
Transactions and Updates in Deductive

Databases

Danilo Montesi Elisa Bertino Maurizio Martelli

Department of Computing, Imperial College

180 Queen's Gate, London SW7 2BZ, UK

D.Montesi@doc.ic.ac.uk

Dipartimento di Scienze dell'Informazione

Universit�a di Milano

Via Comelico 39, 20135 Milano, Italy

bertino@hermes.mc.dsi.unimi.it

Dipartimento di Informatica e Scienze dell'Informazione

Universit�a di Genova

Via Benedetto XV, 3 16132 Genova, Italy

martelli@disi.unige.it

Technical Report DOC 95/2

Abstract

In this paper we develop a new approach providing a smooth integration of

extensional updates and declarative query language for deductive databases.

The approach is based on a declarative speci�cation of updates in rule bodies.

Updates are not executed as soon are evaluated. Instead, they are collected

and then applied to the database when the query evaluation is completed.

We call this approach non-immediate update semantics. We provide a top-

down and equivalent bottom-up semantics which reect the corresponding

computation models. We also package set of updates into transactions and we

provide a formal semantics for transactions. Then, in order to handle complex

transactions, we extend the transaction language with control constructors

still preserving formal semantics and semantics equivalence.

1

1 Introduction

In recent years, deductive databases have been the focus of intense research, which
has brought strong advances in theory, systems and applications. The major advan-
tages of deductive databases are their formal setting based on logic paradigm [31]
and their computational models for query evaluation, such as top-down or bottom-up
evaluation [5]. Generally speaking, a database language should express both struc-
tural and behavioral properties [16]. Structure deals with static properties while
behavior concerns dynamic properties. Structural properties have been investigated
in relational and deductive databases with particular emphasis on the expressiveness
and e�ciency of query languages.

Several proposals for the inclusion of update capabilities in declarative languages
have been presented. In general all these proposals are based on including in rules,
in addition to usual predicates, special atoms denoting updates1. However, all these
proposals are based on the immediate update semantics. Under that semantics,
an update is executed as soon as it is encountered during the evaluation of a rule,
containing the update atom. Thus the declarativeness of the language is lost due
to the introduction of a sequential order among updates inside the rules of the
programs. Indeed, because of the updates performed during a goal evaluation, the
answers returned by the goal may di�er depending on the rule evaluation order
choosen by the query processor. This is a �rst drawback of such update approach.

Existing proposals can be classi�ed depending on whether updates appear in
the head or the body of a rule. The presence of updates in rule body leads to
top-down computations, whereas the presence of updates in rule heads leads to
bottom-up computations. That is, bottom-up and top-down reasonings are no more
equivalent. This is a second drawback. Indeed, it is desirable to answer queries by
computing forward from the base relations, thus obtaining a set-oriented behavior.
However, bottom-up evaluation does not take advantage of constants, that may
occur in queries, for restricting the search space. Such a restriction is a by-product
of top-down reasoning. Thus computational models, where top-down and bottom-
up are combined, provide the appropriate approach to e�cient evaluation strategies
[5].

Another major drawback is that updates are often forced to be serially executed
rather than in parallel. However, many operations in real applications are inher-
ently parallel. This is the case of a bank transfer where insertion and deletion can be
performed in parallel instead than is sequence. Similarly, two independent deposit
transactions can be performed in parallel. Finally, immediate updates semantics
leads to rule computations which go through sequences of states. This implies a
complex rules semantics [1]. Despite these drawbacks, immediate updates seman-
tics is the default in many current deductive database systems where updates are
performed in sequence.

In order to avoid the above drawbacks, we consider a di�erent approach to the
integration of updates and a declarative query language. Our approach can be sum-

1We will elaborate more on this later on.

2

marized as follows. The intensional database consists of a set of rules, which can have
update atoms in their bodies. Whenever, a rule with updates, is evaluated as part
of a goal evaluation, the non-immediate semantics is used for these updates. Thus,
these updates are applied to the extensional database only when the goal evaluation
is completed. In addition to the rule language, used to write the rules, we provide
a transaction language. Such language is used for writing the deductive database
applications. In its simplest form, a transaction is a goal. Goals can be combined,
by using sequence and iteration constructors, to form complex transactions. Trans-
actions, either simple or complex, are atomic execution units, according to standard
transaction models. Within a complex transaction, an immediate update semantics
is used among goals. Thus, the update visibility model of our transaction language
is as follows:

� each goal does not \see" the e�ects of its own updates, since these are installed
only after the goal evaluation is completed;

� a goal in a transaction sees the updates performed by previously executed
goals within the same complex transaction.

Note that this model is fully in accord with database languages, like SQL, and
current transaction models. For example, in a transaction written in SQL, if an
update statement is peformed before a query statement, the query will see the e�ects
of the update statement. Indeed, a transaction always \sees" its own updates.

Our approach avoids the drawbacks of other deductive database languages with
updates, and allows real applications to be modeled. In particular, the rule language
models the dynamic behavior of the database system, by preserving at the same
time the equivalence of top-down and bottom-up computations. Thus top-down
and bottom-up evaluation are reconciled.

Updates, in our approach, are computed according to two phases. During the �rst
phase updates are collected and their consistency is checked2. In the second phase,
the collected updates are executed altogether. Therefore, rule computations do not
go through sequences of states, performing updates in sequence, but updates are
executed in parallel, that is, they do not form a sequence but a set. Such execution
models a simple transaction where all-or-none of the updates are executed. In
order to model complex transactions, i.e. transactions with control constructors, the
transaction language is extended with explicit constructors external to rule language.
In this way, whenever required, updates can form a sequence. Thus, the computation
of a complex transaction goes through a sequence of states, without a�ecting the
nice feature of our approach for the rule language.

Once the language (with a four steps) semantics is provided, we have a two
interesting equivalence notions: equivalence between transactions, and equivalence
between databases. In our approach a transaction may contain queries, updates
and control constructors. Thus we have a uni�ed framework to model static and
dynamic features while keeping the nice feature of the declarative query language.

2A set of updates is said to be consistent if does not contain complementary updates.

3

This uni�ed framework allows to investigate equivalence properties, not only between
sequences of updates (see for instance [4]), but also to take into account queries
and control constructors, thus improving the generality of equivalence towards real
transactions.

The formal setting proposed here has several interesting extensions. First of all,
equivalence among transactions is used to optimize transaction executions by means
of transaction and database transformations. Transaction optimization through
static analysis has been developed in [7, 8]. A second extension is towards a more
general data model such as object oriented in the deductive context [9, 11]. Fi-
nally, other relevant developments include semantic integrity constraints [42]. Even
if important, we do not consider in this paper algorithmic, complexity and imple-
mentation issues; we focus here on the language and its semantics and compare with
existing approaches. Algorithms to execute and optimize transactions are described
in the above papers. The implementation issues are described in [6].

In order to provide a formal foundation for our language and semantics, we model
the language in terms of constraint logic programming (CLP) [36], one of the most
relevant research directions in the logic programming area. CLP integrates two of
the most interesting programming paradigms, namely constraint and logic program-
ming. Updates in rule bodies are speci�ed through constraints [12]. Therefore, our
language inherits the formal setting of CLP, in a similar way as Datalog inherits the
formal setting of logic programming.

The remainder of this paper is organized as follows. Section 2 introduces the
basic notions of deductive databases and reviews related works. Section 3 informally
introduces our approach to updates and queries integration. Section 4 presents the
design of the U-Datalog language to express updates and (complex) transactions.
Section 5 presents the four steps semantics for the above language and the two
equivalence relations: the �rst for transactions; the second for databases. In Section
6 the results are summarized and some directions for further research are discussed.
Finally, Appendix A introduces the CLP language and the relationship with U-
Datalog. The required extensions to CLP, and the proofs are given in Appendix
B.

2 Related works

In this section we introduce the basic notions of deductive databases that are relevant
to the subsequent discussion. Then we critically review some approaches to model
updates in deductive databases.

2.1 Deductive databases

The motivations for using rule languages in the database systems are twofold. On
one side they are easy to learn and understand. They are also more human oriented
and higher level than other formalisms speci�cally developed for computers. On the
other side they extend the relational domain calculus into a rule language. Rule

4

languages have promised to maintain the nice properties of relational languages,
such as simplicity and theoretical foundation, while adding inferential features. Rule
languages can be based on logical paradigm such as Datalog-like language [22, 18]
or on production one such as OPS5 [17]. Researches on rule languages started with
logic languages and have resulted in a comprehensive theoretical framework to study
declarative query languages. Production languages for databases still do not have
a theoretical framework even if some languages and systems have been developed,
for instance, RDL1 [20], Heraclitus [35] and Starburst [26]. In the following we
introduce databases based on logic languages and we provide examples of both the
families of rule languages.

A deductive database (DB) can be seen as a set of sentences de�ning data (facts)
or views (deductive rules). Facts are stored in an extensional database (EDB) and
the set of deductive laws is called the intensional database (IDB). The Datalog
query language is a good representative of logic query languages. Often we refer to
a database simply as DB that is EDB [IDB. Both extensional and intensional
databases are built starting from atoms. The atoms are expressions of the form
p(t1; :::; tn), where the ti; 1 � i � n, are terms and p is a predicate name. Atoms
which do not contain variables are called grounds. A term is either a constant or
a variable. Predicate symbols are partitioned in two disjoint sets: the extensional
predicates and the intensional predicates. The former appear in the extensional
database and the latter occur in the intensional database but not in the extensional
one. The extensional atoms are those built starting from the extensional predicates.

An intensional database (IDB) is a �nite set of rules. A rule is an expression
of the form H B1; : : : ; Bn; n � 0, where the body B1; : : : ; Bn is a conjunction of
extensional and intensional atoms and the head H is an intensional atom. In the
following, ~t denotes the tuple t1; :::; tn, while ~A denotes a (possibly empty) conjunc-
tion of atoms A1; : : : ; Ak. A substitution is a function � : V ! Term associating
with each variable a term in Term. It extends to apply to any syntactic object (e.g.
term, atom, rules, etc.) in the usual way. We require rules to be safe. A rule is safe
if each variable in the head appears in an atom in the body [48]. A query is a rule
with no head.

Example 2.1. Consider the Datalog program EDB[IDB, where father, mother
and grandfather express the relations father, mother and grandfather respectively.

EDB = father(tom; sue):
mother(sue; bob):
father(kim; alan):

IDB = grandfather(X; Y) father(X; Z);father(Z; Y):
grandfather(X; Y) father(X; Z);mother(Z; Y):

The intensional database derives the relation grandfather(tom;bob). Usually the
EDB is considered as a time varying collection of information, while the IDB is
considered as a time invariant set of rules.

�

5

2.2 Updates in rule languages

Databases should change over time to follow the evolution of stored information.
Unfortunately, Datalog language does not support updates. Dynamic aspects such
as elementary updates to the extensional database are fundamental in database
systems. Research on database updates can be classi�ed into inference-based and
declaration-based approaches. In the former, a database is viewed as a logic theory,
and an update is intended to make an arbitrary sentence true in a new database.
The focus in the inference-based approach is to derive a new database that satis�es
certain criteria; the exact modi�cation to the current database are not explicit, and
have thus to be inferred [25, 49]. In a declaration-based approach, a database is
viewed as a �nite model or a �nite set of ground facts. Changes to the current
database, such as insertions and deletions, are explicitly declared by users. Recent
works in this area have been focusing on introducing updates into logic programming
or studying the expressive power of update languages. In the rest of this section we
compare some of these works from the point of view of extending logic languages
with updates.

Updates can be expressed in a declarative query language outside the query lan-
guage or within. For instance, Glue-Nail [21] separates the query language from the
update language. However, the most interesting languages and systems are those
that integrate the query and update languages, for example, Dynamic logic program-
ming (DLP) [41], LDL [43], transaction logic programming (TR) [14], Declarative
Languages (DL) [3], and RDL1 [20].

Languages, providing integrated query and update facilities, can in turn be clas-
si�ed depending on whether updates are de�ned in the rule bodies (DLP, LDL and
TR) or in the rule heads (DL and RDL1). These two approaches were developed
with di�erent goals. The �rst family was developed to model updates in logic pro-
gramming, while the second was developed to investigate the expressive power of
rule languages. In the following we consider these two families of approaches by
mean of examples. It is important to note that the two ways of introducing updates
induce two di�erent ways to introduce control in rule languages. We start with
DLP as a representative of the �rst family. Updates in DLP rule bodies are viewed
as modal operators. The formal semantics proposed for DLP is based on Kripke's
semantics for dynamic logic [34].

Example 2.2. Consider the following DLP program where es and ed are base
relation while hire and avgsal are derived ones.

hire(ename; sal; dept) +es(ename; sal);
+ed(ename; dept);
avgsal(dept;avg);
avg � 50k)

when called by the query ? hire(joe; 60k;weapons) the above program will add
the base relation es(joe; 60k) and then ed(joe; weapons). The average salary of

6

the weapons department is computed and the updated database is returned if this
average is less than 50k. If this average is greater than 50K, the procedure will fail
and no updates will be performed.

�

In the above example the (update) atoms in rule body are not evaluated together
but are evaluated in sequence.

Example 2.3. Consider the following DLP query.

? es(joe; 20k);+ed(joe;weapons);edp(joe;weapons;proj):

The query checks whether es(joe; 20k) is true in the current database, then adds
the base relation ed(joe; weapons), and then �nds the value of proj for which
edp(joe; weapons; proj) is true in the updated database.

�

The atoms es(joe; 20k) and edp(joe; weapons;proj) above are not evaluated
in parallel. Indeed, between the two atoms there is an update which changes the
database state. Thus, rule computation goes through a sequence of database states.
This is strictly related to the intended interpretation of DLP rules reecting the
computational model which is only top-down.

Similarly to DLP, TR allow updates in rule bodies. In addition, transaction logic
provides a clear way to combine sequences of updates through a special operator
called serial conjunction and to specify nondeterministic transactions. Moreover,
the all-or-nothing behavior of a transaction is central to this approach and has a
mathematical foundation lacking in other proposals. The semantics is the model and
proof theory. Thus the only computational model available is, as in DLP, top-down.

By contrast, Chen in [19] adopts a di�erent approach considering update speci-
�cations to describe a set of updates. This approach avoids introducing control in
the rule language and thus it is closer to declarative languages. However, it does
not allow updates execution but only update speci�cations, that is they do not per-
manently change the database. Lindholm and O'Keefe in [39] instead, were looking
for e�cient implementation of updates in Prolog. They argued that although the
update problem in logic languages is not logical, its behavior needs not be incoher-
ent with the logic paradigm. Their proposal relies on a logical view which avoids
the immediate updates semantics due to the fact that in Prolog one might need to
backtrack. Because of this, the immediate updates view is not considered appropri-
ate for high performance Prolog systems. Thus Lindholm and O'Keefe approach to
e�cient Prolog system considers updates in parallel and not in sequence, but the
formal framework is lacking.

As we have said, there is another way to introduce updates in a logic language. It
is related to de�nition of updates in rule heads. This is the case of DL where negative
literals in heads are interpreted as deletions and positive literals are interpreted
as insertions. Note that, this interpretation is not universally recognized [38]. A

7

deterministic behavior is obtained in DL by �ring in parallel all applicable rules.
The nondeterministic behavior results from �ring (nondeterministically) one rule
at a time. The formal semantics proposed for DL extensions is based on �xpoint
extensions of �rst-order logic [33].

Example 2.4. Consider the DL program where s is a base relation, and r, t are
derived ones.

+r(X) s(X);:t(X)

+t(X) s(X);:r(X):

Suppose we apply this program to the extensional database s(1); s(2); s(3). Un-
der the nondeterministic computation, we can derive several �xpoints, for instance
s(1); s(2); s(3); r(1); t(2); t(3), and s(1); s(2); s(3); t(3); r(1); r(2). Each of the �x-
points is a model for the program. Other models can be obtained as well. Under
the deterministic computation the above program applied to s(1); s(2); s(3) yields
the unique result s(1); s(2); s(3), r(1); r(2); r(3), t(1); t(2); t(3) in a single step.

�

Note that the updates computing the �rst �xpoint of the Example 2.4, that is
+r(1) and then +t(2),+t(3), are performed in sequence due to the nondeterminis-
tic computation. Thus this approach introduces control under the nondeterministic
semantics. By contrast under the deterministic semantics, the updates are per-
formed in parallel. Unfortunately, both the approaches allow only a bottom-up
computational model.

Summarizing, the introduction of updates in rule heads or bodies induces a form
of control which does not allow the use of a top-down and equivalent bottom-up
computational models. This is a strong drawback because many e�cient query
evaluation techniques rely on combined computational models, that take advantage
of the constants in a query by means of top-down computations and provide set
oriented answers by means of bottom-up computations [5].

Moreover, the �rst type of approach does support run-time parameter passing,
while the second one does not. In addition, the molteplicity of DL �xpoints is
not a desiderable feature for databases, since each computed model can be seen as
a database state. Finally, we note that even though the introduction of control,
through updates or other constructors, improves the expressive power of languages,
it results in abandoning the nice declarative setting with the well-known drawbacks.

3 Informal overview

As we have discussed, existing approaches to the introduction of updates in declar-
ative query languages induces a form of control. We believe that this is related to
the classic semantics of updates, namely the immediate updates semantics. This is
the case of DLP, LDL, DL, RDL1 and TR. Other approaches, instead, consider the
speci�cation of updates without execution.

8

Our approach could be considered as complementary to those based on immedi-
ate updates. We de�ne a logic language with updates as much as possible close to a
declarative language avoiding the introduction of control within the rule language.
To avoid induced control due to updates, we consider a non-immediate update se-
mantics. Under this semantics updates are not executed as soon are evaluated.
They are collected during a phase called the \marking phase". During this phase
the consistency of updates is checked. If they are consistent, e.g. there are no inser-
tion/deletion of the same fact, then they are executed altogether in parallel during
the \update phase" which follow the marking phase.

There are several motivations for supporting updates based on a non-immediate
semantics. The �rst is that such semantics is close to the semantics underlying
updates in languages of relational DBMS, namely the SQL language. Indeed, in
SQL it is possible to perform updates on a relation by identifying the tuples to be
updated via a query. For example, one of the formats for the update command in
SQL3 is the following:

UPDATE relation-name SET set-rule

WHERE qualification-rule

where set-rule is a set of attribute assignments. An assignment has, in turn, the
form attribute-name = expression. The quali�cation rule is a Boolean combination
of predicates selecting the tuples to be updated. An update command is executed
by �rst selecting the tuples to be updated, and then performing the update on
these tuples. Note that the evaluation of the quali�cation rule is performed on
the database state before applying any update. Therefore, the evaluation of the
quali�cation rule in an update command is independent on any update performed
as part of the same command. In our approach, we follow the same pattern in
that: (i) the marking phase can be seen as the equivalent of the evaluation of the
quali�cation rule in an SQL update command; (ii) the update phase can be seen as
the equivalent of the execution of attribute assignments in an SQL update command.

A second important motivation is that a non-immediate update semantics en-
sures that the set of performed updates is independent on the evaluation order of
updates. Therefore, we regain the declarative setting. Static analysis of rules is
thus possible in order to detect rules that may perform inconsistent updates [8].
To our knowledge, no static analysis techniques nor tools have been developed with
respect to updates for other logic languages with updates. This seems related to the
fact that immediate semantics, used in other approaches, makes very complex such
static analysis. We believe, however, that for large rule databases static analysis is
important for improving user productivity and supporting explanation tools.

Another important choice in the design of our language is the position of updates
in rule language. The main motivations for considering updates in rule bodies is:

1. The approach with updates in the heads does not allow the transmission of
runtime parameters.

3Note that the DELETE command of SQL also allows to identify the tuples to be removed via

a quali�cation rule.

9

2. We are interested in inheriting query processing strategies developed for Dat-
alog programs.

3. Updates with non-immediate semantics in rule bodies result in a language
which nicely �ts into the formal setting of constraint logic programming.

We extend Datalog with a set of atoms that can occur in the body of a Data-
log rule and thus also of a query by allowing updates atoms to specify updates to
base relations. By contrast, the Datalog atoms are called query atoms. The intuitive
meaning of +p(t1; : : : ; tn) is to insert the tuple t1; : : : ; tn into the base relation p; cor-
respondingly, the intuitive meaning of �p(t1; : : : ; tn) is to delete the tuple t1; : : : ; tn
from the base relation p.

Example 3.1. Assume that balance is a base relation giving the account number
and the balance. To modify this relation we have two operations:
�balance(Acnt;Amt) to delete tuples from the relation and +balance(Acnt; Amt)
to insert tuples into the relation. Then we de�ne four transactions:

� changebalance(Acnt;Bal; Bal0) to change the balance of an account;

� withdraw(Atm;Acnt) to withdraw an amount from an account;

� deposit(Amt; Acnt) to deposit an amount into an account;

� transfer(Amt;Acnt; Acnt0) to transfer an amount from an account to another.

These transactions are de�ned by the following four rules:

changebalance(Acnt; B; B0) �balance(Acnt; B);
+balance(Acnt;B0):

withdraw(Amt;Acnt) changebalance(Acnt; B;B� Amt);
balance(Acnt;B):

deposit(Amt; Acnt) changebalance(Acnt;B; B+ Amt);
balance(Acnt;B):

transfer(Amt;Acnt; Acnt0) withdraw(Amt; Acnt);
deposit(Amt; Acnt0):

A change operation can be speci�ed by means of deletion and insertion. The marking
phase marks all the tuples to be inserted and deleted. The update phase collects the
updates and then inserts and deletes such tuples from the relation balance. �

Deletion and insertion do not form a sequence, they are collected as a set of
updates and can be executed in parallel. Similarly the two deposit transactions
?deposit(Amt; Acnt);deposit(Amt0; Acnt0) are performed in parallel. An important
di�erence of our approach with respect to DLP, LDL and TR is that updates are
collected as side e�ects of the query-answering process, while in the other approaches
they are executed as side e�ects of the query-answering process. To highlight this
di�erence compare the execution of Example 3.1 with that of Example 2.4 in [14].

10

3.1 Computational Model

Non-immediate update semantics is based on marking and update phases. The
marking phase models the query-answering process. Query-answering process can
be performed either top-down or bottom- up. In the case of updates in the bodies,
the top-down interpretation of a rule is intuitive and thus in the remainder of the
discussion we consider the bottom-up interpretation.

Example 3.2. Consider the following database.

DB = balance(102;1500):
balance(105;28000):
potentialsaver(Acnt;B) balance(Acnt;B);

B > 10000:
changebalance(Acnt; B;B0) �balance(Acnt;B);

+balance(Acnt; B0):
withdraw(Amt; Acnt) changebalance(Acnt;B; B� Amt);

balance(Acnt; B);Atm< B:
deposit(Amt;Acnt) changebalance(Acnt; B;B+ Amt);

balance(Acnt; B):
transfer(Amt; Acnt;Acnt0) withdraw(Amt; Acnt);

deposit(Amt;Acnt0):

Informally, a bottom-up interpretation of the database computes

11

S(DB) = f balance(102; 1500);
balance(105; 28000);
potentialsaver(105; 28000);
changebalance(Acnt;B;B 0) �balance(Acnt;B);

+balance(Acnt;B0);
withdraw(Amt; 102) �balance(102; 1500);

+balance(102; 1500�Amt);
Amt < 1500;

withdraw(Amt; 105) �balance(105; 28000);
+balance(105; 28000 �Amt);
Amt < 28000;

deposit(Amt; 102) �balance(102; 1500);
+balance(102; 1500 +Amt);

deposit(Amt; 105) �balance(105; 28000);
+balance(105; 28000 +Amt);

transfer(Amt; 102; 105) �balance(102; 1500);
+balance(102; 1500�Amt);
�balance(105; 28000);
+balance(105; 28000 +Amt);
Amt < 1500;

transfer(Amt; 105; 102) �balance(105; 28000);
+balance(105; 28000 �Amt);
�balance(102; 1500);
+balance(102; 1500 +Amt);
Amt < 28000 g

Because of updates, S(DB)4 consists of a set of annotated atoms. Annotated atoms
are atoms which can have \attached" update speci�cations. The informal reading
of the atom balance(102; 1500) is that it is true. Similarly the annotated atom
changebalance(Acnt;B;B0) �balance(Acnt;B);+balance(Acnt;B0) means that
changebalance(Acnt;B;B0)) is true if the updates �balance(Acnt;B) and
+balance(Acnt;B0) are consistent.

�

The semantics of a traditional deductive database is a set of atoms. We would
like to express the semantics of a logic database with updates as a set of (possibly)
annotated atoms. Update speci�cations are collected during the marking phase and
are executed in parallel during the update phase in a all-or-nothing style. Thus,
our framework nicely �ts with the expected behavior of a transaction. This results
in the fact that our approach can be very e�cient and simple to implement. In-
deed, due to the two phases computation there is no transaction rollback, and the
updates can be executed in parallel. There is no transaction rollback at logical
level, because there is no need to undo updates or apply other equivalent techniques

4We denote the syntactic domain in \typewriter" style and the semantic domain in \roman"

style.

12

if the transaction aborts. For instance the transaction ? transfer(2000; 102; 105)
aborts because the amount is over 1500. This abort is detected as a query fail-
ure due to the update speci�cation. In other words, we can check if a transaction
aborts during the marking phase avoiding useless updates executions. Note that
these features are related to the semantics of the language according to [19, 39].
However, due to failures at physical level, which are not addressed in this paper,
log information are required to ensure data integrity [32]. Nevertheless, the fact
that only for errors at the physical level this import and ine�cient utility is re-
quired, means that there is less overhead to handle the type of transaction so far
introduced. Finally, notice that the transactions ? changebalance(102; 1500; 1800)
and ? + balance(102; 1800);changebalance(102; 1500;1800) are equivalent. In-
deed, the approach of collecting updates considers sets of updates. Therefore, if
there are duplications of updates triggered by the same query, they are \�ltered"
within the marking phase. In this way logical optimization to the collected updates
is a by-product of this approach. Thus multiple executions of the same update in-
side a transaction are avoided. If instead, multiple executions are required, this is
possible by introducing control at transaction level.

3.2 Explicit control

The proposed language up to now provides a smooth integration between the logic
and update languages by avoiding control in the rule language. However, control
is important in many cases. For instance to improve the expressive power of the
language or simply as a way to perform sequential computations on data. Therefore,
we allow explicit control constructors, but outside the rule language. These control
constructors provide a simple way to de�ne complex transactions starting from sim-
ple ones. Thus, we are able to maintain the nice declarative style while providing,
at the same time, control capabilities. We consider two constructors: sequence and
iteration. We consider only these constructors because they form the minimum ex-
tensions (to rule language with updates) to achieve the required expressive power
for database languages according to [2]. The �rst constructor is sequential transac-
tion composition (denoted by \;"), it performs a sequence of transactions as a single
transaction.

Example 3.3. Consider a transaction that makes a deposit, then transfers half
of the resulting amount into another account. This transaction is modeled as a
sequence of simple transactions as follows.

? deposit(600; 102); ? balance(102; Amt); transfer(Amt=2; 102;105)

The transaction �rst performs �rst ? deposit(600; 102) and only after the execution
of this transaction, ? balance(102;Amt); transfer(Amt=2; 102; 105) is performed.
Thus the second transaction sees the updates performed from the �rst transaction.
The sequence is executed as a transaction itself, that is if any of the components
of the sequence, in this case deposit or transfer aborts, then the large transaction
aborts. �

13

The second constructor (denoted by \while") performs iteration. It is useful
to express iterations where at each iteraction step one must perform a sequence
of updates. Indeed, due to the set-oriented computation the rule language already
provides a facility to delete a set of tuples which satisfy a given condition. However,
the operations over each tuple form a set, therefore, there is no way to execute them
in sequence. This approach can be inadequate for expressing iterations where the
update operations within the same iteraction step must be performed in sequence.
The next example clari�es this point.

Example 3.4. Consider the following transaction which for each account over
1000 increases by 5% the balance, then takes a commission of 1 and �nally transfers
the exceeding money over 1000 into a saving account.

? while balance(Acnt,Amt),Amt>1000 do

? deposit(Acnt,1.05*Amt); ? withdraw(1,Acnt);

? balance(Acnt,Amt),transfer(Amt-1000,Acnt,SaveAcnt)

endo

�

For each account with an amount greater then 1000, three operations are per-
formed in sequence: deposit, withdraw and transfer. This kind of computation is
not possible without the iteration constructor.

4 U-Datalog language

In this section we provide the formal de�nition of the language introduced by means
of examples in the previous section. The language is de�ned as an extension of Dat-
alog language, called U-Datalog to express updates with non-immediate semantics.
We then extend this language to accommodate explicit constructors outside the rule
language. U-Datalog has the following characteristics:

1. The marking phase, that is the query-answering process, computes the bind-
ings for the variables of the transaction and the set of updates to be performed.
This phase can be executed both top-down or bottom-up.

2. The update phase performs these updates collected during the marking phase,
if they are consistent, otherwise the updates are not executed.

To model the marking phase we need a formal framework to collect update speci-
�cation and to check their consistency. We choose the constraint logic programming,
(CLP(X)) [23] which is the result of the integration between constraint and logic
programming. U-Datalog is just a special instance of CLP with some syntactic re-
strictions. We extend the Datalog rules by allowing updates atoms to extensional
relations of the form �p(t1; : : : ; tn). By contrast,the Datalog atoms are called query
atoms.

A state or extensional database EDB is a (possibly empty) set of base relations.
We denote with EDBi; i = 1; : : : ; n the possible extensional databases.

14

Definition 4.1. The intensional database IDB is a set of rules of the form

H U1; : : : ; Us; B1; : : : ; Bt:

where B1; : : : ; Bt (as in Datalog) are base or derived atoms, H is a derived atom
and U1; : : : ; Us are update atoms.

The above de�nition needs some comments. The order of rule atoms is irrele-
vant. However, to avoid complex index notation we group them into update and
query atoms. This is just a convention. The intuitive meaning of one of this rule is:
\if B1; : : : ; Bt is true and the updates U1; : : : ; Us are consistent (i.e. not complemen-
tary), then H is true". The updates +p(X);�p(X) are complementary updates. The
updates +p(Y);�p(X) could become complementary if for instance Y=tom; X=tom.

Definition 4.2. A transaction is a rule with no head of the form

U1; : : : ; Us; B1; : : : ; Bt

where the atoms are as in De�nition 4.1.

In the examples we always pre�x with the symbol `?' a transaction which also
has a query facility. In the following we use a notion of database safety which needs
some comments. A database is safe if its rules are range restricted, that is every
variable in the head also occurs in query atoms. However top-down evaluation allows
a less restrictive de�nition of safety. For instance the rule love(X; Y) nice(X) is
not safe, but the query ? love(X; bob) renders it safe. In our case a transaction
subsumes a query. Thus we consider databases which are safe through transaction
invocation, that is, if every rule in the database is either range restricted or rendered
safe from transaction invocation.

Definition 4.3. An U-Datalog database DB consists of the extensional database
EDB and of the intensional database IDB.

Example 4.1. Consider the following database.

eds(tom; shoe;15k):
eds(bob; shoe;18k):
transfer(X) �eds(X; shoe; S);+eds(X; toy; S); eds(X;shoe; S):

? transfer(X)moves all the employees from shoe to toy departments. The marking
phase collects:

� the bindings X = tom and X = bob;

� the updates �eds(tom; shoe; 15k);+eds(tom; toy; 15k),
�eds(bob; shoe;18k) and +eds(bob; toy; 18k).

Thus the computation is performed in a set oriented style. Similarly does the trans-
action ? � eds(tom; shoe;15k); transfer(X). ? + eds(tom; shoe; 15k);transfer(X)
fails due to the complementary updates �eds(tom; shoe;15k);+eds(tom; shoe; 15k).

�

15

4.1 Extended U-Datalog

Transactions de�ned so far can be seen as building blocks used to construct complex
transactions by means of control constructors. The sequence constructor is required
to model sequences and iteration is required to express iteration where we want to
model a sequence of operations inside a loop. The introduction of control at transac-
tion level can be seen as a way to allow (only in the transaction language) immediate
updates semantics. Thus immediate and non-immediate update semantics can be
combined taking advantage of both the approaches. For instance, transactions can
be expressed with an immediate update rule language such as transaction logic [14].
This would lead to a further integration between di�erent rule languages which is
behind the scope of this paper.

Definition 4.4. A transaction is either T as in De�nition 4.2 or a sequence of
transaction, or an iterative constructor of the form while Q do T done, that is

T ::= T1 j T1;T2 j while Q do T endo

5 The Semantics of U-Datalog

The semantics of the language is tailored to model the properties that are relevant
for database systems. For example, in a query rule language one can be interested in
modeling the set of answers that are computed as result of a query (as in Datalog),
or just one of these answers (as in logic programming). This is called an observable
property. Thus observable properties must be chosen and the semantics must faith-
fully express them. For example, the semantics of a sequence of updates forming
a transaction is a mapping from state to state. An observable property of interest
for a transaction is the new state. Similarly, the semantics of a Datalog query can
be expressed as a mapping from a state to a set of answers [45]. In our approach,
due to the query-update feature of the language, we are interested in modeling as
transaction properties: the set of answers, the database state and the results of a
transaction, that is abort or commit.

5.1 Updates Interpretation

Before de�ning the semantics of U-Datalog we need to give an interpretation for up-
dates. We have already discussed non-immediate update semantics as a complement
to the immediate update semantics. However, another classi�cation of the update
semantics is possible, that is weak update semantics and strong one. Weak updates
are those for which there is no precondition. Consider, for example, the database
state p(a); p(b); q(a). The insertion of p(b) (respectively deletion of q(b)) does not
change the database, nevertheless they are allowed.

Strong updates are those which allow to delete (insert) atoms only if they are
(not) in the current database state. Consider, for instance, the above database state.
The insertion of q(b) is allowed, whereas the deletion of p(c) is not. Strong updates
are available in most commercial database systems, such as INGRES [24].

16

Since our approach is parametric with respect to strong or weak updates, we
need to de�ne the informal notion of inconsistent or complementary updates to take
into account also the feature of strong/weak updates. This results in the notion
of solvability. The structure to interpret strong updates is simple and reects the
above informal discussion.

Definition 5.1. A structure <s for strong updates consists of

� EDB

� an assignment to each update atoms �p(~t) with ~t ground term such that:

1. +p(~t) = True i� p(~t) 62 EDB

2. �p(~t) = True i� p(~t) 2 EDB

Assignments to constant symbols and syntactic equality are as usual. An <s-
valuation for update atoms is a mapping � from variables to terms.

Definition 5.2. Updates atoms U1; U2 are solvable i� there exists a valuation �
such that < j= (U1; U2)�. � is called the <-solution of U1; U2.

The above solvability notion is referred to <, thus to any structure for strong or weak
updates. For strong updates it checks whether two updates are complementary, and
whether the inserted information already are in the database or not, according to
strong update semantics. For weak updates (see below the related structure) it
checks only if there are complementary updates.

Example 5.1. Consider the database with strong update semantics

p(a):
q(b):
r(X) +p(X); q(X):
s(X) +q(X); q(X):

The query ? s(X) fails due to the unsolvability of +q(b), while ? r(X) succeeds due
to the solvability of +p(b).

�

By contrast, no preconditions are required for weak updates. Therefore, the
domain is the Herbrand universe.

Definition 5.3. A structure <w for weak updates consists of an assignment to
each predicate atoms �p(~ti) and 	p(~ti) with ~ti ground term such that:

1. �p(~t1) = True

2. 	p(~t1) = True

17

3.
...

4. 	p(~t1);�p(~t2) = True

5. 	p(~t1);�q(~t2) = True

6. 	p(~t1);�q(~t1) = True

7.
...

8. 	p(~t1);�q(~t1); : : : ;	t(~t1) = True

False in case of existence of 	p(~t) and �p(~t) An <w-valuation for updates atoms is
a mapping � from variables to term.

The above solvability notion checks whether two updates are complementary.
Here there is no need to check whether the two updates are already in the database
due to the weak update semantics. Note that instead of the explicit interpretation of
all non-atomic formulae of the update language (items from (d) to (j) of De�nition
5.3), we can synthesize these items as

�A1; : : : ; As =

8>>><
>>>:

false if 9i; j; 0 � i; j � s such that
Ai = Aj ^ � 6=

true otherwise

where �; 2 f�;	g and Ai; Aj are atoms. The notion of solvability is the same of
De�nition 5.25. Note that the structure for weak updates does not change over time
whereas that for strong updates changes in order to consider state evolution.

Example 5.2. Consider the database of Example 5.1 with weak update semantics

p(a):
q(b):
r(X) �p(X); q(X):
s(X) �q(X); q(X):

The query ? s(X) succeeds due to the solvability of the �q(b). The new state is
equal to the current database state. ? r(X) succeeds due to the solvability of �p(b).

�

Finally, note that De�nition 5.2 reects the algorithmic computation that checks
whether a set of updates is solvable and its complexity is linear in the number of
updates. In addition the strong updates implementation should verify the precon-
dition.

5To highlight the di�erence between the strong and weak updates we use the symbols �;+ and

	;� respectively.

18

5.2 The Four Steps Semantics

The semantics of U-Datalog is de�ned in four steps. Each step relies on the previ-
ous one and is denoted with Si; i = 1:::4. As we have said, the database consists
of two components. Therefore we would like to give the semantics of the database
in term of that of the components. This is the �rst step semantics called composi-
tional semantics. Compositionality is well known in logic programming [15]. Since
we have the marking and update phases we need to model these phases. The sec-
ond step semantics, calledmarking phase semantics, models the former. It is de�ned
through operational and equivalent �xpoint semantics. Many of the already existing
algorithms for e�cient query evaluation strategies rely on the equivalence between
top-down and bottom-up computations, thus on the equivalence between opera-
tional and �xpoint semantics [5]. Informally, they take advantage of the constants
in the query to cut the search space (through top-down evaluation) and compute the
set of answers (through bottom-up evaluation). From here the choice of providing
operational and �xpoint semantics for U-Datalog. We do not consider the model
theoretic semantics because it does not provide a guideline for the computational
model. The �rst and second steps together model the speci�cation and collection
of updates through operational and �xpoint semantics. They are a special case of a
general one, that is CLP semantics. Thus in this section we provide the necessary
results for U-Datalog which are instances of the CLP schema6. The necessary ex-
tensions to CLP for handling the �rst step semantics are provided in Appendix B.
The third step semantics, called update phase semantics, instead, receives as input
the collected updates computed by the marking phase and executes them computing
the new database state. In addition, the result of the transaction says whether the
transaction commits or aborts and provides the set of answers for the query part.
In order to model complex transactions we consider a fourth step semantics called
complex transaction semantics. The semantics of complex transactions is de�ned in
terms of the semantics of the simple transactions and the control constructors. In
addition to the four step semantics, we provide equivalence relations for transactions,
and for databases.

5.3 Compositional Semantics

We are interested in modeling the semantics of IDB modulo the possible EDB0s.
In the following we consider IDB and EDB as the components of the database
and consider only the necessary results instantiated on U-Datalog. To help the
reader, we provide into brackets the reference of the general case (i.e. CLP) given
in Appendix B. The composition we consider is union, denoted by [. Since in our
case we are interested in importing base relations in the intensional database, the
[operator is applied to the extensional database and to the intensional database.
In order to de�ne the compositional semantics we need to introduce some notions.
U1; : : : ; Us; G1; : : : ; Gn ;DB U 0

1; : : : ; U
0
s; B1; : : : ; Bt denotes the partial derivation,

that is a number of derivation step of U 0
1; : : : ; U

0
s; B1; : : : ; Bt from U1; : : : ; Us; G1; : : : ; Gn

6An introduction to CLP and its results are in Appendix A.

19

by means of the rules of DB. Id denotes a set of rules of the form A A where A
is a base atom. Thus the denotation of a database is a set of rules where the update
and query parts are the result of a partial derivation performed with respect to DB
in the former part and then respect to DB+ = DB [Id.

Definition 5.4. [B.10] Let DB be an U-Datalog database, ~U = U1; : : : ; Um be a
set of updates, ~B = B1; : : : ; Bn be a set of base atoms and ~A = A1; : : : ; Ap be a set
of atoms. Moreover, let DB+ = DB [Id. Then the compositional semantics is

S1(DB) = f p(~X) ~U 0; ~B j
p(~X);DB

~U; ~A;DB+
~U 0; ~B;

and the predicate of atoms in ~B
are a subset of base predicates g:

Note that the above de�nition computes the semantics domain as a set of rules.
Informally, this is a mapping stating that the truth of something is conditionated
to the truth of something else. This is remarkably di�erent from the traditional
semantics where the domain is a set of ground atoms which are always true. Not
surprisingly the semantics domain turns to be a program and therefore we can use
the same composition operator over semantic domains.

The following theorem states the necessary result about programs composition
on one side and semantics composition on the other. This due to the fact that the
semantics of a program is a program itself.

Theorem 5.1. [B.3] Let EDB and IDB be extensional and intensional databases.
Then S1(EDB [IDB) = S1(S1(EDB) [S1(IDB)).

The following example illustrate the above notion.

Example 5.3. Consider the database components:

EDB1 = q(b): IDB = p(X) �q(X); q(X):
t(a): r(X) +t(X); p(X):

k(X) �t(X):
s(X) t(X):

Their semantics are:

S1(EDB1) = fq(b); S1(IDB) = f p(X) �q(X); q(X);
t(a) g r(X) +t(X);�q(X); q(X);

k(X) �t(X);
s(X) t(X) g

Considering DB = EDB1 [IDB we have S1(EDB1 [IDB) = S1(S1(EDB1) [
S1(IDB)). Therefore

20

S1(EDB1 [IDB) = f p(X) �q(X); q(X);
r(X) +t(X);�q(X); q(X);
k(X) �t(X);
s(X) t(X);
p(b) �q(b);
r(b) +t(b);�q(b);
s(a);
t(a);
q(b) g

�

5.4 Marking Phase Semantics

Example 5.3 shows the compositional semantics of intensional and extensional data-
bases. Such semantics contains rules in the semantics domain. To provide the
marking phase semantics, we are no more interested to keep the distinction between
the intensional and extensional components. The semantic domain does not need
anymore to be a set of rules. It is a set of atoms with update speci�cations. For
instance p(b) �q(b) says that the atom p(b) is true and the update �q(b) can be
the result of the marking phase if p(b) is involved in the query-answering process.
Thus the semantics of marking phase has as semantics domain a set of atoms an-
notated with update speci�cations (both possibly non-ground). Since the marking
phase executes the query-answering process and this was shown to be e�ciently
computable, if there is an operational and equivalent �xpoint semantics we provide
such semantics denoting them with So2 and S

f
2 respectively. Thus the marking phase

can be computed both in top-down or equivalently bottom-up style. We denote a
successful derivation of a transaction T in a database DB which collects the update
speci�cations U 0, by T �!�

DB U 0.

Definition 5.5. [A.14] LetDB be a database. The operational semantics So2(DB)
is de�ned as follows

So2(DB) = fp(~X) ~U j p(~X) �!�
DB

~U g:

In order to provide the �xpoint semantics we introduce the immediate conse-
quence operator. Such operator computes a step of forward computation collecting
updates and passing bindings.

21

Definition 5.6. [A.15] Let DB be a database and let J be an interpretation,
then the immediate consequence operator is

TDB(J) = f p(~X) ~U j
9 a renamed rule
p(~t) U0; p1(~t1); : : : ; pn(~tn) in DB

8i = 1:::n; 9�(pi(~Xi) Ui) 2 J; 1 � i � n
which share no variables such that

p(~X) = �p(~t) and
U = U0 [fU1; : : : ; Ung
U is <-solvable g:

The above operator is continuous and thus there exists a least �xpoint (unique
by de�nition) which is TDB " n according to the following de�nition.

Definition 5.7. [A.17] LetDB be a database. The �xpoint semantics Fix2(DB)
of DB is de�ned as Sf2 (DB) = TDB " n

Note that by assuming a �nite domain, the �xpoint is reached in a �nite number
of steps. Theorem 5.2 states the expected result on the relationship between the
operational and the �xpoint semantics.

Theorem 5.2. [A.2] (Equivalence of the operational and the �xpoint semantics)
Let DB be a database. Then So2(DB) = S

f
2 (DB).

The above result was �rst given in [36] for CLP and allow us, in the context of
U-Datalog, to have top-down or bottom-up computations regardless of updates. Let
us now show how the �xpoint is computed.

Example 5.4. Consider the database of Example 5.3 then

T0(IDB [EDB1) = fq(b); t(a); k(X) �t(X)g
T1(IDB [EDB1) = fs(a); p(b) �q(b)g [T0(IDB [EDB1)
T2(IDB [EDB1) = fr(b) +t(b);�q(b)g [T1(IDB [EDB1)
T3(IDB [EDB1) = Ti(IDB [EDB1)(8i > 2) = T2

and So2(IDB [EDB1) = S
f
2 (IDB [EDB1).

�

In the following we use just S2 to denote the second step operational or equivalent
�xpoint semantics. Marking phase and compositional semantics di�er because the
former has no more rules in the semantics domain. This relationship is stated by
Theorem 5.3. The auxiliary function Proj takes a set of rules and returns only those
with empty query in the body i.e. a set of annotated atoms. Informally, this means
that once that we are no more interested in having information about the modular
structure of the database we can forget it, and consider only the annotated atoms.

22

Theorem 5.3. [B.4] Let DB be a database. Then S2(DB) = Proj(S1(DB)).

The next example illustrates this relationship.

Example 5.5. Consider

S1(EDB1 [IDB) = f p(X) �q(X); q(X);
r(X) +t(X);�q(X); q(X);
k(X) �t(X);
s(X) t(X);
p(b) �q(b);
r(b) +t(b);�q(b);
s(a);
t(a);
q(b) g

of the Example 5.3 and

S2(EDB1 [IDB) = f p(b) �q(b);
r(b) +t(b);�q(b);
k(X) �t(X);
s(a);
t(a);
q(b) g

of the Example 5.4. Then, according to Theorem 5.3, we have
S2(EDB1 [IDB) = Proj(S1(EDB1 [IDB)).

�

Note that the semantic domain of the above example is still more general than the
traditional one, indeed it is a set of non-ground (annotated) atoms. For instance
k(X) �t(X). This allow us to insert new values in the active domain of the
database, that is in the set of constants stored in the current database state. Note,
however, that the updates �t(X) can become ground due to transaction transmis-
sion of the parameter.

5.5 Update Phase Semantics

The semantics of the marking phase does not include the execution of the collected
updates neither provide the transaction semantics. This is done in the update phase
semantics. Before providing such semantics we need some preliminar notions. First
we note that database systems use as default a set-oriented query-answering process
denoted as

Set(T;DB) = fhBindingj; Uji j T !
�
DB hBindingj ; Uji g

23

The set of pairs (bindings and updates) is computed as answers to T by the marking
phase. Second, we de�ne a function which takes a set of ground updates, the current
database state and returns the new state.

Definition 5.8. Let EDBi 2 States be the current database and U 2 Upd is a
consistent set of ground updates. Then the new database EDBi+1 is computed by
means of the function � : States� Upd! States as follows:

�(EDBi; u) = (EDBi n fp(~t) j �p(~t) 2 ug) [fp(~t
0) j +p(~t0) 2 ug

where States is the set of possible database states and Upd is the set of possible
updates.

According to the de�nition of the structure for strong updates, each time a new
state is computed we change the structure itself which gives us the interpretation of
the updates. Therefore, given a sequence of states EDB1;EDB2; : : : ;EDBn, there
exists a corresponding sequence of structures <s1;<

s
2; : : : ;<

s
n. This is not the case for

weak updates where the structure does not change. Third, we denote the observable
property of a transaction as Ossi = hAns; State;Resi where Ans is a set of answers.
State is the database state, and Res is the transaction result, that is either Commit
or Abort. The set of possible observables is OSS. Finally we are ready for the
update phase semantics.

Definition 5.9. Let DBi = EDBi [IDB be the database. The semantics of
a transaction is denoted by the function S3;IDB(T) (S3(T) for short) from OSS to
OSS. If T is a transaction, then

S3(T)(EDBi) =

8>>>>>><
>>>>>>:

Ossi+1 if OK

h;; EDBi; Commiti ungroundness

h;; EDBi; Aborti inconsistency

where Ossi+1 = hfBindingj j hBindingj; Uji 2 Set(T;DBi)g; EDBi+1; Commiti,
EDBi+1 is �(EDBi; �U). The condition OK expresses the fact that the set �U =S
j UjBindingj has no complementary ground updates. UjBindingj denotes the

ground updates obtained by substituting the variables of Uj with the ground terms
associated with the variables in Bindingj. The condition ungroundness of non-
ground updates turns the behavior of a transaction into a \no operation", while
that of inconsistency into an abort.

Note that according to the above de�nition, in U-Datalog the abort of a transac-
tion may be caused by a transaction that generate an update set with complementary
updates on the same atom. In this case, the resulting state would depend on the
execution order of updates, so we disallow this situation by aborting the transaction.
The second situation (which me may call no operation for ungroundness) is related
to a transaction that generates a non-ground set of update. In this case we are not
able to decide what update to execute, and therefore we do not execute any update.

24

Example 5.6. Consider the database DB1 = EDB1 [IDB, where

EDB1 = q(b): IDB = p(X) �q(X); q(X):
t(a): r(X) +t(X); p(X):

k(X) +t(X):
s(X) t(X):

S2(DB1) = Proj(S1(IDB) [S1(EDB1)))

S2(DB1) = f k(X) +t(X);
p(b) �q(b);
r(b) +t(b);�q(b);
s(a);
t(a);
q(b) g

� Let Oss1 = h;; EDB1; Commiti. The semantics of T1 = ? r(X) is

S3(T1)(Oss1) = hfX = bg; EDB2; Commiti

where EDB2 = ft(a); t(b)g and S2(DB2) = Proj(S1(S1(IDB) [S1(EDB2)))

S2(DB2) = f k(X) +t(X);
s(a);
s(b);
t(a);
t(b) g

� The semantics of T2 = ? s(X) is

S3(T2)(Oss2) = hffX = ag; fX = bgg; EDB2; Commiti

� The semantics of T3 = ? k(c) is

S3(T3)(Oss2) = hfX = cg; EDB3; Commiti

with EDB3 = ft(a); t(b); t(c)g and S2(DB3) = Proj(S1(S1(IDB)[S1(EDB3)))

S2(DB3) = f k(X) +t(X);
s(c);
s(b);
s(a);
t(c);
t(b);
t(a) g

25

� The semantics of T4 = ? + t(a); s(a) is

S3(T4)(Oss3) = h;; EDB3; Aborti

due to the fact that t(a) is already in the database.

�

5.6 The Semantics of Complex Transactions

Complex transactions built by means of sequence and iteration constructors are
not modeled by the semantics so far introduced. Thus we de�ne their semantics
semantics over that of simple transactions.

Definition 5.10. Let DBi be the database and T1;T2 be a complex transaction.
The semantics of T1;T2 is denoted by the function S4(T1;T2) from OSS to OSS.

S4(T1;T2)(Ossi) =

8><
>:

Ossi+2 if OK

h;; Ossi:2; Aborti otherwise

where Ossi+2 = S3(T2)(Ossi+1). Ossi+1 = S3(T1)(Ossi) represents the observ-
able of the database after the transaction T1 and OK expresses the condition that
S3(T2)(Ossi+1):3 = Commit 7 and S3(T1)(Ossi):3 = Commit.

Note that the above semantics does not model the answers of the �rst transaction.
We choose this approach to avoid keeping the histories of the transactions. However,
the semantics can be easily changed to embody the histories of the transaction.

Example 5.7. Consider the database

EDB1 = q(b): IDB = p(X) �q(X); q(X):
t(a): r(X) +t(X); p(X):

k(X) �t(X):
s(X) t(X):

� Let Oss1 = h;; EDB1; Commiti. The semantics of T = ? r(X); ? s(X) is

S4(T)(Oss1) = hffX = ag; fX = bgg; EDB2; Commiti

where EDB2 = ft(a); t(b)g.

7Oss:n denotes the n � th component of the tuple Oss.

26

� The semantics of T 0 = ? r(X); ? s(X); ? k(a)

is

S4(T
0)(Oss1) = hfX = ag; EDB3; Commiti

with EDB3 = ft(b)g.

� The semantics of T 00 = ? r(X); ? s(X); ? k(a); ? p(a) is

S4(T
00)(Oss1) = h;; EDB1; Aborti

due to strong update semantics.

�

The semantics for the iteration constructor is de�ned below.

Definition 5.11. Let DBi be a database, Q a query and T a transaction. The
semantics of a complex transaction T 0 = while Q do T endo is denoted by the
function S4(T 0) : OSS �! OSS, where

S4(T
0)(Ossi) =

8><
>:

Ossi+n if OK

h;; Ossi:2; Aborti otherwise

OK expresses the condition that there exists n � 0 such that for each j (i � j �
i+ n) S4(T 0)(Ossj):3 = Commit and such that

1. for each j, (i � j < i+ n) S2(Q)(Ossj):1 6= Binding

2. for each j (i � j < i+ n) S4(T)(Ossj) = Ossj+1 and

3. S2(Q)(Ossi+n):1 = Binding.

Note that the query Q expresses just a condition. If Q has updates or triggers
updates in the database they are not executed.

Example 5.8. Consider the following database

EDB1 = q(c): IDB = p(X) 	q(X); q(X):
q(b): r(X) �t(X); p(X):
q(a): k(X) �q(X):

s(X) t(X):

The semantics of T = while ? q(X) endo ? r(X); ? k(d) done is

S4(T)(Oss1) = hfX = dg; EDB3; Commiti

At the end of the �rst iteration EDB2 is t(a),t(b),t(c),q(d). After the second
and last iteration EDB3 = t(a); t(b); t(c); t(d).

�

27

5.7 Equivalence Notions

We have de�ned the semantics of U-Datalog modeling the expected behavior. The
�rst motivation to de�ne a semantics is to formally specify the behavior of a database
system. However, it should also provide a theoretical framework to study practical
issues. This leads to the second motivation for de�ning a formal semantics, that is to
study equivalences for optimization issues. We recall that equivalence for database
languages have only been investigated into the separate contexts of query language
for Datalog language and transactions for relational systems [4, 45]. By contrast, our
investigation can be regarded as the analog of transactions for deductive databases
with updates, transaction and control structures. Indeed we can accommodate,
inside transactions, queries with updates and control constructs such as sequence
and iteration. To this purpose we provide two equivalence notions. The �rst states
the equivalence between databases while the second one is between transactions.

Definition 5.12. (Database equivalence) Let IDB, IDB0 be intensional databases,
S4; IDB and S4; IDB0 their semantics and T be any transaction. Then IDB �
IDB 0 (are equivalent) i� 8Ossi 2 OSS, S4; IDB(T)(Ossi) = S4; IDB0(T)(Ossi).

According to the above de�nition, two intensional databases are equivalent with
respect to a given transaction T if the result is the same for any possible database
state.

Definition 5.13. (Transaction equivalence) Let IDB be an intensional database
and T1; T2 be transactions. Then T1 � T2 (are equivalent) i� 8Ossi 2 OSS,
S4; IDB(T1)(Ossi) = S4; IDB(T2)(Ossi)

According to the above de�nition, two transactions are equivalent with respect
to a given intensional database if their results are the same for any possible database
state. Talking of equivalence in database systems one is interested in checking such
property. However, a fundamental negative result has shown that in general the
equivalence between two queries is undecidable in an unrestricted framework [46];
similarly the equivalence for the while construct is undecidable. Thus we consider
the yet interesting context of �nite domains according to [29] without the while
construct. In this restricted framework the equivalence notions are decidable.

Example 5.9. Consider the following databases

IDB1 = p(X) �q(X); q(X):
r(X) +t(X); p(X):
s(X) t(X):

IDB2 = p(X) �q(X); q(X):
r(X) +t(X);�q(X); q(X):
s(X) t(X):

IDB1 and IDB2 are equivalent. Consider the following transactions:

28

T1 = ? s(X); ? + t(X); p(X)

T2 = ? r(X)

T1 and T2 are equivalent.
�

The generality introduced by our approach is related to the language and its
semantics which model complex transactions, with control construct, queries and
updates in a uniform way, while preserving equivalence of top-down and bottom-up
computation models. In addition, our approach to equivalence is not only uniform
with respect to queries or transactions, but it is also uniform with respect to trans-
actions or databases. A prototype for U-Datalog with a bottom-up computational
model has been developed in [6]. The above equivalence notions are used to develop
algorithms to check equivalences and to perform optimization through transaction
transformation [7, 8].

6 Conclusions

In this paper we have presented a new approach to de�ne update in declarative
query languages based on non-immediate update semantics. Such language is control
free and this allow us to use top-down and equivalent bottom-up computational
models. Thus we can reuse the already developed techniques for Datalog query
evaluation. Updates can be performed in parallel under our approach. Thus a
potentially e�cient system can take full advantage of this feature. Control constructs
are de�ned at transactional level preserving the nice declarative property of rule
language. We provide a formal semantics that was designed from the very beginning
to take advantage of already developed concepts and to provide a formal framework
into which investigate equivalence and thus optimization. The resulting approach is
suitable for object-oriented [9, 10, 11] and semantics integrity constraints extensions
[42].

Acknowledgment We would like to thank the anonymous referees who provided
very helpful comments and suggestions.

References

[1] S. Abiteboul. Updates, a New Frontier. In M. Gyssens, J.Paredaens, and
D. Van Gucht, editors, Proc. Second Int'l Conf. on Database Theory, volume
326 of Lecture Notes in Computer Science, pp. 1{18. Springer-Verlag, Berlin,
1988.

[2] S. Abiteboul and V. Vianu. A Transaction Language Complete for Database
Update and Speci�cation. In Proc. of the ACM Symposium on Principles of
Database Systems, pp. 260{268. ACM, New York, USA, 1987.

29

[3] S. Abiteboul and V. Vianu. Procedural and Declarative Database Update Lan-
guages. In Proc. of the ACM Symposium on Principles of Database Systems,
pp. 240{251. ACM, New York, USA, 1988.

[4] S. Abiteboul and V. Vianu. Equivalence and Optimization of Relational Trans-
actions. Journal of the ACM, 35(1):70{120, January 1988.

[5] F. Bancilhon and R. Ramakrishnan. Performance Evaluation of Data Intensive
Logic Programs. In J. Minker, editor, Foundation of Deductive Databases and
Logic Programming, pp. 439{519, Morgan-Kaufmann, 1987.

[6] E. Bertino, B. Catania, G. Guerrini, M. Martelli, and D. Montesi. A Bottom-Up
Interpreter for a Database Language with Updates and Transactions. In Joint
Conference on Declarative Programming GULP- PRODE, Peniscola (Spain),
pp. 206{220, 1994.

[7] E. Bertino, B. Catania, G. Guerrini, and D. Montesi. Static Analysis of Transac-
tional Intensional Database. In Proc. Second Workshop on Deductive Databases
of International Conference on Logic Programming, pp. 57{73, Genova, 1994.

[8] E. Bertino, B. Catania, G. Guerrini, and D. Montesi. Transaction Optimization
in Rule Databases. In Fourth IEEE Research Issues in Data Engineering: Active
Database Systems (RIDE-ADS'94), pp. 137{145, Houston, 1994.

[9] E. Bertino, G. Guerrini and D. Montesi. Deductive Object Databases, In
Proc. European Conference on Object Oriented, Lecture Notes in Computer
Science 821, pp. 213{235, Bologna, 1994.

[10] E. Bertino, G. Guerrini and D. Montesi. Generic Methods for Deductive Ob-
ject Databases, To appear in Proc. International Conference on Object Oriented
Information Systems, London, 1994.

[11] E. Bertino, G. Guerrini and D. Montesi. Towards Deductive Object
Databases, To appear in Journal of Theory and Pratice of Object Systems,
John Wiley & Sons, 1994.

[12] E. Bertino, M. Martelli, and D. Montesi. Modeling Database Updates with
Constraint Logic Programming. In U. W. Lipeck and B. Thalheim, editors,
Proc. Fourth Int'l Work. on Foundations of Models and Languages for Data
and Objects, pp. 120{132, Dagstuhl, 1992.

[13] B. Bertolino, P. A. Bonatti, D. Montesi, and S. Pelagatti. Correctness and
Completeness of logic programs under the CLP schema. In P. Asirelli, editor,
Proc Sixth Italian Conference on Logic Programming, pp. 391{405, Pisa, 1991.

[14] A. J. Bonner and M. Kifer. An Overview of Transaction logic programming. To
appear in Theoretical Computer Science, 1994. Other papers on the subject are
available in pub/bonner/transaction.logic by anonymous ftp to db.toronto.edu.

30

[15] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics
for Logic Programs. Theoretical Computer Science, 122(1-2):3{47, 1994.

[16] M. L. Brodie. On Modelling Behavioural Semantics of Databases. In C. Zaniolo
and C. Delobel, editors, Proc. Seventh Int'l Conf. on Very Large Data Bases,
pp. 32{42, 1981.

[17] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming Expert Systems
in OPS5. Addison-Wesley, 1985.

[18] S. Ceri, G. Gottlob, and L. Tanca. What You Always Wanted to Know About
Datalog - And Never Dared to Ask. IEEE Tran. on Knowledge and Data Eng.,
1(1):146{164, March 1989.

[19] W. Chen. Declarative Speci�cation and Evaluation of Database Updates. In
C. Delobel et al., editor, Proc. Third Int'l Conf. on Deductive and Object-
Oriented Databases, pp. 147{166, 1991.

[20] C. de Maindreville and E. Simon. A Production Rule based approach to De-
ductive databases. In Proc. Fourth Int'l Conf. on Data Engineering, 1988.

[21] M. A. Derr, G. Phipps, and K. A. Ross. Glue-Nail: A Deductive Database Sys-
tem. In J. Cli�ord and R. King, editors, Proc. Int'l Conf. ACM on Management
of Data, pp. 308{317, 1991.

[22] M. Van Emden and R. Kowalski. The Semantics of Predicate Logic as a Pro-
gramming Language. Journal of the ACM, 23(4):733{742, October 1976.

[23] J. Ja�ar et al. The CLP(R) Language and System. ACM Transactions on
Programming Languages and Systems, 14(3):339{395, July 1992.

[24] J. Wood�ll et al. INGRES version 7. Technical Report April, 8, Reference
Manual, 1981.

[25] R. Fagin, J. D. Ullman, and M. Vardi. On the Semantics of Updates in
Database. In Proc. of the ACM Symposium on Principles of Database Sys-
tems, pp. 352{365. ACM, New York, USA, 1983.

[26] S. J. Finkelstein and J. Widom. A Syntax and Semantics for Set-Oriented
Production Rules in Relational Database Systems. SIGMOD Record, 18(3):36{
45, September 1989.

[27] B. Freitag. A Deductive Database Language Supporting Modules. In Proc.
Int'l Computer Science Conference, pp. 210{ 216, Hong Kong, 1992.

[28] M. Gabbrielli, N. Dore, and G. Levi. Observable semantics for Constraints
Logic Programs. To appear in Journal of Logic and Computation, 1994.

31

[29] M. Gabbrielli, R. Giacobazzi, and D. Montesi. Modular logic programs on
�nite domain and dataow analysis. Technical Report LIX/RR/94/04, Ecole
Polytechnique, Laboratoire d'Informatique, Paris, 1994.

[30] H. Gaifman and E. Shapiro. Fully Abstract Compositional Semantics for Logic
Programs. In Proc. Sixteenth Annual ACM Symp. on Principles of Program-
ming Languages, pp. 134{142. ACM, 1989.

[31] H. Gallaire, J. Minker, and J. M. Nicolas. Logic and database: A deductive
approach. ACM Computing Surveys, 16(2):153{185, June 1984.

[32] J. Gray and A. Reuter. Transaction Processing Concepts and Tecniques.
Morgan-Kaufmann, 1993.

[33] Y. Gurevich. Towards logic taylored for comptutational complexity, Computa-
tion and Proof Theory. ed. M. M. Richter et al. Springer Verlag, Lecture Notes
in Math. 1104, pp. 175{216, 1984.

[34] D. Harel. First-Order Dynamic Logic, Lecture Notes in Computer Science 68,
Springer-Verlag, Berlin, 1979.

[35] R. Hull and D. Jacobs. Language Constructs for Programming Active
Databases. In G. M. Lohman, A. Sernadas, and R. Camps, editors, Proc.
Seventeenth Int'l Conf. on Very Large Data Bases, pp. 455{467, 1991.

[36] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In Proc. Fourteenth
Annual ACM Symp. on Principles of Programming Languages, pp. 111{119.
ACM, New York, USA, 1987.

[37] D. Karabeg and V. Vianu. Parallel Update Transactions. In M. Gyssens,
J.Paredaens, and D. Van Gucht, editors, Proc. Second Int'l Conf. on Database
Theory, volume 326 of Lecture Notes in Computer Science, pp. 307{321,
Springer-Verlag, Berlin, 1988.

[38] E. Laenens, D. Sacc�a, and D. Vermeir. Extending Logic Programming. In
H. Garcia-Molina and H.V. Jagadish, editors, Proc. Int'l Conf. ACM on Man-
agement of Data, pp. 184{193, 1990.

[39] T. G. Lindholm and R. A. O'Keefe. E�cient Implementation of a defensible
Semantics for Dynamic Prolog Code. In J.-L. Lassez, editor, Proc. Fourth Int'l
Conf. on Logic Programming, pp. 21{39, The MIT Press, Cambridge, Mass.,
1987.

[40] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, 1987.
Second edition.

[41] S. Manchanda and D. S. Warren. A Logic-based Language for Database Up-
dates. In J. Minker, editor, Foundation of Deductive Databases and Logic Pro-
gramming, pp. 363{394. Morgan-Kaufmann, 1987.

32

[42] D. Montesi and E. Bertino. Queries, constraints, updates and transactions
within a logic- based language. In Y. Yesha B. Bhargava, T. Finin, editor,
Second International Conference of Information and Knowledge Management,
pp. 500{506, 1993.

[43] S. Naqvi and S. Tsur. A Logic Language for Data and Knowledge Bases. Com-
puter Science Press, 1989.

[44] R. A. O'Keefe. Towards an Algebra for Constructing Logic Programs. In Proc.
IEEE Symp. on Logic Programming, pp. 152{ 160, 1985.

[45] Y. Sagiv. Optimizing Datalog Program. In J. Minker, editor, Foundation of
Deductive Databases and Logic Programming, pp. 659{698. Morgan-Kaufmann,
1987.

[46] O. Shmueli. Decidability and Expressiveness Aspects of Logic Queries. In Proc.
of the ACM Symposium on Principles of Database Systems, pp. 237{249. ACM,
New York, USA, 1986.

[47] G. L. Steele. The implementation and de�nition of computer programming
language based on constraints. PhD thesis, MIT, Department of Eletrical En-
gineering and computer Science, August 1980.

[48] J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,
1989.

[49] M. Winslett. Updating logical Databases. Cambridge University Press, 1990.

33

A Constraint Logic Programming

The idea of programming with constraints is not new. The use of constraints in
Arti�cial Intelligence had been proposed early in [47] and a number of languages
based on it have been designed and implemented. Many of those languages deal
with arithmetic constraints. The central concept is that constraints are used not
only to represent relationships between objects, but also to compute values based on
these relationships. Such use of constraints gave rise to languages which have been
called \declarative" because constraints, unlike assignments, are nondirectional.

Intuitively a program in a constraint programming language consists of a set of
relations between a set of objects. For example to compute the Fahrenheit (F) equiv-
alent of a Celsius (C) temperature (and vice versa) one might write the statement
(which is also a program)

F = 1:8 � C+ 32

Given either F or C, the other can be computed, so the same program can be used
to solve two di�erent problems, without any explicit decision point. In the above
example, F and C are the objects, which in this case are numbers, and the equation
is the relationship between these two objects. While it is possible to augment any
language with constraint facilities, an important issue is how the underlying lan-
guage interacts with those constraint facilities. In some constraint languages these
interactions require, from the user, a great deal of information about how constraints
are to be collected and solved. The most important aspect of constraint logic pro-
gramming (CLP(X)) [36] language, is that it de�nes a clean interaction between the
underlying logic programming framework and the way constraints are used. CLP(X)
de�nes a class of languages based upon the paradigm of logic languages. Each in-
stance of the schema is a programming language and is obtained by specifying a
structure of computation X. That is, the domain of discourse, the functions and
relations on this domain characterize the language. A key aspect of this class is
that all languages are soundly based within a single framework of formal semantics.
This framework extends, in a natural way, the logic programming framework for the
following reasons.

� There is no restriction to the Herbrand universe. For example, the non-
Herbrand domain considered in CLP(R) is de�ned on an arithmetic domain
R of real numbers [23].

� There is no restriction on the uni�cation. The notion of uni�cation is but
a special case of constraint solvability: the notion of obtaining (maximally
general) uni�ers is no more than an implementation notion.

� There is no restriction on equations. Equations are but one particular kind of
constraints.

The original motivation to integrate logic programming and constraint program-
ming can be described through an example. In Prolog the equality:

1+ X = 3

34

results in a failure, since the operation + is considered as an unevaluated function
symbol and the uni�cation algorithms fails. In the past, there have been two unsat-
isfactory ways to approach the problem. The �rst is to use Peano's axioms (that is,
to de�ne predicates using the successor function). The predicate

plus(X; Y; Z)

means that Z is the sum of X plus Y, and the axioms for addition are:

plus(0; Y; Y):

plus(s(X); Y; s(Z)) plus(X; Y; Z):

The equation 1+ X = 3 is expressed by the query:

? plus(s(0); X;s(s(s(0)))):

resulting in X = s(s(0)). Programming with Peano's axioms is ine�cient, anachro-
nistic and incompatible with high level languages. The second way to bypass the
problem of expressing the equality of arithmetic expression is to write special pred-
icates using test and assignments which attempt to determine the values of the
variables. In the example this results in:

X is 2

where the predicate is represents an assignment, always requiring a variable as its
left operand. Obviously, the assignment expressed by the predicate is has not a
declarative semantics and therefore cannot be captured with the standard semantics
de�ned in [22]. A general and clean solution to this problem is to replace uni�cation
of terms by constraints such as the equality of arithmetic expressions. For example,
the constraint:

2+ X = Z+ 3

will be handled as in algebra. The actual values for X or Z may be computed later
when more constraints are added. When the system of constraints is unsatis�able,
then it results in a failure, just as in logic programming.

A.1 The CLP language

In order to provide a uniform view of CLP we will deviate slightly from the standard
de�nitions [36]. We assume a �xed (�;�; V)- language over predicates, constant and
variables. In addition the CLP framework:

� considers functions in the signature �;

35

� splits the predicates in two sets, �C and PiB such that � = �C [�B and
�C \ �B = ;. Predicates in �C are used for the constraint language and
predicates in �B for the logic language;

� uses a many-sorted �rst order language, where SORT =
S
i SORTi denotes a

�nite set of sorts.

A signature of an n-ary function, predicate or variable symbol f , is a sequence of
respectively n+1, n, 1 elements of SORT . By sort of f we mean the last element in
the signature of the function symbol f . By V ar(E) (Pred(E)) we denote the sets of
variables (predicates) occurring in the expression E. The Herbrand universe H (the
set of ground terms) is de�ned for a given language. ~B denotes a (possibly empty)
conjunction of atoms. Atoms are built over a subset of predicates (�), functions and
constant (�), and variables (V). Often we use a subset of the above triples to denote
which kind of atoms (i.e. ground, non ground, constraints) we are dealing with by
means of the pre�x (�;�), (�;�; V) and (�C;�; V) respectively. The empty set of
constraints is denoted by true.

Definition A.1. (CLP program) A (�;�; V)-program is a set of rules of the
form

H c1; : : : ; ck; B1; : : : ; Bn:

where c1; : : : ; ck are (�C;�; V)-atoms, c = c1; : : : ; ck (the constraint) is a �nite
(�C;�; V)-constraint, H (the head) and B1; : : : ; Bn are (�B;�; V)-atoms with dis-
tinct variables as arguments. The right part of the rule is called body and can be
empty.

Definition A.2. (Goal) A goal is a program rule with no head of the form

c1; : : : ; ck; B1; : : : ; Bn:

where c1; : : : ; ck and B1; : : : ; Bn are as in De�nition A.1.

Following the tradition in the examples we always pre�x a query with the symbol
\?00. ? can be seen as the prompt of the corresponding system.

Definition A.3. (Constrained atom) A (�B;�; V)- constrained atom is an ob-
ject of the form p(~X) c, where c is a (�C;�; V)-constraint, p(~X) is a (�B;�; V)-
atom and ~X are distinct variables.

The notion of structure gives the semantic interpretation of such a domain and
is the key element of this framework.

Definition A.4. A structure <(�C;�) is de�ned over the (sorted) alphabets �C

and � of predicate and function symbols, where �C contains the equality symbol
(which needs no signature). <(�C;�) consists of

36

1. a collectionD< of non-empty setsD<s, where s ranges over the sorts in SORT.

2. an assignment to each n-ary function symbol f 2 � of a function
D<s1X : : :XD<sn ! D<s where (s1; s2; : : : ; sn; s) is the signature of f,

3. an assignment to each n-ary predicate symbol p 2 �C, apart from = (which
is interpreted as syntactic equality) of a function
D<s1X : : :XD<sn ! fTrue; Falseg; where (s1; s2; : : : ; sn) is the signature of
p.

An <(�C;�)-valuation for a (�C;�; V)- expression is a mapping � : V ! D<,
where V =

S
s2SORT Vs is the set of all variables, and �(Xs) 2 D<s, where s is the

sort of the variable Xs.

(�;�; V)-programs, (�C;�; V)-constraints and (�B;�; V)- constrained
atoms will be called programs, constraints and constrained atoms. Moreover,<(�C;�)
will be denoted by <. The notion of <-valuation is extended in the obvious way to
terms and constraints. If C is a possibly in�nite set of atomic constraints, < j= C�
i� 8c 2 C < j= c� (c� is <-equivalent to True) holds. Given an expression E and
an <-valuation �, E� denotes the result of the usual application operation.

Definition A.5. (Solvability) A constraint c is <-solvable i� there exists an <-
valuation � such that < j= c�. � is called an <-solution of c. A constrained atom
c; p(~X) is <- solvable i� c is <-solvable.

In the following we consider an example of CLP(H; EDB) the instance of CLP(X)
that allow to express non-immediate updates. Note that we consider a two sorted
structure where the �rst sort is the equalities between terms and the second is the
extensional database. In U-Datalog we avoided the equalities to simplify the syntax.
U-Datalog language has also other restrictions with respect to CLP (H; EDB):

� only constant symbols are allowed;

� an U-Datalog program has the form EDB [IDB. Thus there is a partition of
�B into �IDB and �EDB, that is intensional and extensional predicate symbols.
Similar partition for �C with = for equalities interpreted in the usual way and
�p where p 2 �EDB for the updates.

� constraints are used to express update speci�cations to base relations.

Example A.1. The database below is the same of Example 3.2 written in U-
Datalog. The only syntactic di�erence is the explicit use of equalities for binding
variables with constants. The language we consider is:

� �B = fbalance; potentialsaver;changebalance;
withdraw; deposit; transfer; <;>g,

� �C = f=;�balance;+balanceg,

37

� � = f102; 105; 1500;28000;10000g.

The full syntax for CLP(H; EDB) is

DB0 = balance(Acnt; Amt) Acnt = 102; Amt = 1500:
balance(Acnt; Amt) Acnt = 105; Amt = 28000:
potentialsaver(Acnt; B) true; balance(Acnt;B);

B > 10000:
changebalance(Acnt;B; B0) �balance(Acnt;B);

+balance(Acnt; B0):
withdraw(Amt; Acnt) true; changebalance(Acnt; B; B� Amt);

balance(Acnt;B); Atm< B:
deposit(Amt; Acnt) true; changebalance(Acnt; B;B+ Amt);

balance(Acnt;B):
transfer(Amt; Acnt; Acnt0) true; withdraw(Amt; Acnt);

deposit(Amt;Acnt0):

The absence of a constraint is denoted by the true value. �

The above syntax is remarkably more di�cult to understand of the equivalent U-
Datalog syntax. This is the main reason to use in the example the more appropriate
U-Datalog language. However, the formal results are carried out in the general
CLP(X) context.

A.2 Semantics domain

In the following we recall the operational, and �xpoint semantics and their equiv-
alence. The equivalent operational and �xpoint semantics allow to use a top-down
or bottom-up computational model to perform the query-answering process.

We introduce the notion of interpretation for CLP programs which is an extension
of the classic notion of interpretation in logic programming [40]. An interpretation in
logic programming is any subset of the Herbrand base. The Herbrand base is a set of
all the ground atoms for a program P . The notion of constrained atom introduced in
De�nition A.3 extends to CLP the classic notion of atom in an interpretation for logic
programs. Since the structure < is the intended domain of computation for CLP,
interpretations for CLP programs are based on <. All the following de�nitions are
related to a given <. Let us �rst de�ne the set of \domain instances" on constrained
atoms by means of the operator \[]".

Definition A.6. Let p(~X) c be a constrained atom, thus

[p(~X) c] = f(p(~X) c)� j � is an <-solution of cg:

This de�nition can be extended to a set S of constrained atoms in the obvious way
by de�ning [S] =

S
A2S [A].

38

Let us now give the new de�nition of interpretation for CLP programs. We �rst
introduce the equivalence ' used in the semantic domain in order to abstract from
syntactical di�erences among constrained atoms.

Definition A.7. Let a1 = p(~X) c1 and a2 = p(~X) c2 be two constrained
atoms. Then

a1 ' a2 i� [a1] = [a2]:

However, we denote with a1 the constrained atom and its equivalence class [a1]='.

Note that a1 ' a2 is equivalent to say that c1 and c2 have the same solutions for
the variables ~X .

Definition A.8. (Base) Let P be a program and let A be the set of all the
<(�C;�)-solvable constrained atoms for P . The base of interpretations B = A='.

Definition A.9. (Interpretation) An interpretation is any subset of B. The set
of all interpretations is denoted by I.

Definition A.10. (Truth) Let I be an interpretation. A constrained atom p(~X)
c is true in I i� [p(~X) c] � [I]. A ruleH c;B1; : : : ; Bn: is true in I i� for each <-
valuation � such that � is an <-solution of c and f(H1 c1)�; : : : ; (Hn cn)�g � [I]
implies (H c; c1; : : : ; cn;H1 = B1; : : : ;Hn = Bn)� 2 [I].

A parallel with the logic programming case can clarify the discussion. The logic
programs standard semantics de�nes models as sets of ground atoms. The base
of De�nition A.8 contains non-ground constrained atoms in the models, where a
non-ground constrained atom stands for an implicit de�nition of the set of all its
ground instances. Each constrained atom p(~X) c describing the set of elements
(p(~X) c)� where � is any <-solution for the constraint c. In order to abstract
from the particular syntactic representation of atoms, in the logic programming case
the base is de�ned modulo variance.

A.3 The operational semantics

The operational semantics of constraint logic programs can be speci�ed by means
of a set of inference rules which specify how derivations are performed. The CLP
inference rule takes into account that the derivation is performed over a generic
structure < rather than the Herbrand domain. Therefore, uni�cation is replaced
by checking the <-solvability of constraints. The following de�nitions use a parallel
selection rule where all the atoms of the resolvent are evaluated in a single derivation
step. This is exactly what the inference rule of a deductive database does. As far
as successful derivations are considered, a parallel selection rule is equivalent to the
more usual one which selects a single atom according to [13].

39

Definition A.11. (<-derivation step) Let P be a program. An <-derivation
step of a goal G = c;G1; : : : ; Gt in P results in a goal of the form c0; ~B1; : : : ; ~Bt,
and is denoted by c;G1; : : : ; Gt �!P c0; ~B1; : : : ; ~Bt if there exist t variants of clauses
in P;Hj cj; ~Bj , j = 1; : : : ; t with no variables in common with G and with each
other, such that c0 is <- solvable with c0 = c[c1[: : :[ct[fH1 = G1g; : : : ; fHt = Gtg.

Definition A.12. (<-derivation) Let P be a program. An <-derivation of a goal
G = c;G1; : : : ; Gn in P is a maximal (�nite or in�nite) sequence of goals starting
from G such that goal every goal apart from G is obtained from the previous one
by means of an <-derivation step.

Definition A.13. (successful <-derivation) Let P be a program. A successful
<-derivation of a goal G = c;G1; : : : ; Gn is a �nite <-derivation whose last element
is a goal of the form c0. c0 is the answer constraint of the derivation. All other �nite
<-derivations are �nitely failed. The successful derivation of a goal G which yields
the answer constraint c0, is denoted by G �!�

P c0.

For the sake of simplicity we omit the program P in �!P and �!�
P whenever the

considered program is clear. We are now ready to de�ne the operational semantics
of CLP.

Definition A.14. Let P be a program. The operational semantics O(P) is de-
�ned as follows

O(P) = f p(~X) c 2 Bj true; p(~X) �!� c g:

We recall that true denotes the empty constraint. The denotation of a program
is a set of non-ground constrained atoms. More precisely, a denotation is a (possibly
in�nite) set of equivalence classes of constrained atoms. The equivalence is needed
to abstract from irrelevant syntactic di�erences and in the above semantics it is
simply the variance relation.

Example A.2. Consider the database of Example 3.2 or the equivalent A.1.
Then, its operational semantics is

40

O(DB) = f balance(102; 1500);
balance(102; 28000);
potentialsaver(105; 28000);
changebalance(Acnt;B;B0) �balance(Acnt;B);

+balance(Acnt;B0);
withdraw(Amt; 102) �balance(102; 1500);

+balance(102; 1500�Amt);
Amt < 1500;

withdraw(Amt; 105) �balance(105; 28000);
+balance(105; 28000 �Amt);
Amt < 28000;

deposit(Amt; 102) �balance(102; 1500);
+balance(102; 1500 +Amt);

deposit(Amt; 105) �balance(105; 28000);
+balance(105; 28000 +Amt);

transfer(Amt; 102; 105) �balance(102; 1500);
+balance(102; 1500�Amt);
�balance(105; 28000);
+balance(105; 28000 +Amt);
Amt < 1500;

transfer(Amt; 105; 102) �balance(105; 28000);
+balance(105; 28000 �Amt);
�balance(102; 1500);
+balance(102; 1500 +Amt);
Amt < 28000 g

�

In the following we give some results concerning the operational, �xpoint se-
mantics and their equivalence. Further details are in [28]. Theorem A.1 states a
soundness and completeness results for O(P). As a consequence we obtain corollary
A.1 which shows that this semantics fully characterizes the operational behavior
modeling the answer constraints of programs.

Theorem A.1. Let P be a program and G = (c0; A1; : : : ; An) be a goal. Then
G �!� c i� there exist n constrained atoms Bi ci 2 O(P), i = 1; : : : n, which
share no variables with G and with each other, such that c0 [c1 [: : : [cn [fA1 =
B1g [: : : [fAn = Bng and c have the same solutions for the variables in G.

The following corollary shows the relationship between programs and semantics
equivalence.

Corollary A.1. Let P1; P2 be programs. Then P1 � P2 i� O(P1) = O(P2).

41

A.4 The �xpoint semantics

Let us now introduce an immediate consequence operator, which allows to charac-
terize the CLP programs.

Definition A.15. Let P be a program and let J � B.

TP (J) = f p(~X) c 2 B j
9 a renamed clause
p(~t) c0; p1(~t1); : : : ; pn(~tn) in P

9 pi(~Xi) ci 2 J; 1 � i � n
which share no variables

c = c0 [f ~X1 = ~t1g [: : : [f ~Xn = ~tng[
fc1; : : : ; cng [f ~X = ~tg
c is <-solvable g:

Definition A.16. Let T be a monotonic operator on the lattice (I;�). Then we
de�ne
T " 0 = ;
T " �+ 1 = T (T " �) for any ordinal �
T " =

S
�< T " � for limit ordinal

The following lemma allows to de�ne a �xpoint semantics using the TP operator.

Lemma A.1. The mapping TP is continuous on the cpo (I;�). There exists a
least �xpoint lfp(TP) of TP which is TP " !.

Definition A.17. Let P be a program. The �xpoint semantics Fix(P) of P is
de�ned as Fix(P) = TP " !:

Theorem A.2 shows that we have the expected result on the relation between
the operational and the �xpoint semantics.

Theorem A.2. (Equivalence of the operational and the �xpoint semantics) Let
P be a program. Then O(P) = Fix(P)8.

Example A.3. Consider the database of Examples A.2. The �xpoint semantics
is:

8The operational and �xpoint semantics were denoted as So
2 and S

f
2
in Section 4.

42

T0(DB) = f balance(102; 1500);
balance(102; 28000);
changebalance(Acnt;B;B0) �balance(Acnt;B);

+balance(Acnt;B0) g
T1(DB) = f potentialsaver(105; 28000);

withdraw(Amt; 102) �balance(102; 1500);
+balance(102; 1500 �Amt);
Amt < 1500;

withdraw(Amt; 105) �balance(105; 28000);
+balance(105; 28000 �Amt);
Amt < 28000;

deposit(Amt; 102) �balance(102; 1500);
+balance(105; 28000 +Amt);

deposit(Amt; 105) �balance(105; 28000);
+balance(Acnt;B+Amt) g

[T0(DB)
T2(DB) = f transfer(Amt; 102; 105) �balance(102; 1500);

+balance(102; 1500 �Amt);
�balance(105; 28000);
+balance(105; 28000 +Amt);
Amt < 1500;

transfer(Amt; 105; 102) �balance(105; 28000);
+balance(105; 28000 �Amt);
�balance(102; 1500);
+balance(102; 1500 +Amt);
Amt < 28000 g [T1(DB)

T3(DB) = Ti(DB)(8i > 2) = T2

�

We conclude this appendix with some observations. CLP was originally intro-
duced to formalize the integration between constraint programming and logic pro-
gramming. Our motivations to use CLP are quite di�erent. The use of CLP is in
formalizing the result of marking phase through that of answer constraints. Such an-
swer can be computed top-down or bottom-up. Therefore, we have now the general
framework to solve the problem of modelling the marking phase. However, we have
not yet solved the problem of compositionality among extensional and intensional
databases. This is the major achievement of the next appendix.

B Compositional CLP programs

Compositionality is related with a (syntactic) program composition operator op,
and holds when the semantics of the compound program P1 op P2 is de�ned by
(semantically) composing the semantics of the constituents S(P1) and S(P2). In
the case of logic programs, the construct which raises a compositionality problem is

43

the union of rules. The related property is sometimes called OR-compositionality.
OR-compositional semantics have been investigated for logic programs both for the-
oretical and for practical purposes in [27, 30, 44]. Unfortunately, the semantics for
constraint logic programming is not compositional with respect to program union
(see Example B.1). In this appendix we solve such problem. The semantics intro-
duced in the previous Appendix considers a program as a set of facts and rules.
Indeed this is the simplest case. Generally speaking a program could be a set of
units. Each unit can be a program itself. In this way it is possible to model modu-
lar knowledge bases, where each module can cooperate with the others. This is the
case of U-Datalog programs, where we are interested to compose intensional and
extensional databases.

Example B.1. Let us consider the following database where we can compute the
ancestor and remove all the parents of a given ancestor.

EDB = parent(henry; peter):
parent(bob; peter):
parent(peter; john):

IDB = anc(X; Y) parent(X; Y):
anc(X; Z) anc(X; Y); parent(Y;Z):
rmanc(X; Z) �parent(X;Y); rmanc(X;Y); parent(Y; Z):
rmanc(X; Y) �parent(X;Y); parent(X; Y):

According to De�nition A.14 the semantics, O(IDB) = ; and

O(EDB) = f parent(henry; peter);
parent(bob; peter);
parent(peter; john) g:

Since

O(EDB [IDB) = f parent(henry; peter);
parent(bob; peter);
parent(peter; john);
anc(henry; peter);
anc(bob; peter);
anc(peter; john);
anc(bob; iohn);
anc(henry; john);
rmanc(henry; peter) �parent(henry; peter);
rmanc(bob; peter) �parent(bob; peter);
rmanc(peter; john) �parent(peter; john)
rmanc(bob; iohn) �parent(bob; peter);

�parent(peter; john);
rmanc(henry; john) �parent(henry; peter);

�parent(peter; john) g:

44

the semantics of the union of the two programs cannot be obtained from the seman-
tics of the programs.

�

In the following we de�ne a compositional semantics for CLP in the style in-
troduced by Bossi et al. ([15]). Such semantics extends that for constraint logic
programs that was introduced in the previous Appendix. The program composition
operator op we will consider is [. In order to model a composition of programs,
we introduce the notion of open program, the semantics domains, the operational
semantics. Finally, the relationship with the classic semantics of CLP is provided.

B.1 Open programs

We extend the approach to compositional semantics presented by Bossi et Al. for
pure logic programs to constraint logic programs. Informally, the notion of program
composition we consider is [
, which is a generalization of program union where
the set of predicates
 � �B speci�es which predicates can be shared by di�erent
programs. If
 = �B, [
 is the standard union, while if
 = ; the composition is
allowed only among programs which do not share predicate symbols. Let us formally
give the de�nition of the program composition we consider.

Definition B.1. (
-open CLP program) An
-open CLP program (
-program
for short) is a constraint logic program P together with a set
 of predicate symbols
such that
 � �B. A predicate symbol occurring in
 is considered to be only
partially de�ned in P .

We recall that a CLP program is de�ned over (�;�; V), therefore the fact that

 � �B is obvious.

Definition B.2. (
-union) Let P1 be an
1-program and P2 be an
2-program.
If

1.
 �
1 [
2 and

2. (Pred(P1) \ Pred(P2)) � (
1 \
2)

then P1 [
 P2 is the
-open program P1 [P2. Otherwise P1 [
 P2 is not de�ned.

Note that when considering an
-open program P and an
0-open program Q,
the composition of P and Q is de�ned only if (Pred(Q) \ Pred(P)) � (
 \
0).
Moreover, the composition of P and Q is a 	-open program, where 	 =
 [
0.
The de�nition of any predicate symbol p 2
 in an
-open program P can always
be extended or re�ned. Therefore, a deduction dealing with a predicate symbol of
an
-open program P can be either complete (when it takes place completely in the
program P) or partial (when it terminates in P with an atom p(~t) such that p 2

and p(~t) does not unify with the head of any rule in P . A partial deduction can
be completed by the addition of new rules. Thus we have an hypothetic deduction,
which depends on the extension of the predicate p.

45

B.2 Interpretations for open CLP programs

In this section we formally de�ne the interpretations which characterize the above
informal semantics. Since the semantics of open CLP programs contains rules (whose
body predicates are all in
), we have to accommodate rules in the interpretations we
use. Therefore we will de�ne the notion of interpretation for open CLP programs.
Such interpretation extends the notion of interpretation for CLP programs given
in De�nition A.9 since it contains conditional constrained atoms. The conditional
constrained atom extends the notion of constrained atom given in De�nition A.3.
Informally, this means that the interpretation for rules must contain information
in form of a mapping from sets of atoms to sets of atoms. This mapping called
conditional constraint atoms is nothing else that the usual concept of rule.

Definition B.3. (Conditional constrained atom) A conditional constrained atom
is a rule of the formH c;B1; : : : ; Bn where B1; : : : ; Bn is a multiset of (�B;�; V)-
atoms such that Pred(B1; : : : ; Bn) �
 and c is a set of (�C ;�; V)-constraints. H
is a (�B; V)-atom and V ar(H) are distinct variables.

Before giving the de�nition of interpretation we need the following de�nitions.

Definition B.4. Let H c; ~B be a conditional constrained atom. Then we
de�ne

[H c; ~B] = f(H c; ~B)� j � is an <-solution of cg:

This de�nition can be extended to a set S of conditional constrained atoms in the
obvious way by de�ning [S] =

S
A2S[A].

We �rst introduce the equivalence ' used in the semantic domain in order to
abstract from syntactical di�erences among conditional constrained atoms.

Definition B.5. Let d1 = H1 c1; B1; : : : ; Bn and d2 = H2 c2;D1; : : : ;Dm

be conditional constrained atoms. Then

d1 ' d2 i� [d1] = [d2]

Moreover, d1 denotes the conditional constrained atom and its equivalence class
[d1]='.

Definition B.6. (Base) Let P be a program and let A be the set of all the
<(�C;�)-solvable conditional constrained atoms for P . The base of interpretations
C
 = A='.

Definition B.7. (Interpretation) An interpretation is any subset of C
. The set
of all the interpretations is denoted by I.

Note that any subset of C
 will be considered implicitly as an
-open program.
In the following the semantics for open CLP programs will be formally considered.

46

B.3 The semantics of open CLP programs

We want to express the semantics by means of a set of inference rules which specify
how derivations are made. In Subsection A.3 we considered inference rules using
a parallel selection rule. In the following we consider inference rule using a fair
selection rule R. Thus we denotes a derivation step with �!P;R to make clear that
the derivation is performed with the selection rule R in the program P . Similarly,
for the transitive closure of the derivation relation �!�

P;R.

Definition B.8. (linear <-derivation step) Let P be a program and R a selection
rule. A linear <-derivation step of a goal G = c;G1; : : : ; Gt in P which uses the
selection rule R results in a goal of the form

G0 = c0; G1; : : : ; Gk�1; ~B; : : : ; Gt;

and is denoted by G �!P;R G0 if there exist an atom Gk and a variant of rule in
P;H c00; ~B, with no variables in common with G and such that c0 = c[c00[fGk =
Hg is <-solvable.

We will show the equivalence between the successful <-derivation using a parallel
selection rule and the linear successful <-derivations using any fair selection rule.
The proof of Theorem B.1 makes uses of two lemmas, stating the independence from
the selection rule.

Lemma B.1. Let G0; : : : ; Gn be the sequence of goals of a linear <-derivation,
such that

1. Gq = c;A1; : : : ; Am (where 1 � q � n� 2);

2. Ai is the selected atom in Gq and Ci = Hi ci; ~Bi is the corresponding rule;

3. Aj is the selected atom in Gq+1 and Cj = Hj cj ; ~Bj is the corresponding
rule.

Then there exists a linear <-derivation with the sequence of goals
G0; : : : ; Gq; G

0; Gq+2; : : : ; Gn, where Aj is selected in Gq and Ai is selected in G0.

Proof
Without loss of generality, assume i < j. First note that

Gq+1 = c [ci [fAi = Hig; A1; : : : ; ~Bi; : : : ; Am

Gq+2 = c [ci [fAi = Hig [cj [fAj = Hjg;

A1; : : : ; ~Bi; : : : ; ~Bj; : : : ; Am

If we select Aj before Ai we get:

47

G0 = c [cj [fAj = Hjg; A1; : : : ; ~Bj; : : : ; Am

G00 = c [cj [fAj = Hjg [ci [fAi = Hig;

A1; : : : ; ~Bi; : : : ; ~Bj; : : : ; Am

Obviously, G00 = Gq+2 since the union operator is commutative.

Lemma B.2. For every goal G, for every selection rules R and R0, G has a linear
<-successful derivation via R with answer constraint c i� G has a linear <-successful
derivation via R0 with answer constraint c.

Proof
The proof is by induction on the length of the derivation.
(l = 1) Trivial.
(l > 1) If R and R0 agree on the �rst selection, then the theorem easily follows
from the induction hypothesis. Otherwise, let G;G1; : : : ; Gn be a refutation of G
via R, and let Ai and Aj be the literals selected in G by R and R0, respectively. By
repeatedly applying Lemma B.1 to G;G1; : : : ; Gn we can obtain a linear <-successful
derivation G;G0

1; : : : ; G
0
n where Aj is selected at the �rst step and Gn = G0

n. Then
the theorem follows by applying the induction hypothesis to G0

1.

Theorem B.1. Let P be a program and G = c;A1; : : : ; An a goal. G has a
successful <-derivation with answer constraints c i� G has a linear successful <-
derivation with the same answer constraint.

Proof
()) We expand each step of the <-derivation into n steps of a linear <-derivation
where n is the number of atoms in the goal. Let Gi = ci; A1; A2; : : : ; An the ith
resolvent in the <-derivation, let the selected rules be

C1 = A0
1 ~c1; B1

C2 = A0
2 ~c2; B2

...

Cn = A0
n ~cn; Bn

and let Gi+1 be equal to ci[~c1[~c2 [: : :[~cn [fA1 = A0
1g[fA2 = A0

2g[: : :[fAn =
A0
ng; ~B, where ~B is the juxtaposition of B1, : : : , Bn. If we select each Ai in turn

and apply rules Ci in n successive steps of a linear <-derivation, we obtain Gi+1.
Expanding each step of the successful <-derivation we obtain a linear successful
<- derivation with the same answer constraint. By Lemma B.2 the same answer
constraint will be computed using any selection rule.

48

(() If we have a linear <-refutation for G, by Lemma B.2 we have also a derivation
using a \breadth �rst" selection rule. Let Gi be the ith resolvent in this refutation,
with G0 = G = c;A1; A2; : : : ; An. The breadth �rst selection rule will select each Ai

from left to right. Let

Ci = A0
i ~ci; Bi

the rule used in the ith step. After n steps the resolvent Gn will be c[~c1[: : :[~cn [
fA1 = A0

1g [: : :[fAn = A0
ng; ~B, where ~B is the juxtaposition of B1, : : : , Bn. This

resolvent can be obtained by a single step in a <-derivation using the same rules.
This construction can be iterated to obtain a successful <-derivation from G with
the same answer constraint.

In the following we omit to specify that a derivation is linear.

Definition B.9. Let
 be a set of predicates. We de�ne

Id
 = fp(~X) true; p(~X) j ~X are distinct variables g:

In the following we denote with c;G1; : : : ; Gn ;P;R c0; B1; : : : ; Bt the <-derivation
of the resolvent c0; B1; : : : ; Bt from c;G1; : : : ; Gn in the program P using the selection
rule R. If there is no indication of the selection rule R, then we assume the parallel
selection rule.

Definition B.10. (Open semantics) Let P be a program,
 be a set of predicate
symbols, ~A = A1; : : : ; Am and ~B = B1; : : : ; Bn. Moreover let P+ = P [Id
 and let
R be a fair selection rule. Then the
-compositional semantics is

O
(P) = f p(~X) c0; ~B 2 C
 j

true; p(~X);P;R c; ~A;P+;R c0; ~B;

and fPred(~B)g �
 g:

Moreover if P is an
-open program, O
(P) is also
-open.

The denotation of a program is a set of conditional constrained atoms, which can
be viewed as a possibly in�nite program. More precisely, a denotation is a (possibly
in�nite) set of equivalence classes of conditional constrained atoms. The equivalence
is need to abstract from irrelevant syntactic di�erences and in the above semantics
it is simply the variance relation.

Note that O
(P) is a set of resultants [40] obtained from goals of the form
true; p(~X) in P and is essentially the result of the partial evaluation of P , where
derivations terminate at open predicates (i.e. predicates in
). The set of rules Id

in the previous de�nition is used to delay the evaluation of open atoms. As shown
by the Proposition B.1, this a trick which allows to obtain, by using a �xed fair

49

selection rule R, all the derivations true; p(~X) ;P;R0 c0; B1; : : : ; Bn which use any
fair selection rule R0 for Pred(B1; : : : ; Bn) �
. Therefore the previous de�nition
is independent from the selection rule considered. Note that in the �rst step of the
derivations we use rules from P (instead than from P+) because we want O
(P) to
contain a rule p(~X) true; p(~X) if and only if true; p(~X);P true; p(~X).

Proposition B.1. Let R be a selection rule, let P+ = P [Id
, ~X a tuple of
distinct variables and fPred(B1; : : : ; Bn)g �
. Then there exists a rule R0 such
that true; p(~X);P;R0 c;B1; : : : ; Bn i� true; p(~X);P;R c0;D1; : : : ;Dm

;P+;R c00; B1; : : : ; Bn and c, c00 have the same solutions for the variables ~X.

Proof
() Straightforward, by considering R0 as the selection rule obtained from R, by
eliminating in the derivation

true; p(~X);P;R c0;D1; : : : ;Dm ;P+;R c00; B1; : : : ; Bn

all the selections of atoms, which are rewritten by rules in Id
 n P .
)) By hypothesis there exists a derivation

d1 : true; p(~X);P;R0 c;B1; : : : ; Bn

Due to the fact that P � P+ we can assume that there exists

d2 : true; p(~X);P+;R �c;B1; : : : ; Bn

The �rst rule used in d2 is the same rule of program P which is used to rewrite p(~X)
in the �rst step of the derivation d1.

For each atom Aj that is selected by R in a step of the derivation d2, if Aj is
chosen by R0 in d1, we use the same input rule used in d1 (recall that P � P+). Note
that if Aj is not selected by R0, then Pred(Aj) 2
, since fPred(B1; : : : ; Bn)g �

. Therefore if Aj is not selected by R0, we can use, to write Aj, the input rule
pj(~Xj) pj(~Xj) 2 Id
, where pj = Pred(Aj): Then the derivation d2 only uses
rules which are used in the derivation d1 and some rules in Id
. Moreover, since
the selection rule R is fair, if an atom Ai is selected in a step of the derivation d1,
then in the derivation d2 the atom Ai is selected in a �nite number of steps (recall
that we can always rewrite an atom q(~t), where q 2
 in the derivation d2 by means
the input rule q(~Y) q(~Y). Thus c = �c [E where E = f~t1 = ~Y1; : : : ; ~ts = ~Ysg for
i = 1; : : : ; s is a set of equations and ~Y 0

i s are new distinct variables, which do not
occur in c. Therefore, c and �c have the same solutions for the variables ~X .

We de�ne the congruence �
 on programs when considering the compositional
program operator [and the set of predicate symbols
. It can formally be de�ned
as follows.

50

Definition B.11. Let P1; P2 be
-open programs. Then P1 �
 P2 if for every
goal G (with ~Y = V ar(G)) and for every
-program Q such that Pi [
 Q, i = 1; 2,
is de�ned,

true;G �!�
P1[
Q

c i� true;G �!�
P2[
Q

c0

where c and c0 have the same solutions for the variables ~Y .

O
 allows to characterize a notion of answer constraints which enhances the
usual one (see De�nition A.14), since also (unresolved) atoms, with predicate sym-
bols in
, are considered. Therefore it is able to model answer constraints in an
OR-compositional way. As we will see in the following, Theorem B.2 shows that
a program P and its operational semantics O
(P) are �
 equivalent. As a conse-
quence, the semantics O
(P) correctly captures the answer constraint observable
when considering also programs union, that is, O
(P) is correct with respect to the
equivalence �
 (corollary B.1). Theorem B.3 will show the compositionality of the
semantics with respect to the [
 operator.

Lemma B.3. Let P be a program. Then, c0; p(~t);P;R c1; G i�

� true; p(~X);P;R c2; G

� c1 and c2 [c0 [f ~X = ~tg are <-solvable and have the same solution, for the
variables ~X .

Proof
)) Let us �rst note that the goal c0; p(~t) and c0 [f ~X = ~tg; p(~X) (where ~X are new
distinct variables) are equivalent Moreover if the constraint c [c0 is <-solvable, the
constraint c is <-solvable too. Hence in the derivation of true; p(~X) we can repeat
exactly the steps (and use the same rules) of the derivation of c0 [f ~X = ~tg; p(~X)
and the �rst part of the thesis holds.
() Assume now true; p(~X);P;R c2; G, and let c� be the constraint in a generic goal
of this derivation. By de�nition of derivation, c� � c2. Therefore, since c2[c0[f ~X =
~tg is <-solvable, c� [c0 [f ~X = ~tg is <-solvable too. Then by repeating each step of
the derivation true; p(~X);P;R c2; G and by adding c0[f ~X = ~tg at each constraint,
we get a derivation c0 [f ~X = ~tg; p(~X) ;P;R c0 [f ~X = ~tg [c2; G. By the same
argument, we obtain a derivation c0; p(~t);P;R c1; G which completes the proof.

Theorem B.2. Let P be an
-open program. Then P �
 O
(P).

Proof
We have to show that for every
-open Q such that O
(P) [
 Q and P [
 Q are
de�ned, true;G �!�

O
(P)[Q
c i� true;G �!�

P[Q c0 where ~Y = V ar(G) and c, c0

have the same solutions for the variables ~Y (note that if P [
Q is de�ned then also
O
(P) [
 Q is de�ned but the converse is not true). By the independence from
the selection rule, considering a CLP-like version of SLD derivation [40], such as in
De�nition B.8 we can assume that the selection of the atoms is performed according
to the following rule denoted by S

51

1. select �rst the non-open atoms (i.e. the p(~t)'s such that p 62
)

2. among the non-open atoms, select �rst those which are added to the current
resolvent by the last inference step (i.e. those in the body of the last used
rule).

We will show that true;G ;O
(P)[Q;S c0; R in one step i� there exists n such
that true;G ;P[Q;S c00; R in n steps and c0 , c00 have the same solutions for the
variables ~Y . The thesis follows from the above result by a straightforward inductive
argument and by de�nition of �
. Let p(~t) be the atom selected in G. If p(~t) is
reduced by using a rule in Q, the thesis follows with n = 1. Otherwise let R be
de�ned as follows

1. R = c; (G n p(~t)); B is the �rst resolvent (6= G) in the derivation
true;G �!�

P[Q;S c such that S(R) = A and either Pred(A) 2
 or A 2 G.
Note that by de�nition of S Pred(B) =
.

2. If there does not exist an R as speci�ed in 1, then R is the empty resolvent.

Such an R exists since we are considering �nite (successful) derivations. For R
as speci�ed in 1. we have

true;G;P[Q;S c;R i� (by De�nition of R and S)
c0; p(~t);P;S c;B i� (by Lemma B.3)

true; p(~X);P;S c
0; B i� by De�nition B.10

and Proposition B.1

p(~X) c0; B 2 O
(P) i� (by De�nition of ;O
(P);S)
true;G;O
(P);S c

00; (G n p(~t)); B

where c00 = c0 [c0 [f ~X = ~tg. Then, by Lemma B.3, c0 and c have the same
solutions for the variables of ~X and therefore by Proposition B.1 c and c00 have the
same solutions for the variables of G. For R as in 2 the same holds with R;B and
G n p(~t) = ; and this completes the proof.

Corollary B.1. Let P1; P2 be
-open programs. If O
(P1) = O
(P2) then
P1 �
 P2.

Proof
Straightforward by Theorem B.2.

Lemma B.4. Let P be a constraint logic program, G be a goal and ~Y = V ar(G).
Then true;G ;P;R c;N i� true;G ;P;R0 c0; N 0, where c and c0 have the same
solutions for the variables ~Y , and the derivation true;G ;P;R0 c0; G0 is obtained
from true;G;P;R c;N by changing the order in which the atoms are selected.

52

Proof
Straightforward by noting that the computation is performed by accumulating con-
straints and, since constraints are considered as sets, the ordering in which con-
straints are added is not relevant.

Theorem B.3. Let P1 be an
1-open program, P2 be an
2-open program and
let P1 [
 P2 be de�ned. Then O
(O
1(P1) [
 O
2(P2)) = O
(P1 [
 P2).

Proof
First note that, by De�nition B.10, Pred(O
(P)) � Pred(P). Therefore, by De�ni-
tion B.2, if P1[
P2 is de�ned then also O
1(P1)[
O
2(P2) is de�ned. By De�nition
B.10 and by Proposition B.1, it is then su�cient to show that 9R such that

true; p(~X);P1[P2;R c;B1; : : : ; Bn

i� 9R0 such that

true; p(~X);O
1(P1)[O
2(P2);R
0 c;B1; : : : ; Bn

with Pred(B1; : : : ; Bn) �
. Let us prove the two implications separately.
() Assume, without loss of generality, that

f ~X = ~tg; A1; : : : ; Ai�1; p(~t); Ai+1; : : : ; An ;O
1(P1);R
0

f ~X = ~tg [f~l = ~tg [c;A1; : : : ; Ai�1; B1; : : : ; Bn; Ai+1; : : : ; An

in one step, using the rule p(~l) c;B1; : : : ; Bn 2 O
1(P1). By De�nition B.10
and by Proposition B.1, 9R such that true; p(~X) ;P1;R c0; B1; : : : ; Bn with c0 and
c[f ~X = ~l; ~t = ~lg have the same solutions for the variables ~X . Then, by Lemma B.3,
true; p(~t) ;P1;R c00; B0

1; : : : ; B
0
n and c0, c00 have the same solutions for the variables

~X. Hence in P1 there exists the derivation

f ~X = ~tg; A1; : : : ; Ai�1; p(~t); Ai+1; : : : ; An ;P1;R

f ~X = ~tg [c00; A1; : : : ; Ai�1; B
0
1; : : : ; B

0
n; Ai+1; : : : ; An

.
By de�nition of B0

1; : : : ; B
0
n and since the bindings for variables in A1; : : : ; An are

determined by the variables in p(~t) we have that c00 and f~l = ~tg [c have the same
solutions for the variables ~X Therefore the thesis holds by a straightforward induc-
tive argument.
()) Suppose that true; p(~X);P1[P2 ;R c;B1; : : : ; Bn with
Pred(B1; : : : ; Bn) �
, and, without loss of generality, suppose that the �rst rule
used in the derivation is in P1. By Lemma B.4 we can assume that the selection
rule R is S as speci�ed in the proof of Theorem B.2 (considering as non-open atoms
the p(~t)'s such that p 62
1). Let c

0; N be de�ned as follows

53

1. c0; N = c0; (Gnp(~X)); B is the �rst resolvent (6= G) in the derivation true; p(~X);P1[P2;S

c;B1; : : : ; Bn such that S(R) = A and Pred(A) 2
1,

2. N = c0; B1; : : : ; Bn if there not exist any c0; N as speci�ed in 1.

Note that, by de�nition of [
, if P1 [
 P2 is de�ned then Pred(P1) \ Pred(P2) �
(
1 \
2) �
1. Therefore, every atom A selected before c0; N is rewritten using a
rule in P1. Moreover note that, by de�nition of S, Pred(N) �
1.

Therefore, by De�nition B.10, p(~X) c0; N 2 O
1(P1). Obviously, p(~X)
c0; N 2 O
1(P1) i� true; p(~X) ;O
1(P1);R

c0; B1; : : :Bn in one step. Then we have
the following implications

true; p(~X);P1[P2;S c;B1; : : : Bn

(i� by de�nition of N and of S)

true; p(~X);P1;S c
0; N ;P1[P2 ;S c

0 [c00; B1; : : : ; Bn

(i� by previous remarks)

true; p(~X);O
1(P1);S
c0; N ;P1[P2;S c

0 [c00; B1; : : : ; Bn

where c and c0[c00 have the same solutions for the variables ~X . Therefore the thesis
follows by induction.

B.4 Semantics and compositional semantics

We have de�ned the notion of open program and the corresponding compositional
semantics. Therefore, we have now the formal setting (i.e., language and seman-
tics) for modular construction of CLP programs and thus for U-Datalog database.
However, once we have this nice formal setting, we would also like to hide the in-
formation about the fact that a program was made of several components. That
is, we want to consider the program no more as an open one. This means that we
want to hide information about the structure whenever it is not necessary. In other
words we want to remove the rules from the semantic domain. In the remainder of
this chapter we show the relationship between the two semantics for CLP programs
(O(P)) (De�nition A.14) and that for compositional CLP one (O
(P)) (De�nition
B.10). Theorem B.4 will show the expected result between those two semantics. By
Proj we denote a function which maps a set of conditional constrained atoms into
a set of annoted atoms.

Definition B.12. Let I be set of (class of equivalence of) rules of the form H
c;B1; : : : ; Bk: Then

Proj(I) = fH c;B1; : : : ; Bk 2 I j Pred(B1; : : : ; Bk) = ;g:

54

Theorem B.4. Let P be a program. Then O(P) = Proj(O
(P)).

Proof
By De�nitions A.14 and B.10 O(P) � O
(P). Indeed if
 = ;, O;(P) = O(P).
The function Proj returns exactly the (equivalence classes of) sets of constrained
atoms, that is rules such that Pred(B1; : : : ; Bk) = ; and thus the thesis holds.

The following example summarize the various results provided in this appendix.

Example B.2. Let EDB and IDB be the components of the program of Example
B.1, that is the following
-open programs with
 = fparentg.

EDB = parent(henry; peter):
parent(bob; peter):
parent(peter; john):

IDB = anc(X; Y) parent(X; Y):
anc(X; Z) anc(X; Y); parent(Y;Z):
rmanc(X; Z) �parent(X;Y); rmanc(X;Y); parent(Y; Z):
rmanc(X; Y) �parent(X;Y); parent(X; Y):

Then O
(EDB) = EDB and

O
(IDB) = f anc(X;Y) parent(X;Y);
anc(X;Y) parent(X;Z1); parent(Z1; Y);
...
anc(X;Y) parent(X;Z1); : : : ; parent(Zn; Y);
rmanc(X;Y) �parent(X;Y); parent(X;Y);
rmanc(X;Y) �parent(X;Z1);�parent(Z1; Y);

parent(X;Z1); parent(Z1; Y);
...
rmanc(X;Y) �parent(X;Z1); : : : ;�parent(Zn; Y) g

55

O
 contains enough information to compute the semantics of the composition. In
fact O(EDB [IDB) � O
(EDB [IDB), that is

O
(EDB [IDB) = f parent(henry; peter);
parent(bob; peter);
parent(peter; john);
anc(henry; peter);
anc(bob; peter);
anc(peter; john);
anc(bob; iohn);
anc(henry; john);
anc(X;Y) parent(X;Y);
anc(X;Y) parent(X;Z1); parent(Z1; Y);
rmanc(henry; peter) �parent(henry; peter);
rmanc(bob; peter) �parent(bob; peter);
rmanc(peter; john) �parent(peter; john)
rmancr(bob; iohn) �parent(bob; peter);

�parent(peter; john);
rmanc(henry; john) �parent(henry; peter);

�parent(peter; john);
rmanc(X;Y) �parent(X;Y); parent(X;Y);
rmanc(X;Y) �parent(X;Z1);�parent(Z1; Y);

parent(X;Z1); parent(Z1; Y) g

and O
(EDB [IDB) = O
(O
(IDB) [O
(EDB)) according to Theorem B.3.
Then, according to Theorem B.4, O(EDB [IDB) = Proj(O
(EDB [IDB)) with

O(EDB [IDB) = f parent(henry; peter);
parent(bob; peter);
parent(peter; john);
anc(henry; peter);
anc(bob; peter);
anc(peter; john);
anc(bob; iohn);
anc(henry; john);
rmanc(henry; peter) �parent(henry; peter);
rmanc(bob; peter) �parent(bob; peter);
rmanc(peter; john) �parent(peter; john)
rmancr(bob; iohn) �parent(bob; peter);

�parent(peter; john);
rmanc(henry; john) �parent(henry; peter);

�parent(peter; john) g

�

56

