
Computer-Aided Inconsistency Management
in Software Development

Bashar Nuseibeh

Department of Computing
Imperial College
London SW7 2BZ

Email: ban@doc.ic.ac.uk

Technical report DoC 95/4

0. Abstract

The incremental development of software systems involves the detection and handling of

inconsistencies. These inconsistencies arise in system requirements, design specifications and,

quite often, in the final implemented software product. In this paper we explore different kinds

of inconsistency that arise during different stages of software development, and examine the

scope and role of computer-based tool support for managing inconsistency in this setting. In

addition to detecting and removing inconsistencies , managing inconsistency also includes a wide

range of activities that facilitate continued development in the presence of inconsistency. These

include procedures for controlled amelioration and avoidance of inconsistencies. The paper uses

the ViewPoints framework for multi-perspective software development as a vehicle for the

discussion, and as a test bed for tool support. The framework facilitates the development and

composition of multiple partial specifications (ViewPoints), and is itself supported by

automated tools that check and handle inconsistencies (The Viewer).

The paper makes a contribution towards a better understanding of the way in which complex

software systems are developed, and consequently, the kind of automated tool support that

needs to be provided in this setting.

Keywords: inconsistency management, handling, specification, process modelling, CASE.

1. Introduction

The development of a large and complex software system inevitably involves
the management of inconsistencies. Inconsistencies may arise in the early
stages of development if, for example, contradictory requirements are
specified. They may also arise in design specifications as developers explore
alternative solutions; and in implementations if programmers, for example,
fail to consider particular exceptions.

A large proportion of software engineering research has been devoted to
consistency maintenance, or at the very least, has been geared towards
eradicating inconsistencies as soon as they are detected.

In our previous work [10], we have proposed an approach to software
development that is tolerant of inconsistencies, and which attempts to
provide techniques for handling them explicitly. We have also explored the
consequences of taking a radically decentralised approach to software

- 2 -

development in which multiple development participants hold multiple -
often inconsistent - views [12]. In this paper, we examine the implications that
such an approach has on the provision and nature of automated tool support.
In particular, we compare and contrast the scope and role of tools that support
inconsistency management, with that of tools that attempt to adopt
consistency maintenance through strict enforcement or immediate resolution.

The paper is organised as follows. We begin by outlining the origins and kinds
of inconsistencies that arise in software development (section 2), and how they
may be detected and identified (section 3). With reference to related work, we
then discuss strategies for handling inconsistencies (section 4), and examine
computer-based tool support for inconsistency management in this setting
(section 5). We conclude with a classification of current and desirable tools for
supporting such activities, discuss of outstanding research issues, and outline
an agenda for future work (section 6).

2. Causes of Inconsistencies

Inconsistency is an inevitable part of a complex, incremental software
development process. Even in an idealised process, system requirements are
often uncertain or contradictory, alternative design solutions exist, and errors
in implementation arise.

The requirements engineering stage of development is particularly illustrative
of such inconsistencies. During requirements acquisition, customer
requirements are often sketchy and uncertain. For large projects in particular,
a number of “client authorities” may exist who have conflicting, even
contradictory requirements. In many instances customers may not even be
certain of their own needs, and a requirements engineer’s job is partly to elicit
and clarify these needs. The requirements specification produced as a result of
such a specification and analysis process however is not static: it continues to
evolve as new requirements are added and conflicts identified are resolved. In
fact, even with strict project management practices in place, requirements
specifications - and subsequent design specifications - continue to evolve.

Thus, there is a wide range of possible causes of inconsistencies and conflicts
in software development. Many of these are due to the heterogeneity of the
products being developed (e.g., systems deploying different technologies) and
the multiplicity of stakeholders and/or development participants involved in
the development process. Inconsistencies arise between multiple
development participants because of:

• the different views they hold,

• the different languages they speak,

• the different development strategies (methods) they deploy,

• the different stages of development they address,

• the partially, totally or non-overlapping areas of concern they have, and

- 3 -

• the different technical, economic and/or political objectives they want to
achieve.

While inconsistencies can occur in software development processes and
products for a variety of reasons, we adopt a simple definition of what actually
constitutes an inconsistency:

An inconsistency occurs if and only if a (consistency) rule has been broken.

Such a rule explicitly describes some form of relationship or fact that is
required to hold. In previous work, we have examined three uses of such
consistency rules. They may describe syntactic relationships between
development artefacts prescribed by a development method, which is also a
way of describing semantic relationships between artefacts produced by that
method [21]. They may also be used to prescribe relationships between the sub-
processes in an overall development process, which is also a way of
coordinating the activities of developers deploying different development
strategies [6]. Finally, consistency rules can be used to describe user-defined
relationships that emerge as development of a software specification proceeds
[7]. This is useful for capturing ontological relationships between the products
of a development process (for example, two developers specifying a library
system may use the term “user” and “borrower” to refer to the same person).

Reducing an inconsistency to the breaking of a rule facilitates the
identification of inconsistencies in specifications, and is a useful tool for
managing other “problems” that arise during software development. For
example, if we treat conflict as the interference of the goals of one party caused
by the actions of another party [8], then we can use inconsistency as a tool for
detecting many conflicts1. Similarly, if we define a mistake as an action that
would be acknowledged as an error by its perpetrator (e.g., a typo), then we can
detect mistakes that manifest themselves as inconsistencies.

Hagensen and Kristensen have also explicitly explored the consistency
perspective in software development [14]. The focus of their work is on the
structures for representing information (“descriptions”) and the relations
between these structures. Consistency of descriptions is defined as relations
between interpretations of descriptions. Consistency handling techniques in
software systems modelled in terms descriptions, interpretations and
relations, are also proposed.

3. Detecting and Identifying Inconsistencies

Detecting an inconsistency that breaks an explicit rule is relatively straight
forward. For example, a type checker can check whether or not an instance or
variable conforms to its type definition. Similarly, a parser can check whether
or not a sentence conforms to the syntactic rules specified by its grammar.

1 Of course, not all conflicts will manifest themselves as inconsistencies, particularly if the conflict is
caused by a “conceptual disagreement” such as a difference in personal values.

- 4 -

Simple inferences in classical logic can also be used to detect logical
inconsistencies resulting from too much or too little information. For
example, a contradiction (where a rule of the form X ∨ ¬X has been broken)
may be detected in this way.

Other kinds of inconsistency are more difficult to detect. A conflict between
two development participants may not manifest itself as an inconsistency
until further development has taken place (making the original source of the
inconsistency difficult to identify). Furthermore, what actually constitutes an
inconsistency from one participant’s perspective may not be the case from
another perspective. An example of this is an “inconsistency” in a person’s tax
return. Such an inconsistency may actually be a “desirable” piece of
information from a tax inspector’s point of view!

One of the difficulties in handling inconsistencies effectively, even after they
have been successfully detected, is that the kind of inconsistency detected also
has to be identified. The CONMAN (configuration management) project [26] for
example, attempts to classify consistency in programs into one of six kinds in
order to facilitate inconsistency handling later on:

• Full consistency - where a system satisfies the rules that a programming
language specifies for legal programs (insofar as they can be checked prior
to execution).

• Type consistency - where a system satisfies the static type checking rules of
the programming language.

• Version consistency - where a system is built using exactly one version of
each logical source code file.

• Derivation consistency - where a system is operationally equivalent to
some version consistent system.

• Link consistency - where each compilation unit is free of static type errors,
and each symbolic reference between compilation units is type safe
according to the rules of the programming language.

• Reachable consistency - where all code and data that could be accessed or
executed by invoking the system through one of its entry points are safe.

The CONMAN system checks for all six kinds of consistency automatically, and
then reacts differently depending on the kind of inconsistency detected. It does
however appear appropriate for configuration management applications only,
and it is therefore desirable to identify a more general set of inconsistencies
that arise during software development in-the-large.

4. Handling Inconsistencies

Many approaches to handling inconsistency attempt to maintain and enforce
consistency, usually by adopting simple procedures for inconsistency detection
followed by immediate resolution. We now examine alternative approaches
to inconsistency handling that “tolerate inconsistency” [2] in a variety of ways.

- 5 -

We believe that these approaches represent more realistic attempts at
supporting software development, and we therefore discuss some discuss
some general techniques for acting and reasoning in the presence of
inconsistency.

4.1. Related work

Schwanke and Kaiser suggest that during large systems development,
programmers often circumvent strict consistency enforcement mechanisms in
order to get their jobs done [26]. They propose an approach to “living with
inconsistency” during development (implemented in the CO N M A N
programming environment described in section 4). CO N M A N helps
programmers handle inconsistency by:

• identifying and tracking the six different kinds of inconsistencies described
above (without requiring them to be removed),

• reducing the cost of restoring type safety after a change (using a technique
called “smarter recompilation”), and,

• protecting programmers from inconsistent code (by supplying debugging
and testing tools with inconsistency information).

Balzer proposes the notion of “tolerating inconsistency” by relaxing
consistency constraints during development [2]. The approach suggests that
inconsistent data be marked by guards (“pollution markers”) that have two
uses: (1) to identify the inconsistent data to code segments or human agents
that may then help resolve the inconsistency, and (2) to screen the
inconsistent data from other segments that are sensitive to the inconsistencies.
The approach does not however provide any mechanism for specifying
actions that need to be performed in order to handle these inconsistencies.

Gabbay and Hunter suggest “making inconsistency respectable” by proposing
that inconsistencies be viewed as signals to take external actions (such as
“asking the user” or “invoking a truth maintenance system”), or as signals for
taking internal actions that activate or deactivate other rules [13]. Again, the
suggestion is that “resolving” inconsistency is not necessarily done by
eradicating it, but by supplying rules that specify how to act in the presence of
such inconsistency. Gabbay and Hunter further propose the use of temporal
logic to specify these meta-level rules. We have adapted this approach to a
multi-perspective software development [10], in which logical inconsistencies
between partial specifications (ViewPoints) are detected by translating them
into classical logic, and then using an action-based temporal logic to specify
inconsistency handling rules.

Narayanaswamy and Goldman propose “lazy” consistency as the basis for
cooperative software development [18]. This approach favours software
development architectures where impending or proposed changes - as well as
changes that have already occurred - are “announced”. This allows the
consistency requirements of a system to be “lazily” maintained as it evolves.

- 6 -

The approach is a compromise between the optimistic view in which
inconsistencies are assumed to occur infrequently and can thus be handled
individually when they arise, and a pessimistic approach in which
inconsistencies are prevented from ever occurring. A compromise approach is
particularly realistic in a distributed development setting where conflicts or
“collisions” of changes made by different developers may occur. Lazy
consistency maintenance supports activities such as negotiation and other
organisational protocols that support the resolution of conflicts and collisions.

Finally, Feather has recently proposed an approach to modularised exception
handling [9], in which programs accessing a shared database of information
impose their own assumptions on the database, and to treat exceptions to
those assumptions differently. The assumptions made by each program
together with their respective exception handlers are used to provide each
program with its own individual view of the database. Alternative - possibly
inconsistent - views of the same information can therefore be used to support
different users or developers of a software system.

Table 1 summarises the various approaches to inconsistency handling
described above.

Approach Mechanism Scope

Living with inconsistency [26] Smarter recompilation Programming

(Configuration Management)

Tolerating inconsistency [2] Pollution markers Programming

Making inconsistency respectable [13]

Application: Inconsistency handling
between multiple perspectives [10]

Meta-level temporal rules (Logic) Databases

Multiple ViewPoints in software
development

Lazy inconsistency [18] Announce proposed changes Cooperative software development

Modularised exception handling [9] Multiple exception handlers Programming views

Table 1: Inconsistency handling in software development.

4.2. Acting in the presence of inconsistency

The inconsistency handling approaches described above address
inconsistencies in different ways. What they have in common however, is the
goal of allowing continued development in the presence of inconsistency. A
number of strategies for achieving this may be adopted.

• Ignoring the inconsistency completely and continuing development
regardless. This may be appropriate in certain circumstances where the
inconsistency is isolated and does not prevent further development from
taking place.

• Circumventing the inconsistent parts of the system being developed and
continuing development. This may be achieved by marking inconsistent

- 7 -

portions of the system (e.g., using Balzer’s “pollution markers”) or by
continuing development in certain directions depending on the kind of
inconsistency identified (e.g., as in CONMAN).

• Removing the inconsistency altogether by correcting any mistakes or
resolving conflicts. This depends on a clear identification of the
inconsistency and assumes that the actions required to fix it are known.
Restoring consistency completely can be difficult to achieve, and is quite
often impossible to automate completely without human intervention.

• Ameliorating inconsistent situations by performing actions that “improve”
these situations and increase the possibility of future resolution. This is an
attractive approach in situations where complete and immediate
resolution is not possible (perhaps because further information is required
from another development participant), but where some steps can be taken
“fix” part or some of the inconsistent information.

Logic-based approaches offer promising contributions to inconsistency
handling by providing techniques that compute “minimal inconsistent
subsets” of an inconsistent database or specification. This allows developers to
continue development (by avoiding the inconsistent information), and to
isolate the inconsistent information which can then be analysed at leisure.
Logic-based approaches may also facilitate reasoning in the presence of
inconsistency, and we are currently examining the use of extensions of
classical logic for this purpose [3].

Promising contributions are also offered by work on fault-tolerant distributed
systems [4] where continued operation of these systems is still possible in the
presence of failure. Failure in this context is analogous to inconsistency in
software development, and includes problems caused by omissions (e.g.,
server not responding to input), timing (e.g., server response is too early or too
late), response (e.g., server response is incorrect) and crashes. What fault-
tolerant systems have in common in such failure scenarios is their ability to
react to these failures and continue operating. In fact, analysis of many such
failures often produces information that identifies hitherto undetected errors
which can then also be repaired.

Finally, it is worth noting that what we have been discussing thus far are
inconsistencies that arise in the artefacts of software development (e.g.,
specifications, programs, systems, etc.). Inconsistencies can also arise in
software development processes themselves. An interesting example of these
is an inconsistency which occurs between a software development process
definition and the actual (enacted) process instance [5]. Such an inconsistency
between “enactment state” and “performance state” is often avoided by
blocking further development activities until some precondition is made to
hold. Since this policy is overly restrictive, many developers attempt to fake
conformance to the process definition (for example, by fooling a tool into
thinking that a certain task has been performed in order to continue
development). What is therefore needed is a software development process

- 8 -

which is flexible enough to tolerate development that diverges from its
definition, or a process that can be dynamically corrected, changed and/or
improved as it is being enacted.

5. Computer-Aided Inconsistency Management

Whatever the cause or kind of inconsistency that exists in a software
development process or product, there is a need for automated tools that
detect, identify, record, track and handle such inconsistencies in this setting.
We now discuss the scope and kinds of tools that support such inconsistency
management.

5.1. Scope

Figure 1 outlines three broad areas of inconsistency management that benefit
from computer-based tool support, and what follows identifies their scope.

Detect Inconsistency

Identify Inconsistency

Handle Inconsistency

Figure 1: Three activities of inconsistency management.

Detecting Inconsistency. This includes a wide range of tools that check
consistency rules, such as type checkers and parsers. Detecting inconsistency
can be automated if the appropriate consistency rules can be defined precisely.
Conflicts or mistakes that do not manifest themselves as inconsistencies
(because no pre-defined rule was prescribed), cannot be detected automatically
and normally require human involvement.

Identifying Inconsistency. Once an inconsistency has been detected, the next
step is to identify the kind of inconsistency it is (perhaps by comparing it
against some pre-defined classification of inconsistencies). Identifying
inconsistency automatically can be difficult, particularly if there are multiple
sources/causes of the inconsistency. However, once an inconsistency is
identified, then removing it is often also simplified. Tools that detect
inconsistency usually also attempt to identify or suggest its possible cause.

Handling Inconsistency. Reacting to inconsistencies in a system is a
particularly challenging area for the provision of tool support. Many tools
allow the inconsistency to be ignored or require actions to resolve it. Some of
the tools described in section 5.1 also allow controlled development to
continue in the presence of inconsistency. More tools are needed however for
tracking inconsistencies in software systems, as well as tools that use this
monitoring information to remove inconsistencies, or to ameliorate
inconsistent information.

- 9 -

5.2. Tool support

The broad definition of inconsistency as the breaking of an consistency rule
means that there is an equally broad range of tools that support inconsistency
management. For example, most CASE tools [24, 27] feature syntactic
consistency checkers that check well-formedness of diagrams, conformance to
software engineering methods and so on. Process-centred environments on
the other hand, check not only the artefacts of development, but also the
process by which these artefacts are developed. In general however, most of
these tools have limited inconsistency handling capabilities, concentrating
instead on inconsistency detection and identification, and leaving
inconsistency handling to be performed by the user of these tools.
Nevertheless, some scope for conflict resolution is provided by negotiation-
support tools [25].

A class of research tools known as theorem provers [16] also offer some scope
for inconsistency handling in that they attempt to prove that a description
(e.g., a specification) satisfies a set of properties or contains no contradictions.
Therefore, these tools have the capability of reasoning about why an
inconsistency exists when a proof cannot be produced.

A wide range of consistency checkers are also available for supporting
programming activities in particular. These include interpreters and
compilers which themselves deploy tools such as parsers and syntactic and
semantic checkers [1]. Many integrated programming environments also
provide automated support of inconsistency handling via tools such as static
analysers and debuggers, which guide programmers through traces of
inconsistent information in the process of trying to remove these
inconsistencies.

5.3. Inconsistency handling in multi-perspective specifications

For a number of years, we have been investigating multi-perspective software
development; that is, software development in which multiple development
participants hold multiple views on a problem and/or solution domain. We
have used the notion of a ViewPoint [12] to capture partial specification
knowledge about an area of concern, together with partial knowledge about
the representation scheme and process by which that partial specification is
produced. We have used the separation of concerns offered by ViewPoints as a
means for reducing software development complexity, and have deployed
inter-ViewPoint rules as a means for integrating ViewPoints (and the software
engineering methods upon which they are based) [22].

We have further developed The Viewer environment [19] to support the
ViewPoints framework, and have used it as a vehicle for demonstrating the
feasibility of our approach. In the area inconsistency management, T h e
Viewer, provides a range of complementary tools. From a method designer or
engineer’s point of view, The Viewer facilitates the expression of consistency
rules (both within and across ViewPoints). During actual development of

- 10 -

ViewPoints (method use), The Viewer provides tools for detecting, identifying
and handling inconsistencies. The ConsistencyChecker shown in figure 2 for
example is used to detect (selected) inconsistencies (in- and inter-ViewPoint),
and can be used to invoke inconsistency handling tools as appropriate.

Figure 2: A sample consistency checker in

the Viewer environment. This tool can be

used to check consistency of partial

specifications (ViewPoints) internally (in-

ViewPoint) and against other ViewPoints

(inter-ViewPoint). The particular rules that

the developer wishes to check may be

selected, and executed by clicking on the

“Apply Checks” button. If one or more

inconsistencies are detected, then clicking

on the “Inconsistency Handling” button

invokes the appropriate inconsistency

management tool (such as that shown in

figures 3, 4 and 5).

Three screen dumps from our prototype (inter-ViewPoint) inconsistency
handler are shown in figures 3, 4 and 5. Basically, they illustrate the three
different inconsistency handling activities that take place in a multi-
perspective development environment. In figure 3, the developer is
attempting to handle an inconsistency between two ViewPoints in his local
ViewPoint, and is offered the option of editing his local ViewPoint
specification and/or performing some further local consistency checks.

Figure 3: A sample inconsistency handler

in the Viewer environment. For the selected

inconsistency (top), local handling of the

inconsistency has been selected (left button

clicked). In this case, possible handling

actions include further editing of the

ViewPoint specification or the application of

some local checks.

- 11 -

In figure 4, the developer has chosen to handle the selected inconsistency by
transferring the relevant information to the other (“destination”) ViewPoint
with which the inconsistency arose. In other words, responsibility for
handling the inconsistency is being transferred to another ViewPoint
developer. The information transfer may include direct transfer of partial
specification information or the “posting” of some appropriate “message”.

Figure 4: A sample inconsistency handler

in the Viewer environment. For the selected

inconsistency (top), remote handling of the

inconsistency has been selected (right

button clicked). In this case, possible

handling actions include transferring/posting

information to another ViewPoint

specification for remote handling.

In figure 5, the inconsistency is to be handled jointly by the two ViewPoint
developers involved in the failed consistency check. Options provided include
further negotiation in order to understand the inconsistency better or resolve
the conflict, or a declaration of deadlock (and presumably seeking a third party
to arbitrate or provide more information.

Figure 5: A sample inconsistency handler

in the Viewer environment. For the selected

inconsistency (top), joint handling of the

inconsistency has been selected (middle

button clicked). In this case, possible

handling actions include negotiation

between the developers or war (i.e., external

arbitration is required)!

- 12 -

6. Discussion, Conclusions and Future Work

This paper has argued that software development processes must explicitly
support the evolving nature of software systems (specifications and programs),
and must therefore be capable of managing the inevitable inconsistencies and
conflicts that arise in such systems. Managing inconsistencies in this setting
does not necessarily mean removing them, although in many cases this may
be desirable, rather, it involves: (a) detecting and identifying the kinds of
inconsistencies, and possibly their source, and (b) continuing development in
the presence of such inconsistencies, with a view to removing them later on
down the line (or in some situations deferring resolution indefinitely). Often,
intermediate steps that ameliorate the state of a specification or simply make
progress towards removing inconsistencies in it, are also useful.

Of course, depending on the application for which a software system is being
developed, different “levels of reliability” may also be acceptable. For non-
safety-critical systems for example, some degree of uncertainty or inconsistency
may be tolerated - even in the final product. In such cases however, there is a
need to measure (or at least estimate) both the likely consequences and
frequency of failures, in order to assess system reliability, and then devise ways
of handling such failures [17].

A clearer understanding of the nature of software development is also needed
in order to help identify and prioritise inconsistencies. An illustrative
example of this is the distinction between an inconsistency reflecting an error
in development, and an inconsistency that only exists temporarily because
certain development steps have not been performed yet. The latter
inconsistency is a part of every development and, is less important than the
former, which reflects a more fundamental failure in development. If at all,
current process modelling technology [11] provides guidance for “normal”
development (e.g., “what should I do next?”), whereas we are attempting to
handle inconsistencies that are usually labelled as “undesirable” in such a
development process (e.g., “how do I get out of the mess I’m now in?”) [20].
Moreover, because some inconsistencies can only be identified as a
development process unfolds, we have been exploring process-guided
approaches to inconsistency handling that analyse explicitly recorded
development actions, then act according to the context of any inconsistencies
detected [15, 23].

Another interesting temporal consideration in this setting is what we might
call the “age” of an unresolved inconsistency. This is a measure of, say, the
number of development actions that were performed since the last time an
inconsistency was introduced by an action. It may be useful to explore the
correlation, if any, between the age of an unresolved inconsistency and the
degree of difficulty by which it may be handled or resolved. Intuitively, one
would expect that the greater the age of the last consistency check, the higher
the risk becomes, and that there is a trade-off between the cost of consistency
checking and the cost of resolution (we measure risk in this context as the

- 13 -

likelihood of consistency failures multiplied by the cost of resolving them).

Finally, in this paper we have not explicitly addressed software development
process considerations that determine when consistency checks should be
performed, how these checks should be performed, and what should be done
as result of performing these checks. Broadly speaking, deciding when to
perform a consistency check should be determined by the process prescribed by
a software development method. This should be designed to be “non-
intrusive” since continuous reminders to perform checks are irritating and
undesirable. The way in which checks are performed on the other hand, is an
interaction issue and is determined by the context in which the check is
applied. For example, in a cooperative development setting a negotiation
protocol may be suitable, whereas in a distributed systems setting low-level
communication protocols may be more appropriate. Finally, determining how
to act once a consistency check has been performed is largely an inconsistency
management issue that has been discussed in some detail in this paper.

We believe that many of the inconsistency management issues raised in this
paper lie at the heart of software development. At all stages of a development
life cycle, inconsistencies may arise and can be used to provide valuable input
into a software development process. In fact, identifying and handling
inconsistency in this context is a vehicle for monitoring and guiding
development, and can be used as a tool for measuring many attributes of
software development processes and products. We believe that there is a need
to address issues of inconsistency management explicitly, and to provide
computer-based tools that support this activity. These tools need to go beyond
inconsistency avoidance or consistency maintenance, allow reasoning in the
presence of inconsistency, and provide support for inconsistency handling
which does not always involve immediate inconsistency resolution.

7. Acknowledgements

This work benefited greatly from discussions with Steve Easterbrook, Anthony Finkelstein, Tony
Hunter and Jeff Kramer. It was partially funded by the UK Department of Trade and Industry as
part of the Eureka Software Factory (ESF) project (grant reference number IED4/410/36/002), the
UK EPSRC as part o the VOILA project, and the European Union as part of the Basic Research
Action PROMOTER and the Information Systems Interoperability (ISI) projects (ECAUS003).

8. References

[1] Aho, A. V. and J. D. Ullman (1977); Principles of Compiler Design; Addison-Wesley
Publishing Company, Reading Massachusetts, USA.

[2] Balzer, R. (1991); “Tolerating Inconsistency”; Proceedings of 13th International Conference
on Software Engineering (ICSE-13), Austin, Texas, USA, 13-17th May 1991, 158-165; IEEE
Computer Society Press.

[3] Besnard, P. and A. Hunter (1994); “Quasi-classical Logic: Non-trvializable classical
reasoning from inconsistent information”; Technical report, Department of Computing,
Imperial College, London, UK, December 1994.

- 14 -

[4] Christian, F. (1991); “Basic Concepts and Issues in Fault-Tolerant Distributed Systems”;
Proceedings of International Workshop on Operating Systems of the 90s and Beyond,
Dagstuhl Castle, Germany, 8-12th July 1991, 119-149; LNCS 563, Springer-Verlag.

[5] Dowson, M. (1993); “Consistency Maintenance in Process Sensitive Environments”;
Proceedings of Workshop on Process Sensitive Environments Architectures, Boulder,
Colorado, USA, Rocky Mountain Institute of Software Engineering (RMISE).

[6] Easterbrook, S., A. Finkelstein, J. Kramer and B. Nuseibeh (1994); “Coordinating
Distributed ViewPoints: The Anatomy of a Consistency Check”; Concurrent Engineering:
Research and Applications, 2(3): CERA Institute, West Bloomfield, USA.

[7] Easterbrook, S. and B. Nuseibeh (1995); “Inconsistency Management in an Evolving
Specification”; (to appear in) Proceedings of 2nd International Symposium on Requirements
Engineering (RE 95), York, UK, 27-29th March 1995, IEEE Computer Society Press.

[8] Easterbrook, S. M., E. E. Beck, J. S. Goodlet, L. Plowman, M. Sharples and C. C. Wood
(1993); “A Survey of Empirical Studies of Conflict”; (In) CSCW: Cooperation or Conflict?;
S. M. Easterbrook (Ed.); 1-68; Springer-Verlag, London.

[9] Feather, M. (1994); “Modularized Exception Handling”; Draft technical report,
USC/Information Sciences Institute, Marina del Rey, California, USA, 25th October 1994.

[10] Finkelstein, A., D. Gabbay, A. Hunter, J. Kramer and B. Nuseibeh (1994); “Inconsistency
Handling in Multi-Perspective Specifications”; Transactions on Software Engineering,
20(8): 569-578, August 1994; IEEE Computer Society Press.

[11] Finkelstein, A., J. Kramer and B. Nuseibeh (Eds.) (1994); Software Process Modelling and
Technology, Advanced Software Development Series, Research Studies Press Ltd. (Wiley),
Somerset, UK.

[12] Finkelstein, A., J. Kramer, B. Nuseibeh, L. Finkelstein and M. Goedicke (1992);
“Viewpoints: A Framework for Integrating Multiple Perspectives in System Development”;
International Journal of Software Engineering and Knowledge Engineering, 2(1): 31-58,
March 1992; World Scientific Publishing Co.

[13] Gabbay, D. and A. Hunter (1992); “Making Inconsistency Respectable: A Logical Framework
for Inconsistency in Reasoning: Part 2”; (In) Symbolic and Quantitative Approaches to
Reasoning and Uncertainty; 129-136; LNCS, Springer-Verlag.

[14] Hagensen, T. M. and B. B. Kristensen (1992); “Consistency in Software System Development:
Framework, Model, Techniques & Tools”; Software Engineering Notes (Proceedings of ACM
SIGSOFT Symposium on Software Development Environments), 17(5): 58-67, 9-11th
December 1992; SIGSOFT & ACM Press.

[15] Leonhardt, U., A. Finkelstein, J. Kramer and B. Nuseibeh (1995); “Decentralised Process
Modelling in a Multi-Perspective Development Environment”; (to appear in) Proceedings of
17th International Conference of Software Engineering, Seattle, Washington, USA, 14-18th
April 1995, IEEE Computer Society Press.

[16] Lindsay, P. A. (1988); “A Survey of Mechanical Support for Formal Reasoning”; Software
Engineering Journal (special issue on mechanical support for formal reasoning), 3(1): 3-27,
January 1988; IEE, UK.

[17] Littlewood, B. (1994); “Learning to Live with Uncertainty in Our Software”; Proceedings of
2nd International Symposium on Software Metrics, London, UK, 24-26th October 1994, 2-8;
IEEE Computer Society Press.

- 15 -

[18] Narayanaswamy, K. and N. Goldman (1992); ““Lazy” Consistency: A Basis for Cooperative
Software Development”; Proceedings of International Conference on Computer-Supported
Cooperative Work (CSCW ‘92), Toronto, Ontario, Canada, 31st October - 4th November,
257-264; ACM SIGCHI & SIGOIS.

[19] Nuseibeh, B. and A. Finkelstein (1992); “ViewPoints: A Vehicle for Method and Tool
Integration”; Proceedings of 5th International Workshop on Computer-Aided Software
Engineering (CASE ‘92), Montreal, Canada, 6-10th July 1992, 50-60; IEEE Computer Society
Press.

[20] Nuseibeh, B., A. Finkelstein and J. Kramer (1993); “Fine-Grain Process Modelling”;
Proceedings of 7th International Workshop on Software Specification and Design (IWSSD-
7), Redondo Beach, California, USA, 6-7 December 1993, 42-46; IEEE Computer Society
Press.

[21] Nuseibeh, B., J. Kramer and A. Finkelstein (1993); “Expressing the Relationships Between
Multiple Views in Requirements Specification”; Proceedings of 15th International
Conference on Software Engineering (ICSE-15), Baltimore, Maryland, USA, 17-21 May 1993,
187-200; IEEE Computer Society Press.

[22] Nuseibeh, B., J. Kramer and A. Finkelstein (1994); “A Framework for Expressing the
Relationships Between Multiple Views in Requirements Specification”; Transactions on
Software Engineering, 20(10): 760-773, October 1994; IEEE Computer Society Press.

[23] Nuseibeh, B., J. Kramer, A. Finkelstein and U. Leonhardt (1995); “Decentralised Process
Modelling”; (to appear in) Proceedings of 4th European Workshop on Software Process
Technology (EWSPT ‘95), Noordwijkerhout, 5-7th April 1995, Springer-Verlag.

[24] Rational (1992); “Rose: Rational Object-Oriented Software Engineering”; Product
Overview, D-66B; Rational Technology Ltd., Brighton, UK, October 1992.

[25] Robinson, W. N. (1992); “Negotiation Behaviour During Requirements Specification: A
need for automated conflict resolution”; Proceedings of 12th International Conference on
Software Engineering, Nice, France, 26-30th March 1990, 268-276; IEEE Computer Society
Press.

[26] Schwanke, R. W. and G. E. Kaiser (1988); “Living With Inconsistency in Large Systems”;
Proceedings of the International Workshop on Software Version and Configuration Control,
Grassau, Germany, 27-29 January 1988, 98-118; B. G. Teubner, Stuttgart.

[27] Wasserman, A. I. and P. A. Pircher (1987); “A Graphical, Extensible Integrated
Environment for Software Development”; SIGPLAN Notices (Proceedings of ACM
SIGSOFT/SIGPLAN Symposium on Practical Software Development Environments), 22(1):
131-142, ACM Press.

