.

[Nus95] B Nuseibeh. On managing inconsistency in software development.
Technical report, Department of Computing Imperial College, Lon-
don, 1995.

[Poo85] D Poole. A logical framework for default reasoning. Arti�cial In-
telligence, 36:27{47, 1985.

[RBP+91] J Rumbaugh, M Blaha, W Premerlani, F Eddy, and W Lorenson.
Object-Oriented Modelling and Design. Prentice Hall, 1991.

[Rya92] M Ryan. Representing defaults as sentences with reduced prior-
ity. In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Third International Conference. Morgan Kaufmann,
1992.

31

[SK88] R W Schwanke and G E Kaiser. Living with inconsistency in large
systems. In Proceedings of the International Workshop on Software
Version and Con�guration Control, pages 98{118. B G Teubner,
1988.

[ZJ93] P Zave and M Jackson. Conjunction as composition. Transactions
on Software Engineering and Methodology, 2(4):379{411, 1993.

32

