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Abstract

The need for modularity in the behaviour analysis of concurrent systems has been answered
successfully by making reachability analysis compositional. Compositional reachability anal-
ysis (CRA) on the other hand, often exacerbates the state explosion problem; subsystem
analysis leaves out information from the subsystem environment (context), which could con-
siderably reduce the number of states allowed into its behaviour state-graph. To deal with
that, we have chosen to incorporate context constraints in CRA. In the Tracta approach
developed in our section, context constraints are expressed as processes in our model (we
call them interface processes), that are composed with the subsystem, without a�ecting the
global system behaviour. Tracta supports both automatically generated and user-speci�ed
interfaces. It also provides an elegant way of checking violation of safety properties by the
system under analysis. This work, besides introducing the main open problems in this area
of research, is a detailed presentation of Tracta and its underlying theory, in their current
form.
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1 Introduction

Behaviour analysis is useful at all stages in the software life cycle. Its main objective is to
check if a system conforms to its requirements. The larger and more complex a software
product, the more di�cult it is to \manually" check that it operates as speci�ed. The need is
therefore intense for software analysis techniques that can be supported by e�cient automated
tools.

Most concurrent systems interact continuously with the environment and often do not
terminate. Therefore, their behaviour cannot be adequately described by an input-output
relation (reactive systems). On the other hand, they are inherently non-deterministic; the
order in which events will occur is usually unpredictable and is only restricted by the syn-
chronisation parts of the behaviour of processes. Concurrent systems are thus di�erentiated
from their sequential counterparts and behaviour analysis techniques have to be speci�cally
developed to cope with their special requirements.

Behaviour analysis techniques for concurrent systems are usually classi�ed as:

Dynamic. Dynamic analysis techniques consist of testing a program on a set of executions.
They focus on de�ning when a set of executions can be characterised as \complete". For the
case of concurrent systems, they often additionally control the non-deterministic occurrence of
events by introducing synchronisation points to processes, in order to force events to happen
in prede�ned sequences. Dynamic analysis can only be used to show the presence of errors
but cannot guarantee correctness in the general case. This is due to the fact that it can only
cover a �nite number of cases.

Static. Static analysis does not require the execution of the program. It can be used to
show the absence of faults based on an abstract model of the implementation. More precisely,
two classes of system properties can be veri�ed using static analysis, safety and liveness
properties. Safety properties assert that a program never enters an undesirable state (e.g.
violation of mutual exclusion), whereas liveness properties assert that a program eventually
enters a desirable state (e.g. freedom from starvation) [1, 2].

A program should, of course, be analysed by using a combination of the two techniques.
This would involve, at the design stage, the veri�cation of safety and liveness properties
using some static analysis technique on an abstract model of the program. After a running
implementation of the program has been created, the program may be executed for a number
of cases, as required by some dynamic analysis technique.

In this work, we concentrate on building e�cient static analysis techniques. The remain-
der of the report is organised as follows: section 2 discusses the main requirements from
static analysis techniques and existing approaches towards satisfying these requirements. In
section 3, reachability analysis is presented as a technique for performing static analysis. The
state explosion problem as related to reachability analysis is then analysed and compositional
reachability analysis and various issues that it raises are introduced. In section 4 the model
used by the Tracta technique is described. The technique itself is presented in section 5.
Our conclusions and plans for future work are �nally included in section 6. For better read-
ability of the report, all proofs of theorems and lemmas are omitted from its main part, but
can be found in appendix A.
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2 Static analysis

The basic features of interest when building a static analysis technique are the following:

� A formal notation for specifying concurrent systems.

� A formal notation for specifying properties required for a concurrent system.

� An analysis technique that can be supported by an e�cient automated tool.

These features are described in more detail in the following sections. Section 2.1 focuses on the
modelling of systems and properties, whereas section 2.2 establishes the general requirements
for analysis techniques. Finally, section 2.3 presents a selection of existing approaches to
analysing concurrent systems.

2.1 Modelling of systems and their properties

A computational model is required to provide a formal notation for specifying concurrent
systems. A number of models have been proposed, each of them capturing a particular type
of semantic property of concurrent systems. Such models fall into two categories: those
taking a logical and those taking a behavioural approach [2]. In the former, one describes
the behaviour of a system by a set of axioms written in a formal notation such as temporal
logic. System behaviour is de�ned to be the maximal set of event sequences that satisfy
these axioms. In the behavioural approach, system behaviour is described by an abstract
program, written in terms of some formal model such as regular expressions, automata or
state transition diagrams. We believe that the behavioural approach is closer to a user's
view of the system. Formal speci�cation of a system in terms of a behavioural model should
therefore be more straightforward.

Concurrent systems usually consist of various subprograms (processes) which run in par-
allel. A composition operator is therefore a necessary element of a behavioural model for
concurrent systems. The user will thus be able to model a system in terms of its elementary
component processes which, when composed by means of such an operator, express the global
behaviour of the system (see Milner's CCS operator j in [11], and Hoare's CSP operator k in
[10], for example).

A desirable feature from such models is that they have a graphical notation and are
familiar to the user. As far as the speci�cation of properties is concerned, the model needs
to be rich enough to express the classes of properties that are of interest. Note here that
the model for specifying the system behaviour does not need to be the same as the one for
specifying the properties required from the system, as can be seen in section 2.3.

2.1.1 Limitations

Any model for specifying a system and/or its properties is bound to have inherent limitations
[2], more precisely:

� it can only cover some aspects of the system behaviour;

� there are limitations in the correspondence between formal descriptions and the real
world;
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� there exists yet no widely accepted formal notation for modelling non-functional prop-
erties like performance, reliability, maintainability and availability.

2.2 Analysis of concurrent systems

When building an analysis technique, one has to take into account both that the following:
\Does program P obey speci�cation S" and that the presence of faults are undecidable prop-
erties for arbitrary programs and speci�cations [15, 13]. This implies that every behaviour
analysis technique embodies some compromise between accuracy and computational costs.
Moreover, there is no single technique capable of addressing all fault-detection concerns for
arbitrary programs.

We will therefore have to restrict our work to deal with speci�c classes of problems. Firstly,
we decide to focus on the synchronisation structures of concurrent systems. Data values in
program execution are therefore abstracted away, either because they are of no consequence,
or because removing them makes the model easier to analyse. Secondly, we will only consider
�nite-state concurrent systems. This approach is of wide applicability, since a large number
of concurrent programming problems have �nite-state solutions [7]. Having thus de�ned the
classes of problems that we expect an analysis method to address, we will proceed by setting
some requirements for the method itself [2].

It is essential for any behaviour analysis technique to have a sound underlying theory. The
success of the technique will then depend on how well it can be supported by an automated
tool. This is because the main objective of research in this area is to avoid manual veri�cation
of software, especially for concurrent systems where this is practically impossible due to their
inherent complexity.

Recent concurrent systems are mostly developed in a compositional way. This involves a
top-down decomposition of a system into a hierarchy of simpler components and a bottom-up
composition of the system starting from its primitive components [2]. An analysis technique
should therefore support compositionality, in order to allow system developers to analyse their
designs incrementally according to some compositional hierarchy.

The technique should �nally be general enough to handle both safety and liveness prop-
erties.

2.3 Existing approaches to static analysis

In the traditional approach to concurrent program analysis (logical approach), a system is
described by a set of axioms written in a formal notation (usually temporal logic), and the
proof that the system meets its speci�cation is constructed using these axioms together with
a set of inference rules in this logic. The task of proof construction is in general quite tedious,
and a good deal of ingenuity may be required to organise the proof in a manageable way.
Even worse, automatic theorem provers have failed to be of much help due to the inherent
complexity of testing validity even for the simplest logics [7]. Finally, it is very di�cult to
express a complex concurrent system in terms of axioms in some logic, which would discourage
software developers from using it.

It is obvious that a technique becomes more appealing if it allows the developers to specify
the primitive processes which, when running in parallel, make up the concurrent system
that they wish to analyse. Such techniques require a composition operator, that captures
parallelism in its semantics. The mechanism of composing processes related to each other
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by means of a composition operator should be supported by an e�cient automated tool.
The possibility of automatically synthesising �nite-state concurrent systems from temporal
logic speci�cations has been considered, but the synthesis algorithms have exponential time
complexity in the worst case [7].

Reachability analysis is a widely used technique for exhaustive analysis of �nite-state
concurrent systems. It involves the construction of a global-state graph of the system (also
referred to as reachability graph) by composing state-graphs of its primitive components.
Reachability analysis is an attractive technique because it is simple and relatively easy to
automate [2]. Various methods have been proposed for verifying properties when the global-
state graph of the system is available.

In [7], Clarke et al. present a branching-time temporal logic, CTL (Computation Tree
Logic), for specifying properties, as well as an e�cient model checker for verifying CTL for-
mulae against the global-state graph of the system. The expressiveness of CTL has been
restricted for the bene�ts of e�ciency. The main advantage of the method lies in its exi-
bility; it provides a uniform notation for expressing a wide variety of correctness properties.
Moreover, the model checker can handle both safety and liveness properties with equal facility.

On the global state-graph of a system, deadlock states are easily detected as the states
with no outgoing transitions. Our analysis technique, Tracta, additionally provides an
elegant method for checking safety properties [6]. The method consists of composing into
the system \image automata" that correspond to safety properties. The advantages of the
method are that: 1) properties can be expressed using a graphical notation, 2) properties
may contain actions that are not globally observable, 3) violation of properties is detected by
unde�ned states in the global-state graph, which implies that no additional work is needed
after the construction of the graph, 4) the method also locates the violation in the property
automaton. The method is presented in detail later on.

3 Reachability analysis

Reachability analysis is a group of concurrency analysis techniques involving enumeration
of all reachable states in a �nite-state model. The composite state-transition model, often
called a reachability graph, is constructed from models of individual processes abstracted from
the system being analysed, and contains all reachable states in the system. The reachability
graph is then analysed for general properties like freedom from deadlocks and livelocks [14].

The use of a composition operator is indispensable in the construction of the composite
state-transition model of the system from models of its individual components. Reachability
analysis can therefore be applied to models like Petri nets, CCS, or CSP [12, 11, 10]. We will
simplify our discussion by using the CSP process algebra for specifying state graphs, and the
CSP composition operator k to connect individual processes that run in parallel. Given the
close correspondence between CSP and CCS, the problems that we will present below also
apply for the case of CCS.

The problem that needs solving when performing simple reachability analysis stems from
the interleaving semantics of the composition operator; two processes are composed by syn-
chronisation of the actions common to both their alphabets, and interleaving of the others.
More precisely, let us assume that we are composing n CSP processes P1; P2; : : : ; Pn with
numbers of states s1; s2; : : : ; sn respectively. Let the states of the composite process P be
named by using n digits, the �rst one to denote the state of P1 in the composite process, the
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second one to denote the state of P2, and so on. In the case where all combinations should
be possible (worst case), system P would consist of s1 � s2 � � � � � sn states. Reachability
analysis has therefore exponential complexity, which is often referred to as the state explosion
problem [14, 2].
There exist two factors that may help to reduce the size of the problem:

1. arbitrary interleaving is pruned out by the need to synchronise actions common in the
process alphabets;

2. by use of the hiding operator. Actions which are internal in subsystems or which the
developer does not want observable in the global-state graph because they are of no
interest, can be turned into the unobservable � action. The composite graph can then
be minimised in terms of the equivalence that is of interest to the user.

As far as the second factor is concerned, if composition of the system is performed in
one step as in conventional reachability analysis, hiding can only be applied after the global
graph has been computed. In this way, if the state explosion problem is to occur, it will when
constructing the reachability graph, i.e. well before hiding is attempted.

An appealing way for tackling this problem has been to introduce compositionality into
conventional reachability analysis. A useful compositional reachability analysis technique
must support a divide-and-conquer strategy [14] so that reachability graph representations
of subsystems can be independently derived and simpli�ed, and then hierarchically combined
to form representations of successively larger parts of the complete system. A compositional
approach would also be incremental, since changes to one subsystem would not invalidate the
reachability graph representation of the other.

Although Compositional Reachability Analysis (CRA) may control the state explosion
problem in some cases, it will not signi�cantly reduce its size in the worst case. In fact, the
problem may even be exacerbated as subsystems are composed without using synchronisation
information from their environment (context).

In order to deal with this problem often referred to as the intermediate state explosion
problem [14], Graf and Ste�en have proposed to include in the composition of subsystems, user-
speci�ed interfaces which reect the user's intuition about the behaviour of the subsystem
environment [9]. They have extended �nite state transition systems by the unde�nedness
predicate ". A state transition system is totally de�ned if its unde�nedness predicate is
empty. Inclusion of erroneous user-speci�ed interfaces in the CRA of some system is revealed
in the the resulting global transition system by the fact that it is not totally de�ned. The
proposed method for including constraints in CRA is very interesting. What it lacks is an
automatic way of producing such interfaces, to make the task of de�ning interfaces optional
to the user.

In his PhD thesis [14] Yeh proposes a SLEEP/WAKE/ACTIVATE mechanism according
to which developers may introduce SLEEP/WAKE/ACTIVATE transitions in the transition
systems of processes, in order to express their intuition concerning constraints imposed to
these processes by their context. The main disadvantage of this method is that it does not
preserve the associativity of the composition operator. Moreover, as for the case of [9], all
the burden of specifying context-constraints remains with the developer of the system.

We have modi�ed Graf and Ste�en's proposed method of capturing context constraints
into user-speci�ed interfaces. Rather than �rst composing processes together and subse-
quently adding their unde�ned transitions, interface processes are substituted by their \im-
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age" equivalents which are then normally composed into the system. Moreover, we provide
an algorithm for automatically generating interfaces that express context constraints of sub-
systems. The algorithm provides an e�ective and practical means of constructing interfaces
from a context composed of small or medium size elementary processes [2].

4 The model

4.1 Labelled Transition Systems

The behaviour of a synchronous communicating process in a distributed system can be mod-
elled as a rooted Labelled Transition System (LTS). Informally, the LTS of a process is a state
transition diagram containing all its reachable states and executable transitions.

The set of actions that are considered relevant for a particular description of a process
P is called its communicating alphabet, written as �P . Processes with di�erent alphabets
are distinguished, even if they behave the same [10]. It is therefore important to attach
an alphabet to each process and to declare this explicitly. It is impossible for a process to
perform an action outside its alphabet. The choice of an alphabet can thus be related to a
deliberate simpli�cation to make analysis practical. This simpli�cation involves decisions to
ignore many other properties and actions considered to be of lesser interest.

Let us now introduce some of the notation that will be used in the presentation of the model:

� A is the universal set of observable actions.

� Act equals (A [ �), where � is the internal unobservable action.

� � is the universal set of states, not containing state �. State � is a special state
introduced in our model, called the unde�ned state. The properties and usage of � are
described further on.

� Sts equals (� [ �).

Unless otherwise speci�ed, actions a; b; c; : : : will range over A, actions �; �; ; : : : will range
over Act, whereas s; t; : : : will be action sequences ranging over Act�.

In this model we have modi�ed the traditional de�nition of LTS to include the unde�ned
state � [9, 3]. We therefore formally de�ne an LTS as follows:

De�nition 4.1 An LTS is a triple hS;A;�i, where:

(i) S � Sts is a �nite set of states;

(ii) A = A0 [ f�g, where A0 � A is a set of observable actions;

(iii) � � (S � f�g)� A � S is a transition relation1. A transition hp; �; qi will also be
written as p

�
�! q. 2

1Note that state � is not allowed to have outgoing transitions.
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To every transition relation � � (S � f�g) � A � S corresponds a single function f� :
((S � f�g)�A) �! 2S de�ned as follows (a similar de�nition exists in [8]):

8p 2 (S � f�g); f�(p; �) =

(
fq j hp; �; qi 2 �g; for � 2 A

fpg; otherwise.

In the same way, a function f� : ((S � f�g)� A) �! 2S de�nes a single transition relation
� � (S � f�g)� A� S.

De�nition 4.2 Given an LTS T = hS;A;�i and states q; r 2 S, we say that state r is reach-
able from state q i� (q = r) or 9(�1; : : : ; �n; q1; : : : ; qn�1) with (�1; : : : ; �n 2 A; q1; : : : ; qn�1 2

S; n � 1), such that (8i; 0 � i < n; qi
�i+1
�! qi+1 2 �), where (q0 = q; qn = r). We then say

that state r is reachable from state q by the sequence of actions t = �1 � � ��n. 2

De�nition 4.3 A process P is a quadruple hSp; Ap;�p; pi formed by an LTS T = hS;A;�i
and a designated initial state p 2 S in the following way:

(i) Sp is the set of states that are reachable from p in T ;

(ii) Ap = A. We call A0 = Ap � f�g the communicating alphabet of P , denoted as �P ;

(iii) �p = fhq; �; ri j (hq; �; ri 2 �)^ (q; r 2 Sp)g. 2

We identify each state p 6= � of an LTS T with the process P formed by T with initial state
p. In any LTS T , state � is identi�ed with process � = hf�g; Act; ;; �i, called the unde�ned
process.

De�nition 4.4 We say that P = hS;A;�; pi transits into P 0 = hS0; A0;�0; p0i with an action
� and write P

�
�! P 0 i� hp; �; p0i 2 � and P 0 is the process that is identi�ed with state p0

in hS;A;�i. In general, given an action sequence t 2 Act� where t = �1 � � ��n,

P
t

�! P 0 i� P
�1�! � � �

�n�! P 0: 2

De�nition 4.5 If t = �1 � � ��n 2 Act�, then P
t

=) P 0 i�

P (
��

�!)
�1�! (

��

�!) � � �(
��

�!)
�n�! (

��

�!)P 0: 2

Therefore P
a

=) P 0 means that P
�m

�!
a
�!

�n

�! P 0 for some m;n � 0. Similarly, P
"

=) P 0 i�

P
�m
�! P 0 for some m � 0.

De�nition 4.6 A process P = hS;A;�; pi is said to be deterministic i�

8s; s0; s00 2 S; (hs; �; s0i 2 � ^ hs; �; s00i 2 �)) s0 = s00;

otherwise it is said to be non-deterministic.

A trace of a process P is a sequence of observable actions that P can perform starting from its
initial state (see [10] for formal de�nition). We denote the set of possible traces of a process

P as tr(P ). A trace t of a process P is said to be unde�ned i� P
t

=) �. A process is totally
de�ned i� it does not contain unde�ned traces.

An important operation on traces is catenation [10], which constructs a trace from a pair
of operands s and t by simply putting them together in this order; the result will be denoted
s^t.
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4.2 Operators

As in conventional reachability analysis, our method makes use of the hiding and the compo-
sition operators. The hiding operator " takes two arguments, a process P = hS;A;�; qi and
a set of observable actions L and returns process P " L. P " L is the process projected from
P in which only the actions in L are observable, whereas actions in A� L are turned into � .
De�nition 4.7 is a formal de�nition of the hiding operator. A more intuitive way of describing
the hiding operator is in terms of its transitional semantics, as is illustrated in table 1 (rules
1{2).

De�nition 4.7 Process P " L where P = hS;A;�; pi and L is a set of observable actions,
equals process hS 0; A0;�0; pi, where

(i) S0 = S;

(ii) A0 = (A\ L) [ f�g;

(iii) �0 = fhp; �; qi j hp; �; qi 2 �; � 2 Lg [ fhp; �; qi j hp; �; qi 2 �; � 2 (A� L)g. 2

The following lemma (proof is trivial given the transition semantics of the hiding operator)
states an important property of the hiding operator:

Lemma 4.1 For any process P , and any set of observable actions L, P has unde�ned traces
i� P " L has unde�ned traces. 2

The composition operator is a binary operator taking as arguments two LTS or two
processes. In order to de�ne composition among processes, we have �rst de�ned composition
among LTS as follows (de�nition 4.9):

De�nition 4.8 Let R; S � Sts be two sets of states. We de�ne R
 S in the following way:

R
 S =

(
((R� f�g)� (S � f�g))[ f�g; if (� 2 R)_ (� 2 S)
R� S; otherwise.

2

De�nition 4.9 Let T1 = hS1; A1;�1i and T2 = hS2; A2;�2i be two LTS. Their composition
T1 k T2 is a labelled transition system hS;A;�i, where

(i) S = S1 
 S2;

(ii) A = A1 [A2;

(iii) � is the transition relation that corresponds to function f� : ((S�f�g)�A) �! 2S

de�ned as follows:

8(p; p0) 2 S; 8� 2 A;

f�((p; p
0); �) =

(
f�1

(p; �)
 f�2
(p0; �); for � 6= �

(fpg 
 f�2
(p0; �))[ (f�1

(p; �)
 fp0g); otherwise.

2
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The notion of composition used in this de�nition adopts the style of CSP , i.e. synchronisation
of the actions common to the alphabets of the component LTS and interleaving of the others.
We can now proceed to the formal de�nition of composition for processes.

De�nition 4.10 Let P1 = hS1; A1;�1; p1i and P2 = hS2; A2;�2; p2i be two processes, and
T = hS;A;�i be the LTS obtained from the composition hS1; A1;�1i k hS2; A2;�2i of their
corresponding LTSs. Then the composition P1 k P2 of the two processes is de�ned to be
the process that is formed from T with initial state (p1; p2) if (p1; p2 6= �), and process �
otherwise.

For a simpler description of the way the composition operator works, we have included its
transitional semantics in table 1 (rules 3{5). The composition operator is both commutative
and associative [10], and therefore allows for any number of processes to be composed in any
order. This property is very important when performing compositional reachability analysis,
because all the compositional hierarchies of a set of processes will produce equivalent results.

The alphabet A of a composite process P k Q has to be �P [ �Q, even if P k Q cannot
actually perform all of the actions in �P [ �Q. Associativity of the composition operator
would not be preserved if the alphabet of the composite process was de�ned to be the set of
actions that it can actually perform, as is depicted in �gure 1.

Hiding operator (")

1a. P
a
�!P 0

P"L
a
�!P 0"L

(a 2 L; P 0 6= �) 1b. P
a
�!�

P"L
a
�!�

(a 2 L)

2a. P
a
�!P 0

P"L
�
�!P 0"L

(a 62 L; P 0 6= �) 2b. P
a
�!�

P"L
�
�!�

(a 62 L)

Composition operator (k)

3a. P
a
�!P 0

PkQ
a
�!P 0kQ

(a 62 �Q; P 0 6= �) 3b. P
a
�!�

PkQ
a
�!�

(a 62 �Q)

4a. Q
a
�!Q0

PkQ
a
�!PkQ0

(a 62 �P;Q0 6= �) 4b. Q
a
�!�

PkQ
a
�!�

(a 62 �P )

5a. P
a
�!P 0 Q

a
�!Q0

PkQ
a
�!P 0kQ0

(a 6= �; P 0 6= �; Q0 6= �)

5b. P
a
�!P 0 Q

a
�!Q0

PkQ
a
�!�

(a 6= �; (P 0 = � _ Q0 = �))

Table 1: Transitional semantics for the " and k operators. Here, action a can be a � when
the rules allow it.

4.3 Behavioural equivalences

Strong semantic equivalence, denoted as �, is used to relate two processes whose behaviours
are indistinguishable to an observer, even if internal � -actions are observable. Weak semantic
equivalence, denoted as �, is used to relate two processes whose behaviours are indistin-
guishable to an observer if internal � -actions are not observable. In this section, we extend
Milner's de�nitions of strong and weak equivalence for CCS [11] to �t the needs of our model
(de�nition 4.11 is a preliminary de�nition [10]).
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K
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0

1

ab a

1

Z

0

a
b

b

a

1 2

c
b

a

a

(Z || I) || K

b

c

b

I

2

1

Z || (I || K)

1

 2

3

3

0

0 0

Figure 1: Associativity of the composition operator is not preserved if the alphabet of
the composite process is de�ned to be the set of actions that the process can actually
perform. The result obtained for (Z k I k K) by using the correct de�nition is identical to
Z k (I k K) in the �gure above.
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De�nition 4.11 If t 2 Act�, then bt 2 A� is the sequence gained by deleting all occurrences
of � from t. 2

Note, in particular, that c�n = " (the empty sequence).

De�nition 4.12 A strong semantic equivalence � is the union of all relations R � Sts�Sts,
called strong bisimulation relations, where (P;Q) 2 R implies:

1. �P = �Q;

2. P = � i� Q = �;

3. 8� 2 Act,

(i) P
�
�! P 0 implies 9Q0; Q

�
�! Q0 and (P 0; Q0) 2 R;

(ii) Q
�
�! Q0 implies 9P 0; P

�
�! P 0 and (P 0; Q0) 2 R. 2

De�nition 4.13 A weak semantic equivalence � is the union of all relations R � Sts� Sts,
called weak bisimulation relations, where (P;Q) 2 R implies:

1. �P = �Q;

2. P = � i� Q = �;

3. 8� 2 Act,

(i) P
�
�! P 0 implies 9Q0; Q

b�
=) Q0 and (P 0; Q0) 2 R;

(ii) Q
�
�! Q0 implies 9P 0; P

b�
=) P 0 and (P 0; Q0) 2 R. 2

We have adapted to our model Milner's de�nitions of strong and weak equivalences for CCS
[11]. More precisely, bisimilar processes need to have the same alphabets for the composition
operator to preserve bisimilarity2 (�rst rule, de�nitions 4.12, 4.13). We have also extended
the de�nitions to include the unde�ned process � (second rule, de�nitions 4.12, 4.13).

5 The Tracta technique

Compositional reachability analysis (CRA) is performed on a system that is expressed as
a hierarchical division of subsystems. It is therefore guided by a compositional hierarchy of
subsystems, where the root of the hierarchy is a system S to be analysed, and the leaves of the
hierarchy are the primitive components Ci of S. Although di�erent compositional hierarchies
may increase or reduce the size of the state explosion problem, they all return equivalent
results since the composition operator is both commutative and associative. The choice of a
speci�c hierarchy is usually related to the natural division of a system into subsystems.

The behaviour of each primitive component Ci is speci�ed in terms of a pair consisting of
an LTS Li and an initial state si. The reachability graph for Ci is described by the process3 Pi
that is identi�ed, in our model, with state si of Li. We have to mention here that all processes

2The semantics of the composition operator in our model are similar to those of the CSP composition
operator.

3We will from now on use the terms reachability graph and process interchangeably.
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that describe primitive components of subsystems are totally de�ned. The unde�ned state is
never used in the speci�cation of a process. Its only use is in the veri�cation of properties
and of interface correctness, as described in sections 5.3 and 5.4.

The reachability graph of the global system S is composed step by step from those of its
subsystems in a bottom-up manner [2], according to the compositional hierarchy. At each
intermediate step, the resulting graph of each subsystem is simpli�ed by hiding actions that
are internal to the subsystem. CRA therefore consists of gradually performing compositions
and simpli�cations of processes in our model. The �nal graph may then be used for verifying
safety and liveness properties of the system under analysis.

Besides being incremental, the CRA technique may in some cases reduce the size of the
state explosion problem by hiding from the analysis process details that are internal to sub-
systems. However, as discussed in section 3, it may in other cases trigger the intermediate
state explosion problem. The latter appears when subsystems are locally composed without
the use of synchronisation information from their environment (from now on referred to as
context information4).

We have adopted the approach of using interface processes for including context infor-
mation into CRA [9, 2]. We present our criteria for correctness of interface processes, as
well as a technique for checking arbitrary interfaces against these criteria in section 5.3. We
also describe a technique for validating safety properties in section 5.4. But before that, we
discuss in section 5.1 some issues related to the use of the hiding operator in reachability
analysis. Moreover, in section 5.2, we de�ne the concept of an \image" process and present
two theorems that are essential for the remainder of the paper.

5.1 The hiding operator

Rule 5.1 For any two processes P, Q and two sets of actions L, M:

P " L k Q "M = (P k Q) " (L[M) i� ((�P �L)\ (�Q[M))[ ((�Q�M)\ (�P [L)) = ;:
2

A proof for the rule is included in appendix A.
Without loss of generality, action renaming can be performed in such a way that the name

of an action in any component of the system is globally unique unless it needs to synchronise
with actions in other component processes of the system. Actions in distinct components
will be given the same name if and only if they must synchronise. In this way, rule 5.1 is
applicable at any level of some compositional hierarchy.

Given the above and the associativity of the k operator, we can show that, even in the
presence of hiding, compositional reachability analysis is equivalent to conventional reachabil-
ity analysis. Let P1; : : : ; Pn be the primitive processes of a system S. If hiding has occurred
at some stages of CRA according to sets S1; : : : ; Sm, then it is obvious that the global graph
obtained will be equivalent to (P1 k : : : k Pn) " (S1 [ : : :[ Sm), which is what conventional
reachability analysis computes.

As discussed in section 3, CRA is much more e�ective in exploiting hidden actions than
conventional reachability analysis. Additionally, it exhibits the following advantage: it is
more convenient and intuitive to the user to hide actions according to his view of the system
hierarchy, i.e. in terms of subsystems, rather than in terms of the whole system.

4In a system S = P k Q where P;Q may be decomposable processes (i.e. non-primitive subsystems), Q is
the context of P and vice versa.
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In the following sections, for simplifying the reasoning and proofs, we will assume that
any system S can be expressed in the form P " L, where P = (P1 k : : : k Pn) is a process in
our model, and L = (L1[ : : :[Lm) is a set of observable actions. This is obviously acceptable
given rule 5.1 and the way in which we have required action renaming to be performed.

5.2 Two essential theorems

De�nition 5.1 Let P = hA; S;�; pi be a totally de�ned process. Then we call image process
of P the process P 0 = hA; S [ f�g;�0; pi, where �0 is constructed from � by the following
procedure [3]:

(i) initialise �0 to �;

(ii) for all a 2 A and s 2 S where there does not exist s0 2 S such that hs; a; s0i 2 �:
add hs; a; �i to �0.

Theorem 5.1 (Transparence theorem) Let Z; P be two totally de�ned processes, where
P is deterministic and free of internal action � and � denotes the strong equivalence relation.
Then Z � (Z k P ) i�:

1. �P � �Z;

2. tr(Z " �P ) � tr(P ). 2

Theorem 5.2 (Image process theorem) Let P; T be two totally de�ned processes, and T 0

be the image process of T , where �T � �P . Then P k T 0 does not have unde�ned traces i�
tr(P " �T ) � tr(T ). 2

The transparence theorem is an extended version of the interface theorem as presented in [4].
The image process theorem has been stated and used in [3, 6]. The full presentations and
proofs of theorems 5.1 and 5.2 are provided in appendix A.

5.3 Inclusion of context constraints

Let S be a system P k Q where Q is the context of subsystem P . Then an interface I for
P is a totally de�ned process with the following essential characteristic: I describes some
part of Q's behaviour which, when composed with P will reduce (by the requirement for
synchronisation) its reachability graph. It is therefore obvious that �I � �P \ �Q. The
reason for introducing process I in the analysis is for exploiting context information in order
to alleviate the intermediate state explosion problem. However, we do not wish this process
to alter in any way the behaviour of the system S to be analysed. Therefore, supposing that
eq is an equivalence relation that preserves the class of properties that are of interest when
performing analysis, I should satisfy the following requirement:

(P k Q) eq ((P k I) k Q)

or due to the fact that k is both commutative and associative,

S eq (S k I):
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We choose to use strong equivalence in our technique. Strong equivalence is the strongest
equivalence of interest in concurrency theory and preserves any properties of interest, includ-
ing divergence which is not preserved by observational equivalence. We therefore conclude in
the following formal de�nition [9, 2]:

De�nition 5.2 Let S = R " L be a system, where R = (P k Q). Then

(i) a totally de�ned process I is an interface for P i� �I � (�P \�Q) (Q is the context
of P in S);

(ii) an interface I for P is correct i� I is transparent to the system, i.e. R � R k I. 2

For the bene�ts of simplicity, we will for the moment ignore the hiding operator. Let S be
the system under analysis. A component process P for which interface I has been introduced
is substituted by P 0 = P k I in the compositional hierarchy on which CRA will be based.
Given that �I � �P , composing I with P can only prune out transitions of P that would
otherwise be allowed at this stage of the analysis. Therefore, although interface processes are
additional processes composed into the system, this can only be for the best with respect to
reducing the size of the state explosion problem.

When incorrect interfaces have been composed into the system, the reachability graph of
the global system is not equivalent to the one that would have been obtained if the interface
processes had been omitted. Therefore the �nal reachability graph obtained from CRA is
useful for verifying properties in those cases only where all interfaces introduced into the
analysis are correct. We thus need a way of verifying that (S k I) � S, when the reachability
graph of S k I is available but the one for S is not.

We have decided that it is reasonable to assume that only deterministic interfaces free of
internal action � will be introduced into the analysis of any system (the reason for our choice
is provided in the proof of the transparence theorem, appendix A, page 23). We have been
led to the same decision by the fact that checking correctness of interface I by verifying that
(S k I) � S is out of the question for obvious reasons. We therefore would like to include
in our methods interfaces that can be proven correct by the transparence theorem. So from
now on, we will only refer to interfaces that are deterministic and free of � .

According to the transparence theorem, a deterministic, free of action � interface I is
correct i�:

1. �I � �S;

2. tr(S " �I) � tr(I).

It is trivial to prove that the �rst condition is guaranteed by part 1 of de�nition 5.2 for any
interface. Therefore interface I can be proven correct by checking that tr(S " �I) � tr(I).

Interfaces may be introduced in the analysis of a subsystem in two ways. Firstly they can
be algorithmically derived. Algorithms designed to perform this task need to compromise
accuracy of the interfaces they generate for e�ciency. Even so, there exists yet no such
algorithm that proves e�cient in all cases. We have proposed a simple algorithm that is
an e�ective and practical means of constructing interfaces from contexts composed of small
or medium size elementary components [4]. The algorithm constructs interfaces that are
deterministic and free of action � . Interfaces created in this way have also proven to satisfy the
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second condition of the transparence theorem. Every interface constructed by the algorithm
is therefore guaranteed to be correct.

Secondly, interfaces can be speci�ed by the users. In many situations, users have further
knowledge and intuition of the system behaviour [3]. They may therefore be able to specify
interfaces that capture the context constraints of subsystems. In this case however, any
interface I introduced in the analysis of system S for some subsystem P where S = P k Q,
needs to be checked against the following conditions:

1. �I � (�P \ �Q);

2. tr(S " �I) � tr(I);

3. I is deterministic free of action � .

Conditions 1 and 3 are trivial to check. Condition 2, on the other hand, is not as straight-
forward to verify. The image process theorem simpli�es the task considerably. For any
interface process I that is introduced into the analysis, rather than composing I into S, we
decide to compose its corresponding image process I 0. Theorem 5.2 then guarantees that
condition 2 of the theorem will be satis�ed i� there are no unde�ned traces in S k I 0, i.e. i�
state � does not appear in the global reachability graph.

The disadvantage of the method is that an incorrect interface I is detected only at the �nal
stage of CRA. Obviously, the global reachability graph of the system obtained in the presence
of incorrect interfaces may not be used for performing further analysis. That means that the
reachability graphs of all subsystems for which I is a descendant in the compositional hierarchy
will have to be recomputed. This can unfortunately not be avoided, because unde�ned traces
that appear at intermediate stages of CRA may disappear at latter stages. We have to assume,
however, that whenever users decide that they can help the analysis by introducing interfaces,
these interfaces will in most cases be correct.

On the other hand, if the �nal graph does not contain unde�ned traces, it is guaranteed
that all interfaces introduced are correct. For any interface I , the set tr(I 0)� tr(I) contains
exactly5 those traces in I 0 that are unde�ned. So given that state � is not part of the
reachability graph for the system under analysis, we conclude that S k I 0 � S k I . Therefore,
for the case of correct interfaces, the result obtained from CRA is not a�ected by the fact
that they have been substituted by their image equivalent in the compositional hierarchy.

We will now prove that our technique is not a�ected by the existence of the hiding operator
in CRA. As we have mentioned in section 5.1, we can assume that any system S can be
expressed in the form P " L. For some interface I , the reachability graph obtained by CRA
is equivalent to (P k I 0) " L. By lemma 4.1, if (P k I 0) " L does not have unde�ned traces
neither does P k I 0. Therefore, by the image process and transparence theorems, (P k I) � P .
According to de�nition 5.2, the latter proves I correct. Moreover, since P k I 0 does not have
unde�ned traces, (P k I 0) � (P k I) which implies that (P k I 0) " L � (P k I) " L. The latter
proves that for correct interfaces, the result obtained by composing their image processes into
the system rather than themselves does not a�ect the �nal result, even in the presence of
hiding.

5See de�nition 5.1, step 2.
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5.4 Checking properties in CRA

The reachability graph of a system can be used for checking two classes of properties: liveness
and safety properties. Deadlock in a reachability graph is related to the existence of deadlock
states (de�nition 5.3) and is therefore easy to check.

De�nition 5.3 Let P = hS;A;�; pi be a process. Then a state s 2 S is a deadlock state i�

8� 2 A; f�(s; �) = ;:

2

A large number of safety properties can be expressed as processes in our model that are
deterministic, free of internal action � and of unde�ned traces. We will describe a technique for
validating safety properties described in this way. The technique is based on the transparence
theorem and the image process theorem.

De�nition 5.4 Let S be a process equals Q " L. Then a property T such that �T � �S is
violated by S i� tr(Q " �T ) 6� tr(T ). 2

For simplicity, let us for the moment ignore hidden actions and assume that we want to
check if process S violates property T . By de�nition 5.4 and by the image process theorem,
it is enough to check if S k T 0 has unde�ned traces, where T 0 is the image process of T .

Similar to the case for interfaces, image processes corresponding to the properties that
the system has to satisfy are composed into the system. If the reachability graph obtained is
free of unde�ned traces, then the system does not violate any of the properties in question.

When the global graph obtained has no unde�ned traces, the graph is strongly equivalent
to the one that would have been obtained had the image processes for properties not been
composed into the system. This is proven as follows: similar to the case for interfaces,
(S k T 0) � (S k T ). Moreover, for every process T , tr(S " �T ) � tr(T ), and T is deterministic
and free of � and unde�ned traces. By the transparence theorem (S k T ) � S and therefore
(S k T 0) � (S k T ) � S.

An issue that remains to be examined is where to locate an image process T 0 corresponding
to some property T , in the compositional hierarchy of a system S. It is possible for a subsystem
of S to violate property T when it is not in the context of S. This is the reason why, at some
stage of the analysis, unde�ned states might occur which will not survive up to the �nal
stage where the global reachability graph is obtained. We wish to avoid as many such \fake"
unde�ned states as possible, therefore, we should place T 0 as high in the hierarchy as possible.
There is an obvious restriction to the above6: for any node i in the compositional hierarchy
such that (�T 0 \ Ai 6= ;), T 0 must be located at a descendant node of i in the tree of the
hierarchy. Ai is used here to denote the set of observable actions that are hidden at the stage
of CRA corresponding to node i.

One should therefore proceed as follows in order to specify a location for T 0 in the com-
positional hierarchy: �nd a subsystem Si s.t. �T � �Si, and then follow the path upwards
until the restriction presented above is violated7 or the root of the hierarchy is reached. It
is possible for this procedure not to succeed in �nding a location for T 0, in the single case
where di�erent actions of T 0 are hidden at disjoint subtrees of the compositional hierarchy.

6See also section 5.1 concerning action naming rules.
7In this case, T 0 is composed with the last node in the path upwards where the restriction is respected.
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Such cases reveal the fact that the property cannot be satis�ed by the system (see example
in �gure 2) and therefore there is no reason for proceeding with CRA before correcting the
error.

As mentioned in section 5.1, we will always be able to express a system S in the form
Q " L, where Q is a process in our model and L is a set of observable actions. Given that image
process T 0 has been correctly located in the compositional hierarchy, the reachability graph
obtained from CRA when T 0 has been included will be strongly equivalent to (Q k T 0) " L. We
can then prove that, similar to the case for interfaces in section 5.3, the technique described
for locating violations of properties is not a�ected by the presence of the hiding operator.

As compared to verifying properties on the global graph obtained from CRA, our technique
exhibits the following major advantage [6]: it allows for properties to be checked that concern
actions which have been hidden at earlier stages of CRA. Moreover, it does not require any
additional e�ort for checking properties after the computation of the global reachability graph.
It therefore provides a uniform way of performing analysis.

5.5 Locating errors and violations

The techniques that have been described for detecting incorrect user-speci�ed interfaces and
violations of safety properties are related to the existence of the unde�ned state in the global
reachability graph. Let us suppose that these techniques are used in the analysis of some
system, where a number of properties are to be tested, and interfaces are introduced at various
stages of the analysis. The presence of the unde�ned state in the �nal graph will reveal that at
least one of the properties has been violated and/or at least one of the interfaces is incorrect.
More speci�c information is needed, however, from an analysis method. More precisely:

� A transition to the unde�ned state is introduced by an incorrect interface. This reveals
the fact that a legal trace of the system has been eliminated by the given interface
process. In this case, we need to be able to identify the interface in question, as well as
the exact transition that is missing from it, in order to correct it.

� A transition to the unde�ned state is introduced by the violation of some property. This
reveals the fact that a legal trace of the system violates a property. In this case, we
need to be able to identify the property in question, as well as the exact transition that
leads the image process of the property to the unde�ned state.

We proceed in the same way for dealing with both of these cases [3, 6]. We locate errors and
violations by keeping track of the relation between those transitions leading to the unde�ned
state � in the reachability graph of any system or subsystem, and the transitions in the image
processes8 that have introduced them.

For convenience, we use [P
�
�! �] to denote the set of transitions in the image processes

that contributed to the transition of P
�
�! �. We call [P

�
�! �] the set of ancestor transitions

of P
�
�! � [3]. In each of the CRA steps, the sets of ancestor transitions are updated

according to the following rules:

Initialisation: For every image process I 0 = hS;A;�; qi do the following: for every p; � such
that (p

�
�! �) 2 �,

[P
�
�! �] = f(p

�
�! �)I 0g

8These can correspond to either user-speci�ed interfaces or safety properties.
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(P is the process identi�ed with state p in hS;A;�i). The subscript I 0 identi�es the process
that owns the transition.

Parallel composition: In the step of parallel composition, update

� [P k Q
�
�! �] to [P

�
�! �] if Q

�

6�! �;

� [P k Q
�
�! �] to [Q

�
�! �] if P

�

6�! �;

� [P k Q
�
�! �] to [P

�
�! �] [ [Q

�
�! �] if P

�
�! � and Q

�
�! �.

Hiding: In the step of hiding, update

� [P " L
�
�! �] to [P

�
�! �] if � 2 L;

� [P " L
�
�! �] to [P

�
�! �] if P " L

�
�! � is derived from P

�
�! � where � 62 L.

Minimisation: In the step of process minimisation, update both [P
�
�! �] and [Q

�
�! �]

to [P
�
�! �] [ [Q

�
�! �] if P � Q.

6 Conclusions and future work

We have presented the Tracta technique for performing static analysis of concurrent systems.
Processes are modelled as rooted labelled transition systems and synchronise/communicate in
a CSP-like fashion. Tracta e�ciently addresses a number of the requirements for behaviour
analysis techniques of concurrent systems, as illustrated in table 2.

Objectives We provide/propose:

Simple and familiar Labelled Transition Systems (LTS)
computational model: : : � close to state transition diagrams

� simple graphical notation

To facilitate reasoning about safety Reachability Analysis (easy detection of deadlocks)
and liveness properties: : : + image automata for checking safety properties

To support compositionality and Compositional Reachability Analysis (CRA)
incremental analysis: : :

To be supported by an e�cient a way to reduce the intermediate state explosion problem:
automated tool: : : Contextual CRA which consists of

� automatically generating interfaces for subsystems
� easily checking correctness of user-speci�ed interfaces

To provide multiple analysis an approximate non-expensive dataow analysis technique
capabilities: : : for the error-prone early design stages [5, 2]

Table 2: Summary of the Tracta technique.

The Tracta technique has a sound underlying theory. Detection of incorrect interfaces
and of violation of properties is performed in a uniform way, i.e. by composing image processes
into the system. The largest part of the e�ort involved in detecting incorrect interfaces
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and violations of properties is therefore incorporated in the process of computing a global
reachability graph for the system.

A prototype has been implemented [2] that supports the largest part of the Tracta
technique. Our plans for the future are:

� To complete the existing prototype for full support of the Tracta technique. Addi-
tionally, to implement a user-friendly graphical user interface for interaction with the
user.

� To perform case studies that will show the performance of the Tracta technique as
compared to that of existing techniques. Case studies will also prove very useful in
uncovering possible weaknesses of our modelling and/or analysis methods.

Future directions that we are considering include the following:

� To achieve a tight integration of exhaustive with approximate techniques [2, 5]. Useful
information obtained at the early stages of analysis where approximate techniques are
used could be fed to the stages of exhaustive analysis.

� To investigate the applicability ofTracta to the feature interaction problem in telecom-
munications, as presented in [16].

� To provide a way of recovering lost details [14]. Reports of possible errors may be helpful
only if they describe in detail how the error can occur. A common error reporting
technique in analysis of concurrent systems is to present an example trace that exhibits
an undesired property. Since suppression of detail may make such a trace less useful, we
need to recover a detailed trace despite having suppressed details during the analysis.
A method for recovering lost details has been proposed by Yeh in [14].

� To extend our technique for dealing with cases where processes communicate over imper-
fect channels (messages may be lost, delayed, : : :). In such cases, properties may have to
be veri�ed only along those execution sequences that satisfy a special set requirements
[7] (e.g. paths where a transmitted message is eventually received).
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A Theorems, rules and lemmas: full presentation

Theorem 5.1 Let Z; I be two totally de�ned processes, where I is deterministic and free of
internal action � and � denotes the strong equivalence relation. Then Z � (Z k I) i�:

1. �I � �Z;

2. tr(Z " �I) � tr(I).

Proof:

if part: We will �rst prove that the two conditions are su�cient. To do so, we de�ne a binary
relation R over totally de�ned processes by (Z; Z k I) 2 R i�:

(a) �I � �Z;

(b) tr(Z " �I) � tr(I);

(c) I is a deterministic process free of �s.

To show that R is a strong bisimulation relation, we will prove that it satis�es the three
conditions of de�nition 4.12. Let (Z; Z k I) 2 R.

(1) �(Z k I)
def
= �Z [ �I

�I��Z
= �Z.

(2) Does not apply here because all processes are totally de�ned.

(3) In order to show the satisfaction of condition 3(i) we need to consider two cases:

Case 1: Z
�
�! Z0 and � 62 �I .

Then Z k I
�
�! Z0 k I . Since �Z0

def
= �Z and �I � �Z, it is clear that �I � �Z0. Moreover,

since � 62 �I , tr(Z0 " �I) � tr(Z " �I) � tr(I). Since I is deterministic and free of � , we
conclude that (Z0; Z0 k I) 2 R.

Case 2: Z
a
�! Z0 and a 2 �I .

It is clear that a 6= � is a trace of Z, therefore since tr(Z " �I) � tr(I), a must also be a trace
of I . I is deterministic and free of � so 9I 0 such that I

a
�! I 0 and 8I 00 such that I

a
�! I 00,

I 0 = I 00. Therefore,
Z k I

a
�! Z0 k I 0:

�Z0
def
= �Z and �I 0

def
= �I implies that �I 0 � �Z0. Since I is deterministic and free of � , I 0

will obviously also be deterministic and free of � .
It therefore remains to be shown that tr(Z0 " �I 0) � tr(I 0) or equivalently that tr(Z0 "

�I) � tr(I 0). We will prove that by contradiction. Let us assume that tr(Z0 " �I) 6� tr(I 0)
which means that there exists a sequence of observable actions s such that s 2 tr(Z0 " �I) and
s 62 tr(I 0). But a 2 �I so a^s 2 tr(Z " �I). On the other hand, because I is deterministic,
s 62 tr(I 0) implies that a^s 62 tr(I). Therefore tr(Z " �I) 6� tr(I), which contradicts the initial
assumption that (Z; Z k I) 2 R. We conclude that tr(Z 0 " �I 0) � tr(I 0), and consequently
(Z0; Z0 k I 0) 2 R.

Condition 3(ii) can be proven in a similar way. Z k I
�
�! Q implies one of the following:
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� � 62 �I and Z
�
�! Z0. Then Q = Z0 k I and the proof proceeds as in case 1 above.

� � 2 �I which implies that � 2 �Z since �I � �Z. Then Z
�
�! Z0 and I

�
�! I 0

therefore Q = Z0 k I 0. The proof then proceeds as in case 2 above.

� � 62 �Z and I
�
�! I 0. Obviously, either � = � or � 2 �I . Neither of the two can hold

however because I is free of � and �I � �Z. Therefore this case can never happen.

We have thus proven that for two totally de�ned processes Z; I where I is a deterministic
process free of internal actions � :

((�I � �Z) ^ (tr(Z " �I) � tr(I))) =) Z � (Z k I):

only if part: In this part we show that the two conditions are necessary. Let Z; I be two
totally de�ned processes such that Z � (Z k I), where I is a deterministic process free of
internal actions � . We will prove that �I � �Z and that tr(Z " �I) � tr(I).

(1) Z � (Z k I) implies that �Z = �(Z k I). So �Z = �(Z k I) = �Z [ �I and therefore
�I � �Z.

(2) We have shown in (1) that �I � �Z. By lemma A.3 we conclude that tr(Z " �I) � tr(I),
which completes the proof.

We have tried to keep the conditions of the transparence theorem as weak as possible. We have
managed it for all but the one that requires interface processes I to be deterministic and free
of internal actions � . This is the single condition that is not both necessary and su�cient.
Figure 3 depicts an example where although I is non-deterministic, it is transparent to a
process Z. On the other hand, �gure 4 illustrates an example where although conditions
1 and 2 of the transparence theorem are satis�ed, I is not transparent to Z because it is
non-deterministic.

We conclude that it is not necessary for I to be non-deterministic and free of � for it to
be transparent to a process. However the two conditions of the transparence theorem cannot
guarantee that I will be transparent if it is non-deterministic. This is the reason why we have
decided to deal only with interfaces that are deterministic and free of internal actions � .

We strongly believe that this is not a limitation of our technique . Interfaces, both user-
speci�ed and algorithmically derived, are introduced into the analysis in order to alleviate
the intermediate state explosion problem. This is achieved by including in the analysis of
subsystems the behaviour constraints imposed by its environment, in the form of interfaces.
Given that � actions never synchronise with other actions, they do not provide a way of
reducing arbitrary interleaving of actions. Moreover introducing extra non-determinism into
the system should be avoided. It is therefore reasonable to expect that interface processes
should be deterministic and free of internal actions � .

The transparence theorem is not always satis�ed by processes that are not totally de�ned.
This is shown by the example illustrated in �gure 5. There is a limited number of cases in
which unde�ned states need to be introduced into processes by our technique. Even though
the transparence theorem holds for totally de�ned processes only, it has proven su�cient in
dealing with all of these cases as has been shown in sections 5.3, 5.4. 2

Theorem 5.2 Let P; T be two totally de�ned processes, and T 0 be the image process of T ,
where �T � �P . Then P k T 0 does not have unde�ned traces i� tr(P " �T ) � tr(T ).
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Figure 3: Transparent non-deterministic interfaces.
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Proof:

if part: We assume that tr(P " �T ) � tr(T ). �T 0 = �T � �P , so by lemma A.2

tr((P k T 0) " �T 0) = tr(P " �T 0) \ tr(T 0): (1)

By the supposition, tr(P " �T 0) � tr(T ) and therefore

tr(P " �T 0) \ tr(T 0) � tr(T ): (2)

By equations 1, 2, we have:

tr((P k T 0) " �T 0) = tr(P " �T 0) \ tr(T 0) � tr(T ): (3)

P is totally de�ned, so a trace t in (P k T 0) " �T 0 is unde�ned i� t is an unde�ned trace in T 0.
Due to the way in which T 0 is generated from T which is a totally de�ned process (de�nition
5.1, step 2), and because T 0 does not contain � actions, t is an unde�ned trace in T 0 i�
t 2 (tr(T 0)� tr(T )). Therefore a trace t in (P k T 0) " �T 0 is unde�ned i� t 2 (tr(T 0)� tr(T )).
But by equation 3, for any trace t in (P k T 0) " �T 0, t 2 tr(T ). So (P k T 0) " �T 0 does not
have unde�ned traces. By lemma 4.1, (P k T 0) does not have unde�ned traces either.

only if part: We assume that (P k T 0) does not have unde�ned traces. Suppose that P " �T
can perform a trace that does not belong to tr(T ). Then obviously, by �T 0 = �T , P " �T 0

can also perform t. Let s be a pre�x of t such that T can perform any proper pre�x of s
but not s itself. Due to the way in which T 0 is generated from T (de�nition 5.1, step 2), and
since s is composed of actions that belong to �T , s is an unde�ned trace in T 0. But then
by the de�nition of the composition operator, s is also an unde�ned trace in (P " �T 0) k T 0.
By lemma A.1, (P " �T 0) k T 0 = (P k T 0) " �T 0. As a result (P k T 0) " �T 0 has unde�ned
traces. Then by lemma 4.1 so does (P k T 0), which contradicts the assumption. We therefore
conclude that tr(P " �T ) � tr(T ). 2
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Rule 5.1 For any two processes P, Q and two sets of actions L, M:

P " L k Q "M = (P k Q) " (L[M) i� ((�P �L)\ (�Q[M))[ ((�Q�M)\ (�P [L)) = ;:

Proof:

only if part: Let us �rst assume that

P " L k Q "M = (P k Q) " (L [M):

Both sides of the equation compose the same processes P and Q, and di�er on the stage at
which actions are hidden. The left-hand side formula hides before composing, therefore we
have to ensure that actions that are hidden on the left-hand side formula do not need to
synchronise in the right-hand side one, i.e.,

(�P � L) \ �Q = ; (4)

(�Q�M)\ �P = ;: (5)

On the left-hand side equation, actions in (�P �L) and �Q�M are hidden for P;Q respec-
tively. But on the right-hand side equation, actions in �P � (L [M) and �Q� (L [M) are
hidden for P;Q respectively. Therefore, it must hold that

�P � L = �P � (L [M) =) �P � L = (�P � L)�M =) (�P � L) \M = ; (6)

�Q�M = �Q� (L [M) =) (�Q�M) \ L = ;: (7)

By equations 4, 5, 6 and 7, we conclude that

((�P � L) \ (�Q [M))[ ((�Q�M)\ (�P [ L)) = ;:

if part: Can be proven similarly. Moreover, it is trivial to show that the condition guarantees
equality of alphabets for (P " L k Q "M) and (P k Q) " (L [M). 2

Lemma A.1 For any two processes P;A : (P k A) " �A = (P " �A) k A.

Proof: By substituting �A for L, A for Q and �A for M in 5.1. The condition is obviously
satis�ed, therefore:

(P " �A) k (A " �A) = (P k A) " (�A [ �A) =) (P " �A) k A = (P k A) " �A:
2

Lemma A.2 For any two processes P , T s.t. �T � �P , tr((P k T ) " �T ) = tr(P "
�T ) \ tr(T ).

Proof: From lemma A.1, tr((P k T ) " �T ) = tr((P " �T ) k T ).

tr((P " �T ) k T )
def
=

ft j (t " �(P " �T ) 2 tr(P " �T ))^ (t " �T 2 tr(T ))^ (t 2 (�(P " �T ) [ �T )�)g =

ft j (t " (�P \ �T ) 2 tr(P " �T )) ^ (t " �T 2 tr(T ))^ (t 2 (�T )�)g
�T��P
=

ft 2 (�T )� j (t 2 tr(P " �T )) ^ (t 2 tr(T )g =

ft 2 (�T )� j t 2 (tr(P " �T ) \ tr(T ))g:
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But t 2 (tr(P " �T ) \ tr(T )) implies that t 2 (�T )�. We therefore conclude that:

tr((P k T ) " �T ) = tr((P " �T ) k T ) = tr(P " �T ) \ tr(T ): 2

Lemma A.3 Let I; Z be two processes such that �I � �Z. Then:

(Z � (Z k I))) (tr(Z " �I) � tr(I)).

Proof: (Z � (Z k I)) ) ((Z " �I) � ((Z k I) " �I)). But given that � is stronger than
trace equivalence,

tr(Z " �I) = tr((Z k I) " �I): (8)

Also, by the fact that �I � �Z and by lemma A.2,

tr((Z k I) " �I) = tr(Z " �I) \ tr(I): (9)

By equations 8 and 9, tr(Z " �I) = tr(Z " �I) \ tr(I)) tr(Z " �I) � tr(I). 2
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