
Heterogeneous Knowledge

Representation: integrating

connectionist and symbolic

computations

Danilo Montesi
�

Department of Computing, Imperial College

180 Queen's Gate, London SW7 2BZ, UK

d.montesi@doc.ic.ac.uk

Technical Report DOC 95/19

Abstract

Heterogeneous knowledge representation allows to combine several

knowledge represent techniques. For instance connectionist and sym-

bolic systems are two di�erent computational paradigms and knowl-

edge representation tools. Unfortunately, the integration of di�erent

paradigms and knowledge representations is not easy and very often

is informal. In this paper, we propose a formal approach to integrate

these two paradigms where as symbolic system we consider a (logic)

rule based system. The integration is operated at language level be-

tween neural networks and rule languages. The formal model that

allow the integration is based on constraint logic programming and

provide an integrated framework to represent and process heteroge-

neous knowledge. In order to achieve this we de�ne a new language

that allow to express and model in a natural and intuitive way the

above issues together with the operational semantics.

�The work of this author has been partially supported by the EU Human Capital and

Mobility grant N. ERBCHBGCT930365 \Compulog-Group".

1

1 Introduction

Knowledge bases are designed to solve problems on a speci�c domain acquir-

ing, representing and processing knowledge expressed in symbolic form. In

general, computer science is confronted with two types of problems. They can

be classi�ed as low entropy and high entropy problems. By low entropy prob-

lems we mean problems which are clearly and completely de�ned through

a programming language. This class deals with structured problems such

as sorting, searching, data processing and deduction systems. Indeed, many

knowledge bases use rule languages to infer new knowledge from previous

one. For instance, from the fact that socrates is a human (human(socrates))

and the knowledge that any human is mortal (mortal(X) human(X)) we

can derive that socrates is mortal (mortal(socrates)). High entropy prob-

lems are those that do not allow a complete description of the problem or if

such description is available it would be very complex and not appropriate

to encode uncertainty. For instance, object and speech recognition are high

entropy problems for which a complete description of the problem is not re-

alistic [9]. Symbolic systems have been widely used to express and solve low

entropy problems [2]. The main advantages of these systems are related to

fact that rely on a logical framework and thus are declarative and with a

formal semantics [12]. In addition, program optimization based on partial

evaluation and semantics preserving transformation have solved many ine�-

ciency of these systems [18]. Finally, they allow to construct a explanation of

the result in term of premises/consequences. In short, symbolic systems rely

on a well established knowledge representation and processing framework.

However, symbolic systems are not appropriate to handle high entropy

problems where the description of the problem (or its solution) through a

programming language is very di�cult, time consuming and thus expensive.

For instance, object recognition is hard to express with any programming

languages (i.e., imperative, logic or functional). Imagine how di�cult it

would be to write a logic program that would recognize a chair among other

objects in a room. The resulting program may not cover all the possible

con�gurations due to a lack of the full description of the object to recognize

or not being able to recognize a folding chair as the target object. Even if

such program is available it would be extremely complex and not appropriate

to recognize objects that are not encoded in the program. From here the need

to have a computational paradigm which can learn and adapt to the source

of objects it needs to recognize, and - most important - does not need a

complete description of the problem through a programming language.

The above drawback of symbolic systems have lead to a new paradigm to

solve high entropy problems. Such model has been called (Arti�cial) Neural

2

Networks (NN) since it present analogy with the principles of biological enti-

ties [7, 14]. Basically, a neural network consists of many processing neurons

linked together through connections. Each neuron receives input signal via

weighted incoming connections, and responds by sending a signal to all of the

neurons it has outgoing connections to. Neural networks are superior with

respect to rule based systems at problems involving a massive amount of

uncertain and noisy data where it is important to extract the relevant items

quickly. The learning capability with the distributed representation (over the

neurons) make them candidates for such problems. Learning capability is not

an exclusive feature of neural networks. Knowledge bases too have learning

capability [4, 16, 11]. However, such capability is not enough in the contest

of uncertain and noisy data such as object and speech recognition. Thus

inductive logic programming is not appropriate for those problems. Another

force of neural networks is their ability to generalize from examples. They

will always give reasonable answers by interpolating from the examples (pro-

vided during training) in some way. The important features of NN approach

are the powerful learning algorithms. Training instead that of programming

will help to reduce the cost and time of software development in many cases

where high entropy problems are involved. The distributed representation

of data is very robust, insensitive to inaccuracies, noise incompleteness and

even physical damage.

At this point we should clarify the relationship among neural network

and rule languages. Both the approaches have the same expressive power

since they are Turing complete. Thus any problem that can be solved with

one approach can be solved with the other too. Obviously, the di�erence

is not on the expressive power since they compute the same class of func-

tions but on using the most appropriate paradigm to represent and solve a

problem. Since the above two paradigms seem to complement each other

they should be combined to solve complex problems [17]. Indeed, very of-

ten we need to handle both high and low entropy problems and this results

into integrated paradigms to acquire, represent and process heterogeneous

knowledge. Consider for instance the classic AI problem where a monkey,

a chair and a banana are in a room in di�erent positions. In order to take

the banana that is hanged from the ceiling the monkey should recognize the

banana, the chair, infer that it has to walk to the chair, take it, push it below

the banana and jump on the chair to take the fruit. This implies a inter-

leaving between high (connectionist) computation such as object recognition

(i.e., banana and chair) and low entropy (symbolic) one such as deductive

reasoning (i.e., if it is a banana, walk to the chair, push the chair below the

banana, jump on the chair and then take the banana).

3

The contribution of this paper is to provide a formal model to integrate

neural networks and rule languages following [15]. This integration allow to

express the cooperation among connectionist and symbolic paradigms in a

clear and sound way while preserving all the features of both these paradigms.

Thus the rule language relies on the logical framework that need to be ex-

tended to express neural networks. The derivation of new knowledge through

rules is expressed extending the logical framework to cope with neural net-

works while preserving the nice features of the logical systems in order to

take full advantage of the body of results already developed in this area (see

[21] for a survey of the state of the art). On the neural networks side we do

not make any restriction on its topology, computational or learning proper-

ties. We do not aim to transform one paradigm into the other or to claim

that one of them can be avoided [22]. Indeed, there are several approaches in

literature that follow these approach. For instance some of them transform

the neural networks into propositional logic [1] and show that are equivalent.

Others transform the propositional logic into a neural network [20].

The basic idea of our approach is to use constraint logic programming

(CLP(X)) to model the integration of rule languages (expressed as Horn

clause language) with neural networks (expressed as constraints). The im-

portance of a clear and sound integration between the two paradigms is

obvious. The integration of these paradigms can succeed in solving complex

problems that require heterogeneous knowledge bases [19]. There are two

important points in this plan. The former is to use the well known paradigm

of constraint logic programming and the already developed results [8]. The

latter is that neural networks can be trained and tested as a stand alone

component and then \plugged" into a rule system and cooperate with it.

Thus the neural networks does not need any change to cooperate with the

rule based system. The formal approach to integration rely on the fact that

neural networks can be expressed as a set of equations and thus as constraints

over an appropriate domain. The original purpose of CLP(X) was to inte-

grate, in a clear and sound way, constraint and logic programming. In the

general scheme X stands for a constraint domain. The integration of neural

networks with rule languages is inherited from the CLP(X) schema where

the constraint domain X will be specialized to express the neural network

and the logic programming side expresses the rule language.

The rest of the paper is organized as follow. Section 2 introduces the

basic idea as well as the general architecture for the resulting heterogeneous

knowledge base. Sections 3 and 4 recall the relevant concepts on neural

networks and constraint logic programming respectively. Section 5 provides

the formal model to integrate the above two paradigms de�ning the resulting

4

language and its operational semantics. Finally, Section 6 concludes the

paper and sketches some future applications.

2 An overview of the approach

There are several ways to combine two systems. For instance serial or par-

allel composition. Unfortunately, however, these form of composition do not

allow to integrate the reasoning model of di�erent paradigms. Ideally, an in-

tegrated model should allow to transform an input (K1) into an output (Kt)

through a derivation relation that can model both the logic (or symbolic) and

connectionist reasoning. According to this vision we can de�ne such com-

putation as a �nite derivation of the input into the output (K1 ` : : : ` Kt)

according to some derivation relation `. Since our system allow to combine

heterogeneous knowledge, all the elements of the above computation have

two components: the logic part is denoted with G and the connectionist

one is denoted with N . Thus the above computation can be rewritten as

N1 j G1 ` : : : ` Nn j Gm. The symbol `j' has not meaning and is introduced

just to separate the two components and will be used only in the examples.

The derivations relation ` can be denote more precisely with `L;C to high-

light the heterogeneous reasoning model. The above derivation shows the

logic and connectionist reasoning expressed through the derivation relation.

Under this approach any element of the derivation is derived from the previ-

ous one. For instance Nk j Gr is derived from N i j Gj by means of a simple

logic step (denoted `L) if k = i and r = j + 1 or a simple connectionist step

(denoted `C) if k = i + 1 and r = j or a combined logic and connectionist

step (denoted `L;C) if k = i + 1 and r = j + 1. The case of `L;C is the

most general and the others (`L and `C) can be easily derived from this one.

In the following ` stands for any derivation relation (logic, connectionist or

both). The general architecture of the resulting system is depicted in Figure

1. 1.

The above vision leads to several questions. How can we integrate the

logic and the connectionist paradigms? What is a formal model for the re-

sulting model? How can we preserve the nice features of both the paradigms?

These questions will be answered in the rest of the paper after recalling the

concepts of neural networks and constraint logic programming. For the time

being, we note that constraint logic programming was developed to integrate

constraint and logic programming in a clear and sound framework. There-

fore it relies on a logical framework while preserving the nice features of logic

programming such as declarativeness and formal semantics [8]. Since neural

networks are expressed through equations we can express a whole network

5

Neural Network

Rule based system

Figure 1: Coupling neural networks with rule based systems

A B

C

Figure 2: Monkey and banana problem

as a constraint program. Informally, this correspond to model the neural

network as a set of equations. These equations will relate the inputs of a

network with the outputs. The network should be trained to perform its

task as a stand alone component and then plugged into the knowledge base.

This is exempli�ed next leaving out some details.

Example 2.1 Consider the monkey-banana problem described in Section 1

and depicted in Figure 2. The monkey, the chair and the banana have dif-

ferent positions that denoted with A;B and C respectively.

Consider the following functions describing the state transformation (on

the left) and the relations describing the problem (on the right)

walk : position� position� state! state monkey(position; state)

push : position� position� state! state chair(position; state)

jump : state! state onthechair(state)

The objects to recognize are the banana and the chair. In addition we need

to locate them assigning a position together with the monkey. This is a

6

suitable task for neural networks. Assume that we already have a network

that would recognize bananas, chairs, and monkeys and locate them provid-

ing their position [10]. Such a network takes as input an image, and provide

for the recognized objects their positions. For instance assume that this can

be expressed with NN(Image; monkey; A) in the case of the monkey. Then the

following knowledge base allow to solve the monkey-banana problem through

cooperation of neural networks and rule based system.

f1 monkey(A; s0) NN(Image; monkey; A)

f2 chair(B; s0) NN(Image; chair;B)

r1 taken(S) NN(Image; chair;C) j onthechair(C; S)

r2 onthechair(X;jump(S)) monkey(X; S); chair(S;X)

r3 monkey(Y; walk(X; Y;S)) monkey(X; S)

r4 monkey(Y; push(X; Y;S)) monkey(X; S);chair(X; S)

r5 chair(Y; walk(X;Y; S)) chair(X; S)

r6 chair(Y; push(X;Y; S)) monkey(X; S);chair(X;S)

Note that fact f1 asserts that monkey has position A and state s0. The

position is computed by the network that takes as input the image of Fig-

ure 2 and computes as output the recognized object and its position (using

NN(Image; monkey; A)). Similarly, in fact f2 the chair and its position is

computed. Rule r1 states that taken(S) is true if the network recognize the

banana, provides its position and this make onthechair(C; S) true. Rule r2
says that the monkey can jump on the chair if it has the same position of

the chair. The rest of the rules just allow the monkey and the chair to move

under the banana.

In the next two sections we introduce the necessary concepts of neural

networks and constraint logic programming.

3 Neural Networks

An arti�cial neural network consists of a network of neurons that can be

expressed in a weighted directed graph G = (V;A;W), where V is the set

of vertices, A a set of directed edges and W a set of edge weights [7]. Each

vertex in the graph represents an arti�cial neuron. An important topological

feature of a network is its layer structure. In layered networks V can be

partitioned into a number of pairwise disjoint subsets V = V 0[V 1[: : :[V L

in such a way that the neurons in layer l only have edges to neurons in layer

l+1 and l� 1. We enumerate neuron number i within layer l by v
(l)
i and the

corresponding state by x
(l)
i . Since multi layered networks are the most general

7

.

.

.Inputs Outputv
i

x
i

theta i

Figure 3: An arti�cial neuron

in the rest of the paper we will consider layered networks. Each neuron vi, as

shown in Figure 3, has two attributes: the state xi and the threshold �i. These

attributes can be discrete or continuous valued. The state vector de�ned by

all the neuron is denote x. The corresponding state space is denoted
S . The

threshold is a measure of the input strength from neighbour neurons needed

to activate neuron i. The edges of the graph are referred to as connections,

as they connect the neurons. With each connection in the graph there is

associated an attribute called the weight, representing the strength of the

connection. Connection weights are usually real valued. A connection with

a positive weight is called excitatory. A connection with a negative weight

is called inhibitory. We denotes the connection from neuron j layer l � 1 to

neuron i in layer l by wl
ij . The matrixW , where wij is the in row i, column j,

is called the connectivity matrix. The corresponding weight space is denoted

W . Layered networks have a separate matrix for each layer. The network's

interface to the outside world is de�ned by partitioning the neurons into input

neurons, output neurons and hidden neurons: V = VI [VO [VH . This is

reected in the state vector where xI ; xO and xH denotes the corresponding

states of the layers. The union of input and output neurons is called the

visible units denoted VI=O. The input and output neurons (VI and VO) are

accessible to the outside world. The rest of the neurons, VH are hidden from

the outside world as shown in Figure 4.

Neural networks use the linear sum of states of neighbour neurons and

connection weight in order to determine the next state as de�ned by

u
(l)
i (t) =

nX

j=1

w
(l)
ij x

(l�1)
j (t)� �

(l)
i (t) (1)

where l denotes the layer, x(l�1)j (t) the state of the neuron j in layer l � 1

at time t. The weight between neuron j and i (in layer l) is denoted with

w
(l)
ij . The threshold of neuron i is �

(l)
i (t). Neural networks can be described

as dynamic systems and have two di�erent operational modalities: learning

and computation. As dynamical systems both learning and computation

are described as processes of moving in space. Learning in neural networks

8

Output Units (Layer)

Hidden Units (Layer)

Connections

Connections

Input Units (layer)

. . .

. . .

. . .

(Encoded information)

Figure 4: Multi layer Network

entails training the network by presenting training patterns to its visible

neurons. The aim of training is to set the connection weights and neurons

thresholds to some proper values, so that the desired network computation

is obtained. The learning process is therefore a search in weight space
W .

A discussion on learning methods and algorithms is behind the scope of this

paper. Once the weights are computed the network is ready to provide its

expected behavior. Indeed, in the computation mode, the network computes

a function (a mapping) from input space to output space. Given an input xI,

the network computes an output vector xO, as determined by its connections

W . The expected computation (or dynamic behavior) of the network is

that every neuron applies some activation rule to enter a new state 1. The

activation rule is a function of the states of the neurons that have an outgoing

connection to the neuron in question and the connection weights. A neuron

applies its activation rule gi to the formula (1) to determine the next internal

state as de�ned by

x
(l�1)
i (t+ 1) = gi(u

(l)
i (t)): (2)

Let us now turn out attention to constraint logic programming.

1This can be done synchronous or asynchronous. There are also di�erences related to

the type of network: feed-forward or recurrent but these issues are not relevant for our

objective.

9

4 Constraint logic programming

Constraint logic programming (CLP) is a merge of two declarative paradigms:

constraint solving and logic programming [8]. Viewing constraint logic pro-

gramming rather broadly it involves the incorporation of constraints and

constraint solving methods in a logic based language. This characterization

suggests the possibility of many interesting languages, based on di�erent con-

straints and di�erent logics. However, work on CLP has almost exclusively

been devoted to languages based on Horn clauses. We briey introduce the

general CLP(X) schema, where X suggest that many di�erent constraints

can be accommodated over a generic domain X. Speci�cally for any signa-

ture �, X is a pair: the domain of computation D and the constraints L. A

constraint logic program is a collection of rules of the form

h c; b1; : : : ; bn: (3)

where c is the conjunction of constraints and h; b1; : : : ; bn are ordinary atoms

as in logic programming [12]. Sometimes we represent the rule by h B

where B is the collection of atoms and constraints in the body. A fact is a

rule h c. A goal (or query) is a rule c; b1; : : : ; bn. The informal meaning

of a rule is: \if b1; : : : ; bn is true and c is solvable, then h is true". The notion

of solvability is related to the domain X. For instance in CLP(R) [8] has

arithmetic constraints and computes over the real numbers where the signa-

ture � has the function symbols + and �, and the binary predicate symbols

=, < and �. If D is the set of real numbers then D interpret the symbols

of � as usual (i.e., + is interpreted as addition, etc). Then L are the con-

straints and R = (D;L) is the constraint domain of arithmetic over the real

numbers. If we omit from � the symbol �, then the corresponding constraint

domain RLin is the constraint domain of linear arithmetic over real numbers.

Similarly if we restrict � to +;=, we obtain the constraint domain RLinEqn,

where the only constraints are linear equations. Thus the constraint domain

is built selecting the relevant elements for � and providing an appropriate

interpretation. Finally we will identify conjunction and multiset union.

5 The Logic(NN) language

To integrate neural networks with rule languages we note that equations

(1) and (2) allow to express a single layer in a neural network. Thus a set

of the above equations will allow to express a whole neural network. To

this purpose we abstract from the details about topology network, learning

algorithms and type of activation rule (continuous/discrete). This will allow

10

us to integrate any neural network regardless to the speci�c features into a

rule language. According to the above view a neural network is expressed as

a set of equations (or constraints) over real or boolean domain. Thus the set

of constraints can be seen as a constraint program where the input variables

are xl and the output variable are x0. Thus the constraint program of a

network can be expressed as:

Program Neural Network

Input: xl

Output: x0

begin

uli(t) =
Pn

j=1 w
l
ijx

l�1
j (t)� �li(t)

...

u1i (t) =
Pn

j=1 w
1
ijx

0
j(t)� �1i (t)

xl�1i (t+ 1) = gi(uli(t))
...

x0i (t+ 1) = gi(uli(t))

end.

Once that the network is interpreted as constraint program it is simple to

model its integration with a rule language. We need just to recall that the

constraint logic programming allow to de�ne constraints in rule bodies Thus

the resulting rules have the form

h(x) NN(xl; x0); b1(x); : : : ; bn(x):

where b1(x); : : : ; bn(x) and h(x) are atoms and NN(xl; x0) is a conjunction

of constraints (the constraint program). The shared variables between the

constraint part and the logic part of the above rule represents the commu-

nication channels between the connectionist and symbolic systems. In the

monkey and banana example, the inputs of the network is the Image that

does not come from the logic part (in this speci�c case) but from the environ-

ment. The output variables of the network are: monkey, chair and banana

and their positions: A, B and C. In this example the object recognition and its

position is used in the logic part to deduce new information such as take(S).

Thus the shared variable among the constraint and the logic part (or the

connectionist and the symbolic systems) (A; B; C) express the communication

channels. Note that a fact is a rule with empty body and a query has empty

head.

In the Neural Network program we have not de�ned the activation

function gi. This is due to the fact that the activation function can be non

linear. For instance in the Boltzmann machine, the state of a neuron can

11

only be speci�ed as a probability. The probability that a neuron is active is

then

P (xi = 1) =
1

1 + exp(�2ui=T)
(4)

where T is the temperature. T may be viewed as a measure of the noise in

the system and a�ect the probability distribution of states. Other examples

of activation are: McCulloch-Pitts' rule, sigmoid type rule, simple linear

rule and stepwise linear rule. Since we want to be parametric with respect

to activation we will consider the activation function built in within the

constraint domain.

Thus the resulting constraint domain is de�ned as a triple (D; gi;LNN).

where RLinEqn = (D;LNN) and gi is an activation function. Finally, note

that a test for the satisfability of constraints is required. The constraint

c is said to be satis�able i� D j= 9c (where 9 denotes the existential clo-

sure of formula). The constraints c is a conjunction of well formed formula

built over the language LNN and represent a neural network. Thus the re-

sulting language that expresses the integration of neural networks and rule

languages is called Logic(NN) and is a set of rules of the form (4) where

the constraint domain is RLinEqn extended with a uninterpreted function gi.

Therefore a heterogeneous knowledge base (HKB) is a set of rules expressed

in Logic(NN). In order to understand the computational model of the HKB

we now turn our attention to the operational semantics of Logic(NN).

5.1 Operational semantics

We present the operational semantics as a transition system on states. Con-

sider the tuple hA;Ci where A is a multiset of atoms and constraints and

C is multiset of constraints. There is one other state, denoted by fail. We

assume as give a computation rule which select a transition type and an ap-

propriate element of A (if necessary) for each state. The transition system is

also parameterized by a predicate consistent, which we will discuss later. An

initial goal G for execution is represented as a state by hG; ;i. The transition

in the transition systems are:

T1 hA [a;Ci `L hA [B;C [(a = h)i.

If a is selected by the computation rule, a is an atom, h B is a

rule of HKB, renamed to new variables, and h and a have the same

predicate. The expression a = h is an abbreviation for the conjunction

of equations between corresponding arguments of a and h.

12

T2 We say a is rewritten in this transition

hA [a;Ci `L fail

if a is selected by the computation rule, a is an atom and for every rule

h B of HKB, h and a have di�erent predicates.

T3 hA [c; Ci `coop hA;C [ci

if c is selected by the computation rule and c is a constraint.

T4 hA;Ci `C hA;Ci

if consistent(C).

T5 hA;Ci `C fail

if :consistent(C).

The transitions T1 and T2 arise from resolution denoting the logic steps.

T3 introduces constraints into the constraint solver (which correspond to in-

voke the neural network) denoting the cooperation of the two systems. T4
and T5 test whether the constraints are consistent, that is, if the neural

network computes a suitable outputs for the given inputs denoting connec-

tionist steps. We write ` to refer to a transition of arbitrary type. The

predicate consistent(C) expresses a test for consistency of C, that is, the

outputs of the network are computed for some inputs. Usually it is de�ned

by: consistent(C) i� D j= 9C, that is, a consistency test over the extended

RLinEqn domain that model the neural computation.

6 Conclusion

We have presented a formal technique that allow to express heterogeneous

knowledge bases integrating neural networks and rule languages. This allow

the smooth integration of knowledge representation through logic and con-

nectionist models. The resulting model is de�ned in the well known setting

of constraint logic programming and has a formal model both in term of lan-

guage and operational semantics. The later also provide a simple top-down

execution model.

We believe that this approach is very promising for further investigations.

From a practical point of view we are studying how to use the combined logic

and connectionist paradigms for image indexing and retrieval in multimedia

database systems [5, 6]. From a theoretical point of view we intend to extend

it to allow modular rule bases and several neural networks to express more

13

complex problem using structured modular systems both in the connectionist

and logic paradigms [3, 13].

Ackowledgement I would like to thank Ursula Iturraran for friutful discus-

sions on arti�cial neural networks.

References

[1] A. Aiello, E. Burattini, and Guglielmo Tamburrini. Purely Neural, Rule-

Based Diagnostic Systems. Technical Report 100/93/IC, Instituto di

Cibernetica CNR, 1993.

[2] A. Barr and E. A. Feigenbaum. The Handbook of Arti�cial Intelligence.

Addison-Wesley, 1982.

[3] M. Bugliesi, E. Lamma, and P. Mello. Modular Logic Programming.

Journal of Logic Programming, 19/20:443{502, 1994.

[4] J. G. Carbonell. Machine Learning: Paradigms and Methods. The MIT

Press, 1990.

[5] P. Costantinopoulos, J. Drakopoulos, and Y. Yeorgaroudakis. Retrieval

of Multimedia Documents by Pictorial Content: A Prototype system.

In Proc. Int'l Conf. Multimedia Information Systems, pages 35{48.

MacGraw-Hill, 1991.

[6] A. E. G�unhan. Neural Network based retrieval of information from

Database Systems State of the Art and Future Trend. Technical Report

TR 25/94, Department of Information Science, University of Bergen,

1994.

[7] J. Hertz, A. Krogh, and R. G. Palmer. Introduction to the Theory of

Neural Computation. Addison-Wesley, 1991.

[8] J. Ja�ar and M. J. Maher. Constraint Logic Programming: a Survey.

Journal of Logic Programming, 19/20:503{581, 1994.

[9] D. Jones and S. P. Franklin. Choosing a Network: matching the ar-

chitecture to the application. In A. Maren et al., editor, Handbook of

Neural Computing Applications, pages 219{232. Academic Press, 1990.

ISBN 0125460902.

14

[10] J. Koh, M. Suk, and S. M.Bhandarkar. A multilayer self-organizing

feature map for range image segmentation. Journal of Neural Networks,

8(1):67{86, 1995.

[11] N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques

and Applications. Ellis Horwood, 1994.

[12] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, 1987.

Second edition.

[13] A. Maren. Hybrid and Complex Networks. In A. Maren et al., editor,

Handbook of Neural Computing Applications, pages 203{218. Academic

Press, 1990. ISBN 0125460902.

[14] E. Masson and Y. J. Wang. Introduction to computation and learning

in arti�cial neural networks. European Journal of Operational Research,

47:1{28, 1990.

[15] D. Montesi. A Formal Model to Integrate Rule Languages and Arti�cial

Neural Networks. In Int. Symp. on Knowledge Acquisition, Representa-

tion and Processing, 1995.

[16] S. Muggleton. Inductive Aquisition of Expert Knowledge. Addison-

Wesley, 1990.

[17] S. Y. Nof. Information and Collaboration Models of Integration. Kluwer

Academic Publishers, 1994. NATO ARW Series.

[18] A. Pettorossi and M. Proietti. Transformation of Logic Programs: a

Foundation and Techniques. Journal of Logic Programming, 19/20:261{

320, 1994.

[19] P. Smolensky, G. Legendre, and Y. Miyata. Integrating Connectionist

and Symbolic Computation for the Theory of Language. In V. Honavar

and L. Uhr, editors, Arti�cial Intelligence and Neural Networks: Steps

toward Principled Integration, pages 509{530. Academic Press, 1994.

[20] G. G. Towell and J. W. Shavlik. Knowledge-based arti�cial neural net-

works. Arti�cial Intelligence, 70:119{165, 1994.

[21] Special Issue: Ten years of Logic Programming. Journal of Logic Pro-

gramming, volume 19/20. 1994.

[22] Y.Pao and D. J. Sobajic. Neural Networks and Knowledge Engineering.

IEEE Tran. on Knowledge and Data Eng., 3(2):185{192, 1991.

15

