
Modal Labelled Deductive Systems

Imperial College Research Report DoC 95/7

Alessandra Russo
Department of Computing

Imperial College of Science, Technology and Medicine,

180, Queen's Gate,

London SW7 2BZ

England,

email: ar3@doc.ic.ac.uk

March 1995

Last revision October 1995

Abstract

We present a formalization of propositional modal logic in the frame-
work of Labelled Deductive Systems (LDS) in which modal theory is pre-
sented as a \con�guration" of several \local actual worlds". We de�ne a
natural deduction style proof system for a propositional modal labelled de-
ductive system (MLDS). We describe a model{theoretical semantics (based
on �rst{order logic) and we show that the natural deduction proof system
is sound and complete with respect to this semantics. We also show that
the semantics given here is equivalent to Kripke semantics for a normal
modal logic whenever the initial con�guration is a single point. Finally
we discuss how this logic can be extended to the predicate case, we sketch
some natural deduction rules for quanti�ers and we discuss how such rules
solve certain problems associated with the nesting of quanti�ers within the
scope of modal operators.
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Introduction

Modal logic is considered to be a fundamental non{classical logic, from both a the-
oretical and an applicative point of view. Several extensions of modal logic have
been developed as new logical systems, which have turned out to be knowledge
representation formalisms suitable for a wide range of applications in Arti�cial
Intelligence. As examples we can cite temporal logic, action logic [Ginsberg-88]
and belief logic [Konolege-86].

However, most of the existing proof systems for predicate modal logics still have
some limitations. This is true of both of the two traditional approaches of implicit
and explicit formalizations. Proof systems based on a pure modal language (i.e.
implicit formalizations) impose restrictions on the semantics in order to ensure
soundness and completeness (see [Fitting-83]). This is because they are unable
to keep track of the nesting of quanti�ers in the scope of modal operators. On
the other hand, the proof systems that belong to the second approach (explicit
formalizations), even though they eliminate the above restrictions by translating
modal logics into �rst order logic, require so�sticated uni�cation algorithms with
exponential complexity (see [Ohlbach-88], [Ohlbach-91]).

In this work, we de�ne a new formalism for modal logic, following the idea pre-
sented in [Gabbay-92a], of compromising between the two implicit and explicit
formalizations, with the hope that reasoning with a mixed representation will
give us the bene�ts of both approaches without their restrictions. We will base
this new formalization on the idea of a Labelled Deductive System (LDS) de�ned
in [Gabbay-94]. The idea is to de�ne a logical framework in which possible worlds
and relationships bewteen possible worlds can be expressed declaratively, while
retaining the conventional syntax of modal logic. This formalism eventually will
allow us to develop a proof system in natural deduction style for predicate modal
logic, which can be proved to be sound and complete with respect to a varying
domain possible worlds semantics, and which will be able to keep track of the
nesting of quanti�ers in the scope of modal operators.

Therefore, it will be possible to distinguish proof theoretically between formulae
of the form 39xA(x) and 9x3A(x). This will also facilitate Skolemization proce-
dures in the construction of automated theorem provers for modal logic, without
requiring full translations into classical logic, thus eliminating the problem of
complex uni�cation algorithms.

Moreover the explicit declaration of relationships between possible worlds will
allow us to generalize the notion of a modal theory from a single `actual world' to
a set of `local' actual worlds with relations between them. In this way, we hope
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that this new formalism will be closer to the needs of many applications. The
formalization of extensions of modal logic in this logical framework will be more
exible and simpler, in particular for applications based on notions of status and
status{transition.

The overall research is in two main parts. The �rst part is concerned with for-
malization and development of a propositional modal labelled deductive system
(MLDS, which speci�es how to deal with modal operators. In the second part we
intend to extend the propositional modal labelled deductive system to the predi-
cate case. Rules for quanti�ers will be introduced, together with particular rules
called Visa rules that express the relationships between di�erent possible worlds
and elements of their associated domains. This report completely describes the
�rst part of the work. Research is now focused on the second part. A work plan
can be found in the last section.

In Section 1, we give a basic de�nition of a Modal Propositional Labelled Deduc-
tive System together with the de�nition of a MLDS theory as `a structured set
of local modal theories', called a Con�guration. In Section 2, we de�ne a nat-
ural deduction style proof system for MLDS, where inference rules are applied
on con�gurations and the derivability relation is de�ned between theories (and
not in the traditional way between theories and formulae). In Section 3, we �rst
introduce some additional de�nitions and then we present a semantics, de�ne
the notion of semantic entailment and show that the proof system developed in
Section 2 is sound with respect to this semantics. Note that this semantics is not
the only way of de�ning a MLDS model theory. Nevertherless, it turns out to be
quite straight-forward as illustrated in Section 3. In Section 4 we show that the
proof system developed in Section 2 is also complete with respect to the seman-
tics proposed in Section 3 and in Section 5 we prove that the model{theoretic
semantics given in Section 3 is equivalent to a Kripke semantics for normal modal
logic whenever the initial con�guration is a single point.

We consider here a wide family of MLDS, corresponding to each of the modal
logics K, T , K4, KB, S4, S5, D, D4 and DB.

Our approach is comparable with existing work using both implicit and explicit
formalization. In Section 6 we compare a MLDS with four di�erent existing proof
systems for propositional modal logic.

Finally we also expect our work to have advantages in applications. We therefore,
intend to undertake applicative case studies for MLDS which exploit its basic fea-
ture of dealing with \con�gurations".
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Notation & Terminology

We introduce speci�c notation as and when necessary throughout the report.
However, the reader might like to bear the following in mind. Constant and
predicate symbols will often begin with an upper{case letter, whereas variables
and function symbols will usually begin with a lower{case letter. We will some-
times use Greek{letter meta{variables to refer in general to terms and espres-
sions in a logical language. Larger entities such as structures, sets, theories and
languages will often be symbolised in caligraphic font, A;B; C; : : :. The MLDS
corresponding to the modal logic K will be referred to as the K{MLDS, the
MLDS corresponding to the modal logic T will be referred to as T{MLDS, etc.
We will use the symbol S to generally refer to an arbitrary MLDS within the
family considered here.

1 Basic de�nitions concerning MLDS

In this section we present some basic de�nitions concerning MLDS to which we
will refer in later sections.

De�nition 1.1 (Labelling language LL)
A labelling language LL is a �rst-order language composed of:

� W0;W1; : : : ;Wn; : : : a countable set of constant symbols
� x; y; z; x1; y1; z1; : : : a countable set of variables
� succ a unary function symbol
� R binary relation symbol
� :;^;_;!;� logical connectives
� 8 universal quanti�er

2

Note that in the above de�nition the constants of a labelling language can be
regarded as labels of possible worlds, and the relation symbol R as an accessi-
bility relation between possible worlds. The unary function symbol succ is used
only in the MLDSs which require the seriality properties. Moreover we will see
below that, given a particular modal language LM , the labelling language can be
appropriately extended by including function symbols which will generate new
accessible worlds from the initial set of constant symbols. The system presented
here is most clearly analogous to traditional modal logics in the case when LL
has a single constant symbol, sayW0, which can then be regarded as representing
the `actual world'.

De�nition 1.2 (Modal propositional language LM)
A modal language LM is a modal propositional language composed of:
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� p; q; r; p1; q1; r1; : : : propositional letters

� :;^;_ ! logical connectives1

� 2;3 modal operators

2

De�nition 1.3 (Semi{extended labelling language Func(LL;LM))
Let LL be a labelling language and LM a modal propositional language. Let
�1,: : :,�n,: : : be the ordered set of all w�s of LM

2. The �rst{order language
Func(LL;LM) is de�ned as the language LL extended with:

� f�1; f�2; f�3; : : : a unary function symbol
corresponding to each w� �i of LM

� box�1; box�2; box�3; : : : a unary function symbol
corresponding to each w� �i of LM

2

The unary function symbols introduced in the above de�nition are used both
in the semantics (Section 3) and to help de�ne a natural deduction style proof
system in Section 2. The function symbols f�i are used in a 3{Elimination
rule to generate a new accessible world uniquely associated with each 3{formula
and current world. In contrast, the function symbols box�i are used in a 2{
Introduction inference rule.

De�nition 1.4 (Labelling algebra A)
A labelling algebra A is a subset of the following axiom set, written in a semi{
extended labelling language Func(LL;LM):

8x(R(x; x)) (T)
8x; y; z((R(x; y)^R(y; z))! R(x; z)) (4)
8x; y(R(x; y)! R(y; x)) (B)
8x(R(x; succ(x))) (D)

2

The following table contains labelling algebrae corresponding to some of the nor-
mal modal logics:

1Given w�s � and �, we might sometimes, write (�! �) ^ (� ! �) as � � �
2We assume a canonical ordering. That such an ordering exists follows from the normal

inductive de�nition of a w� in a modal language LM
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T 8x(R(x; x))

K4 8x; y; z((R(x; y)^R(y; z))! R(x; z))

S4 8x(R(x; x))
8x; y; z((R(x; y)^R(y; z))! R(x; z))

S5 8x(R(x; x))
8x; y; z((R(x; y)^R(y; z))! R(x; z))
8x; y(R(x; y)! R(y; x))

De�nition 1.5 (The modal labelled deductive language (MLDL))
Given a labelling language LL and a modal propositional language LM , a modal
labelled deductive language (MLDL) is the ordered pair:

hLL;LM i

2

An MLDL is composed of two languages in order to identify possible worlds with
their inter{connecting accessibility relations and modal formulae syntactically.
The basic unit of information in a MLDS is not a modal formula but a pair sepa-
rated by colon | `label : modal formula'. The label component is a ground term
of the semi{extended labelling language Func(LL;LM ) and the modal formula
is a w� of the modal language LM . We call this basic unit of information a
declarative unit and we de�ne it as follows.

De�nition 1.6 (Declarative unit)
Given the language hLL;LM i, a declarative unit is a pair � :� where � is a ground
term of Func(LL;LM) and � is a w� of LM .

2

Examples of declarative units are W0 :p and f3q(W3) :p, which are called atomic
declarative units since the right side is an atomic modal formula (i.e. a single
proposition), and others such as W1 :3p and fq(W1) :p! r.

De�nition 1.7 (R{literal)
Given the language hLL;LM i, an R{literal is a literal of the form R(�1; �2) or
:R(�1; �2), where �1 and �2 are ground terms of the language Func(LL;LM )

2
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De�nition 1.8 (Converse of an R-literal)
Let � be an R-literal. The converse of �, written �, is de�ned as

� :R(�1; �2) if � = R(�1; �2)
� R(�1; �2) if � = :R(�1; �2)

2

Informally, a `theory' written in an MLDL will consist of a set of declarative units
together with a set of R-literals showing the accessibility relation between labels.
We can sometimes represent this information graphically. For example, if we take
the set of declarative units to be fW0 :2(p! q);W0 :2r;W1 :3p; fp(W1) :p;W2 :
qg and the set of literals to be fR(W0;W1); R(W0;W2); R(W1; fp(W1))g, this can
be represented graphically as in Figure 13. We call such a theory a con�guration,
and the associated structure of labels a diagram. In practise a con�guration
and its associated diagram will usually initially contain only constant symbols
of Func(LL;LM) as labels | con�gurations containing general ground terms of
Func(LL;LM) are generated by the application of inference rules. All of this is
expressed formally in the de�nitions which follow.

Figure 1 { A Con�guration

�
W0

2(p! q)
2r

�
�
��

@
@
@R

�
W1

3p

�
W2

��
��*

�
fp(W1)

p

q

De�nition 1.9 (Diagram)
Given the language hLL;LM i, a diagram D is a set of R-literals whose arguments,
�i; �j, are ground terms of Func(LL;LM ).

2

An example of a diagram is the set

fR(W0;W1); R(W0;W2); R(W1; fp(W1))g

which is represented graphically in Figure 2.

3It is less easy to represent R-literals of the form :R(�i; �j) graphically
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Figure 2 { A diagram

�
W0 �

��

@
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�
W1

�
W2

��
�*�
fp(W1)

De�nition 1.10 (Con�guration)
Given a MLDL, a con�guration is a tuple

hD;Fi

where: � D is a diagram
� F is a function from the set of ground terms of Func(LL;LM )

to the set PW (wff(LM )) of sets of w�s of LM
2

In the con�guration represented in Figure 1, for instance, we have

D = fR(W0;W1); R(W0;W2); R(W1; fp(W1)g

F(�) = f2(p! q);2rg if � = W0

f3pg � = W1

fpg if � = fp(W1)
fqg if � = W2

fg otherwise

Notation 1.1
Given a con�guration C = hD;Fi, we say the R-literal � is a member of C, and
write � 2 C, if � 2 D. We say that the declarative unit � :� is a member of C,
and write � :� 2 C, if � 2 F(�).

/

Finally, we are in a position to de�ne a propositional modal labelled deductive
system (MLDS).

De�nition 1.11 (Modal labelled deductive system)
Given a MLDL=hLL;LMi, a modal labelled deductive system (MLDS) S is a
tuple:

S = hhLL;LMi;A;Ri
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where: � A is a labelling algebra written in Func(LL;LM)
� R is a set of inference rules which `generate' one

con�guration from another
2

In the de�nition of a MLDS S above we have included the notion of a set of infer-
ence rules. Each inference rule is a relation de�ned over the set of con�gurations
of S. The exact form which such a relation can take is the topic of the next section.

Discussion

This new formalism is clearly a compromise between implicit and explicit for-
malizations of modal logic. Like the implicit approach, it allows us to use modal
formulae of the language LM . Moreover we can refer explicitly to possible worlds
and relations between possible worlds, via the separate language LL. The idea of
`labelled modal formulae' (declarative units), is similar to the notion of pre�xed
formulae introduced in [Fitting-83]. However, as will be discussed in Section 5,
our formalism allows us to deal with labels in a logical way. This will simplify
the de�nition of the natural deduction rules for modal operators, as well as the
proofs of soundness and completeness. Furthermore, the introduction of a sep-
arate binary �rst{order theory A4 makes the formalization modular. In fact,
properties of the accessibility relation are all expressed in the theory A as �rst
order axioms. Therefore, as we will see in Sections 3 and 4, the representation
of di�erent normal modal logics will only a�ect the labelling algebra A5, without
causing any change in the proof system. Finally, the introduction of labels and
R{literals has also allowed us to generalize the notion of a single current world
theory to a `structure of local actual world's theories', i.e. a con�guration. In fact
in a con�guration, a set of declarative units that has the same label represents a
local modal theory associated with that particular label (or possible world). The
set of R{literals de�nes the relation between labels. In the next section we show
how these local modal theories interact with each other.

4We use the word binary because the only predicate used in A is the binary predicate R.
5In the rest of the report we will refer to A as a labelling algebra or a labelling theory

indistinctivly
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2 A natural deduction system for MLDS

A di�erence between traditional modal systems and modal labelled deductive
systems is that in the latter the inference rules are applied not to w�s but to
con�gurations. In the inference system that we are going to de�ne, all the in-
ference rules `generate' a new con�guration from a given con�guration. Thus an
inference rule can be de�ned generally as follows.

De�nition 2.1 (Inference Rule)
An inference rule I is a set of pairs of con�gurations, where each such pair is
written as C=C

0

. If C=C
0

2 I then we say C is an antecedent con�guration of I,
and C

0

is an inferred (or consequence) con�guration of I with respect to C. We
also say I generates C

0

from C, and I infers C
0

from C.
2

In the rest of this section we assume a MLDL hLL;LM i. We will de�ne the
inference rules of an MLDS S = hhLL;LMi;A;Ri in a natural deduction style.
Introduction and Elimination rules will be de�ned for each classical connective
and modal operator of the language LM . For the remainder of this section, we
assume that all terms referred to are ground terms of Func(LL;LM) and all w�s
referred to are w�s of LM .

De�nition 2.2 (Proof)
Let S = hhLL;LMi;A;Ri be a MLDS. A proof in S is a pair hP;mi, where P is
a sequence of con�gurations fC0; : : : ; Cng, with n > 0, and m is a mapping from
the set f0; : : : ; n� 1g to R such that for each i, 0 � i < n, Ci=Ci+1 2 m(i).

2

De�nition 2.3 (Derivability)
Let S = hhLL;LMi;A;Ri be a MLDS and C and C

0

be two con�gurations of S.
C

0

is derivable from C, written C `S C
0

, if there exists a proof hfC; : : : ; C
0

g;mi.
2

Notation 2.1
Given a con�guration C, a declarative unit � :� and an R-literal � we write

C `S � :�
if there exists a con�guration C

0

such that C `S C
0

and � :� 2 C
0

. Similarly we
write

C `S �
if there exists a con�guration C

0

such that C `S C
0

and � 2 C
0

. We write
C `S � :?

if there exists a term � and a w� � such that C `S � :� ^ :�.
/
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Notation 2.2
Given the con�guration C = hD;Fi, the declarative unit � :� and the R-literal
�, then

1. C + [� :�] is the con�guration hD;F
0

i, such that

� F
0

(�) = F(�) [ f�g
� F

0

(�
0

) = F(�
0

) for each ground term �
0

2 Func(LL;LM ), �
0

6= �

2. C + [�] is the con�guration hD
0

;Fi, such that

� D
0

= D [ f�g

/

De�nition 2.4 (Con�guration Containment)
Given two con�gurations C1 = hD1;F1i and C2 = hD2;F2i, we say C2 contains C1
and write C1 � C2 if

� D1 � D2

� F1(�) � F2(�) for each ground term � of Func(LL;LM )

2

De�nition 2.5 (^{Elimination, I^E)
For all con�gurations C, terms � and w�s � and �, C=C + [� :�] and C=C + [� :�]
are members of the inference rule ^{Elimination (sometimes written I^E) if

� � :� ^ � 2 C
We will sometimes write ^{Elimination as

Ch� :� ^ �i

C
0

h� :�i

Ch� :� ^ �i

C
0

h� :�i

2

De�nition 2.6 (^{Introduction, I^I)
For all con�gurations C, terms � and w�s � and �, C=C + [� :�^ �] is a member
of the inference rule ^-Introduction (sometimes written I^I) if

� � :� 2 C
� � :� 2 C

We will sometimes write ^{Introduction as

Ch� :�; � :�i

C
0

h� :� ^ �i

2
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De�nition 2.7 (_{Introduction, I_I)
For all con�gurations C, terms � and w�s � and �, C=C + [� :� _ �] and
C=C + [� : � _ �] are members of the inference rule _{Introduction (sometimes
written I_I) if

� � :� 2 C
We will sometimes write _{Introduction as

Ch� :�i

C
0

h� :� _ �i

Ch� :�i

C
0

h� :� _ �i

2

De�nition 2.8 (_{Elimination, I_E)
For all con�gurations C, terms � and w�s , C=C + [� : ] is a member of the
inference rule _{Elimination (sometimes written I_E) if there exist w�s � and �
such that

� � :� _ � 2 C
� C + [� :�] `S � :
� C + [� :�] `S � :

We will sometimes write _{Elimination as

Ch[� :�]i Ch[� :�]i
: :
: :

Ch� :� _ �i ~Ch� :i ~Ch� :i
C

0

h� :i

2

De�nition 2.9 (!{Introduction, I!I)
For all con�gurations C, terms � and w�s � and �, C=C + [�!�] is a member of
the inference rule !{Introduction (sometimes written I!I ) if

� C + [� :�] `S � :�
We will sometimes write !{Introduction as

Ch[� :�]i
:
:

~Ch� :�i

C
0

h� :�!�i

2

De�nition 2.10 (!{Elimination, I!E)
For all con�gurations C, terms � and w�s �, C=C + [� : �] is a member of the
inference rule!{Elimination (sometimes written I!E) if for some w� �,

� � :�!� 2 C
� � :� 2 C

We will sometimes write !{Elimination as
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Ch� :�!�; � :�i

C
0

h� :�i

2

De�nition 2.11 (:{Introduction, I:I)
For all con�gurations C, terms � and w�s �, C=C + [� ::�] is a member of the
inference rule :{Introduction (sometimes written I:I) if for some term �

0

� C + [� :�] `S �
0

:?
We will sometimes write :{Introduction as

Ch[� :�]i
.
.

~Ch�
0

: ?i

C
0

h� ::�i

2

De�nition 2.12 (:{Elimination, I:E)
For all con�gurations C, terms � and w�s �, C=C + [� : �] is a member of the
inference rule :{Elimination (sometimes written I:E) if

� � :::� 2 C
We will sometimes write :{Elimination as

Ch� :::�i

C
0

h� :�i

2

De�nition 2.13 (?{Introduction, I?I)
For all con�gurations C, any R{literal �, and any declarative unit � :�,
C=C+[� :�] is a member of the inference rule ?{Introduction (sometimes written
I?I ) if

� � 2 C
� � 2 C

We will sometimes write ?{Introduction as

Ch�;�i

C
0

h� :�i

2

The next group of inference rules concern the modal operators of the language LM
and are based on the structure of the diagrams within con�gurations. Indeed they
are the only inference rules where R{literals of the form R(�i; �j) are referred to
explicitly in order to espress the inference of new formulae in an accessible world.
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De�nition 2.14 (3{Elimination, I3E)
For all con�gurations C, terms � and w�s �, C=C + [f�(�) :�] + [R(�; f�(�))] is a
member of the inference rule 3{Elimination (sometimes written I3E) if

� � :3� 2 C
We will sometimes write 3{Elimination as

Ch� :3�i

C
0

hf�(�) :�;R(�; f�(�))i

2

In Section 3 we will see that the inference of new labels and relations in the
structure of a diagram within a con�guration is consistent with the extended
algebra A+ in which the process of de�ning new labels via function symbols
is controlled by the axiom schema (Ax5). An example application of the 3{
Elimination rule is represented graphically in Figure 3.

q
�
W2

@
@
@R

�
W0�

�
��
�

W1

�p

2(p! q)
2r

���
���

�:�
fp(W1)

p

W2

�
q

@
@
@R

�W0

2(p! q)
2r

�
�
��
�
W1

�p

Q
Q
Q

�
�
�

3{Elimination rule

Figure 3 { 3{Elimination rule
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De�nition 2.15 (3{Introduction, I3I)
For all con�gurations C, terms �1 and �2 and w�s �, C=C + [�1 :3�] is a member
of the inference rule 3{Introduction (sometimes written I3I) if

� �2 :� 2 C
� R(�1; �2) 2 C

We will sometimes write 3{Introduction as

Ch�2 :�;R(�1; �2)i

C
0

h�1 :3�i

2

De�nition 2.16 (2{Introduction, I2I)
For all con�gurations C, terms � and w�s �, C=C + [� :2�] is a member of the
inference rule 2{Introduction (sometimes written I2I) if

� C + [R(�; box�(�))] `S box�(�) :�

We will sometimes write 2{Introduction as

C [ f[R(�; box�(�))]g
.
.

~Chbox�(�) :�i

C
0

h� :2�i

2

De�nition 2.17 (2{Elimination, I2E)
For all con�gurations C, terms �1 and �2 and w�s �, C=C + [�2 :�] is a member
of the inference rule 2{Elimination (sometimes written I2E) if

� �1 :2� 2 C
� R(�1; �2) 2 C

We will sometimes write 2{Elimination as

Ch�1 :2�;R(�1; �2)i

C
0

h�2 :�i

2

De�nition 2.18 (R{Introduction, IR�I)
For all con�gurations C, and R-literal �, C=C + [�] is a member of the inference
rule R{Introduction (sometimes written IR�I) if for some term �

0

� C + [�] `S �
0

:?
We will sometimes write R{Introduction as
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C + [�]
.
.

~Ch�
0

:?i

C
0

h�i

2

De�nition 2.19 (R{Assertion, IR�A)
For all con�gurations C = hD;Fi, and R-literal �, C=C + [�] is a member of the
inference rule R{Assertion (sometimes written IR�A) if

� D;A `FOL �
where A is the labelling algebra

2

De�nition 2.20 (C{Reduction, IC�R)
For all con�gurations C and C

0

, C=C
0

is a member of the inference rule C{Reduction
(sometimes written IC�R) if

� C
0

� C
2

We conclude this section with some example proofs. It might be helpful to note
that in the following examples the number of dashes (0) included as a superscript
on each con�guration symbol (C) corresponds to the number of new assumptions
introduced from the initial con�guration C0. The subscript index (1, 2, etc.) cor-
responds to each step in each `sub{proof' related to a new assumption.

Example 2.1 (ChW0 :2pi `S W0 ::3:p)
Let C0 = hD0;Fi where D0 = fg, F(W0) = f2pg and F(�) = fg for any
� 2 Func(LL;LM ) such that � 6= W0. We will show that C0 `S W0 ::3:p.

Let C
0

0 = C0 + [W0 :3:p] and let C
0

1 = C
0

0 + [f:p(W0) ::p] + [R(W0; f:p(W0))].

Then 3{Elimination generates C
0

1 from C
0

0 (i)

Let C
0

2 = C
0

1 + [f:p(W0) :p]

Then 2{Elimination generates C
0

2 from C
0

1 (ii)

Let C
0

3 = C
0

2 + [f:p(W0) :p ^ :p]

Then ^{Introduction generates C
0

3 from C
0

2 (iii)

17



By (i), (ii) and (iii), C
0

0; C
0

1; C
0

2; C
0

3 is a proof, so that by (iii)

C0 + [W0 :3:p] `S f:p(W0) : ? (iv)

Hence by (iv), :{Introduction generates C0+[W0 ::3:p] from C0, so that C0; C0+
[W0 ::3:p] is a proof and therefore C0 `S W0 ::3:p.

�

Example 2.2 (ChW0 ::3:pi `S W0 :2p)
Let C0 = hD0;Fi, where D0 = fg, F(W0) = f:3:pg and F(�) = fg for any
� 2 Func(LL;LM ) such that � 6= W0. We will show that C0 `S W0 :2p.

Let C
0

0 = C0+[R(W0; boxp(W0))], let C
00

0 = C
0

0+[boxp(W0) ::p]
6, let C

00

1 = C
00

0+[W0 :
3:p] and let C

00

2 = C
00

1 + [W0 : (3:p) ^ (:3:p)]

Then ^{Introduction generates C
00

2 from C
00

1 and 3{Introduction generates C
00

1 from
C

00

0 , so that C
00

0 ; C
00

1 ; C
00

2 is a proof. So

C
0

0 + [boxp(W0) ::p] `S W0 : ? (i)

Let C
0

1 = C
0

0 + [boxp(W0) :::p]

By (i), :{Introduction generates C
0

1 from C
0

0 (ii)

Let C
0

2 = C
0

1 + [boxp(W0) :p]

By (ii), :{Elimination generates C
0

2 from C
0

1 (iii)

Hence C
0

0; C
0

1; C
0

2 is a proof and C0 + [R(W0; boxp(W0))] `S boxp(W0) :p.

Let C1 = C0 + [W0 :2p]

By (iii), 2{Introduction generates C1 from C0

Hence C0; C1 is a proof and therefore C0 `S W0 :2p.
�

6In the assumed world boxp(W0) we need to prove p in order to apply the 2{Introduction
rule. By the :{Elimination inference rule to prove boxp(W0) :pwe need to prove boxp(W0) :::p,
which requires a :{Introduction rule. Thus the second assumption boxp(W0) ::p

18



We will sometimes represent proofs graphically. The two examples above can be
represented as follows:

� Example 2.1 : C0hW0 :2pi `S W0 ::3:p

C0hW0 :2pi

C
0

0hW0 :2p; [W0 :3:p]i (new assumption)

C
0

1hW0 :2p;R(W0; f:p(W0)); f:p(W0) ::pi (3{E)

C
0

2hf:p(W0) :p; f:p(W0) ::pi (2{E)

C
0

3hf:p(W0) :?i (^{I)

C0hW0 ::3:pi (:{I)

� Example 2.2 : C0hW0 ::3:pi `S W0 :2p

C0hW0 ::3:pi

C
0

0hW0 ::3:p; [R(W0; boxp(W0))]i (new assumption)

C
00

0 hW0 ::3:p; [boxp(W0) ::p]i (new assumption)

C
00

1 hW0 ::3:p;W0 :3:pi (3{I)

C
00

2 hW0 :?i (^{I)

C
0

1hboxp(W0) :::pi (:{I)

C
0

2hboxp(W0) :pi (:{E)

C0hW0 :2pi (2{I)
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Discussion

In this section, we have de�ned the set of introduction and elimination rules
for classical connectives and modal operators. The rules for classical connectives
faithfully reect the natural deduction proof theory for propositional logic de�ned
in [Prawitz-65]. The only di�erence is that in our system formulae are labelled.
In fact, since these rules do not de�ne new labels, they can be considered as `local
natural deduction rules' for propositional logic.

On the other hand, the inference rules for modal operators involve declarative
units with di�erent labels. They express the interaction between the local modal
theories within a con�guration. They allow us to infer speci�c labels for partic-
ular accessible worlds together with new relations (e.g. the 3{Elimination rule),
and to infer which formulae hold within these labels (e.g. the 3{Introduction
and 2{Elimination rules). As an advantage, it is not necessary to introduce the
extra notions of `strict subordinate derivations' and `strict iteration rules' de�ned
in [Fitting-83]. Besides this, Fitting's distinction between `I{style' and `A-style'
natural deduction proofs is unnecessary here. We will discuss the comparison
between a MLDS and Fitting's modal natural deduction system in more detail
in Section 5.

A MLDS also includes some inference rules which are related to the R{literals of
a con�guration. The R{Assertion rule allows us to infer new R{literals according
to the labelling algebra A. Because of this modularity, it is not necessary to di�er-
entiate modal rules according to the particular modal logic we want to represent,
as is done in Fitting's modal natural deduction system. The R{Introduction rule
is the equivalent of a :{Introduction rule for R-literals. The ?{Introduction
rule allows us to infer falsity (i.e. � :?) whenever an R{literal and its negation
are present in a con�guration. This is necessary because no compound classical
formulae with R{literals can be inferred in a con�guration.

Finally, with the C{reduction rule it is possible to infer any con�guration con-
tained in an existing one. This rule must be imcluded because all the other rules
have the e�ect of expanding their antecedent con�gurations.
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3 A Semantics for MLDS and Soundness Theo-

rem

In Section 1 we de�ned a semi{extended labelling language, Func(LL;LM ), and
a set of axioms (a labelling algebra A) written in this language. We also observed
informally that the ground terms of Func(LL;LM) can be regarded as labels of
possible worlds and the relation symbol R as an accessibility relation between
possible worlds. So a labelling algebra A can be considered as the �rst{order
axiomatization that corresponds to a set of properties of the accessibility relation
in a possible{world Kripke semantics. This is along the lines of a correspondence
theory between modal logics and �rst{order logic, [van Benthem-84]. We propose
a semantics of a MLDS S in terms of First{order semantics. In what follows
Kripke semantic notions such as a w� � is satis�ed in a possible world � will be
expressed in terms of �rst{order statements of the form [�]�(�), where [�]� is a
predicate symbol. In the same way, the Kripke semantic de�nition of satis�ability
will be expressed as a set of �rst{order axiom schemas. We expand the language
Func(LL;LM) with a monadic predicate [�]� for each w� � of LM , and we expand
the First{order theory A with an axiom schema for each type7 of w� � of LM .

3.1 Semantics

De�nition 3.1 (Extended labelling language Mon(LL;LM))
Let Func(LL;LM) be a semi{extended labelling language. Let �1,: : :,�n,: : : be
the ordered set of all w�s of LM . The �rst{order language Mon(LL;LM ) is
de�ned as the language Func(LL;LM) extended with:

� [�1]�; [�2]�; [�3]�; : : : a unary predicate symbol
corresponding to each w� �i of LM

2

De�nition 3.2 (Extended algebra A+)
Given an extended labelling language Mon(LL;LM ) and a labelling algebra A
written in Func(LL;LM ), the extended algebra A+ is the �rst{order theory in
Mon(LL;LM ) consisting of the following axiom schemas (Ax1){(Ax9), together
with the axioms of A:

For any w�s � and � of LM :

7The type of a w� is given by the main connective of the w� itself, e.g. we say that the w�
3(p! q) is a 3{formula
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8x([�^ �]�(x) � ([�]�(x) ^ [�]�(x))) (Ax1)

8x([:�]�(x) � :[�]�(x)) (Ax2)

8x([�_ �]�(x) � ([�]�(x) _ [�]�(x))) (Ax3)

8x([�! �]�(x) � ([�]�(x)! [�]�(x))) (Ax4)

8x([3�]�(x)! (R(x; f�(x)) ^ [�]�(f�(x)))) (Ax5)

8x(9y(R(x; y)^ [�]�(y))! [3�]�(x)) (Ax6)

8x((R(x; box�(x))! [�]�(box�(x)))! [2�]�(x)) (Ax7)

8x([2�]�(x)! (8y(R(x; y)! [�]�(y)))) (Ax8)

2

The �rst four axiom schemas express the distributive properties of the logical con-
nectives among the monadic predicates of Mon(LL;LM ). They cover the Kripke
semantic de�nition of satis�ability of the logical connectives ^, :, _ and ! re-
spectively. (Ax5) forces the accessibility relation R on the labels generated by
the application of function symbols f�i ofMon(LL;LM). Axiom schemas (Ax5){
(Ax6) together cover the Kripke semantic de�nition of the modal operator 3.
(Note that from (Ax5){(Ax6) we may derive 8x(9y(R(x; y)^[�]�(y)) � [3�]�(x))
which reects the traditional Kripke semantic meaning of 3). Analogously ax-
iom schemas (Ax7){(Ax8) together cover the Kripke semantic de�nition of the
modal operator 2. (Note that from (Ax7){(Ax8) we may derive 8x([2�]�(x) �
8y(R(x; y)! [�]�(y))) which reects the traditional Kripke semantic meaning of
2). Then the axiom schemas (Ax1) { (Ax8) of A+ reect the Kripke semantic
de�nition of satis�ability of modal w�s. This is easy to see, by interpreting the
truth of [�]�(x) as the truth of the modal formula � in the possible world x.

In the next proposition we prove that traditional relation between2 and 3 modal
operators can be derived from the above set of axiom schemas.

Proposition 3.1
Given a modal language LM , a language Mon(LL;LM) and an associated ex-
tended algebra A+, for any formula � 2 LM the following equivalence is satis�ed:
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A+ `FOL 8x([2�]�(x) � [:3:�]�(x))

Proof:
It is su�cient to prove the following two results for an arbitrary
ground term �.

a) A+ `FOL [2�]�(�)! [:3:�]�(�)
b) A+ `FOL [:3:�]�(�)! [2�]�(�)

proof of a)

Assume:
[2�]�(�) (i)

By (i) and (Ax8):
8y(R(�; y)! [�]�(y)) (ii)

By (ii) and (Ax2):
8y(R(�; y)! :[:�]�(y)) (iii)

By (iii):
8y:(R(�; y)^ [:�]�(y)) (iv)

By (iv):
:(R(�; f:�(x)) ^ [:�]�(f:�(�))) (v)

By (v) and (Ax5):
:[3:�]�(�) (vi)

Finally by (vi) and (Ax2):
[:3:�]�(�)

proof of b):

Assume:
[:3:�]�(�) (i)

By (i), (Ax2) and (Ax6):
:9y(R(�; y) ^ [:�]�(y)) (ii)

By (ii):
8y(:R(�; y)_ :[:�]�(y)) (iii)

By (iii) and (Ax2):
8y(R(�; y)! [�]�(y)) (iv)

By (iv):
R(�; box�(�))! [�]�(box�(�)) (v)

Finally by (v) and (Ax7):
[2�]�(�)
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De�nition 3.3 (Semantic Structure of a MLDS)
Let S = hhLL;LMi;A;Ri be a MLDS and let A+ be the associated extended
algebra. M is a semantic structure of S if M is a model of A+.

2

De�nition 3.4 (Satis�ability of a declarative unit)
Let S = hhLL;LM i;A;Ri be a MLDS, let A+ be the associated extended algebra
and let � :� be a declarative unit of S. � :� is satis�able if there exists a semantic
structure M of S such that M j=FOL [�]�(�). In this case we say M satis�es
� :� and we write M j=S � :�.

2

De�nition 3.5 (Satis�ability of an R{literal)
Let S = hhLL;LM i;A;Ri be a MLDS, let A+ be the associated extended algebra
and let � be an R{literal of S. � is satis�able if there exists a semantic structure
M of S such that M j=FOL �. In this case we say M satis�es � and we write
M j=S �.

2

De�nition 3.6 (Satis�ability of a con�guration)
Let S = hhLL;LM i;A;Ri be a MLDS, let A+ be the associated extended algebra
and let C be a con�guration of S. C is satis�able if there exists a semantic
structure M of S such that for each �, � 2 C, M satis�es �, (where � may be a
declarative unit or an R{literal). In this case we say M satis�es C and we write
M j=S C.

2

On the basis of above de�nitions, it appears straightforward to translate con�gu-
rations of a MLDS into �rst{order theories written in the languageMon(LL;LM )
and to express semantic entailment between con�gurations in terms of classical
semantic entailment between their respective �rst order translations. In this sec-
tion, we present a formal de�nition of a �rst order translation of a con�guration
into the languageMon(LL;LM ), and we de�ne the notion of logical entailment in
a MLDS. We then prove the soundness property of the natural deduction system
presented in Section 2 according to this semantics.

De�nition 3.7 (First Order Translation of a Con�guration)
Consider a MLDL hLL;LM i and the associated extended languageMon(LL;LM).
Let C = hD;Fi be a con�guration written in the language MLDL. The �rst order
translation of C, written FOT (C), is the theory written in Mon(LL;LM ) and
de�ned by the expression:

FOT (C) = D [DU
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where [�]�(�) 2 DU if and only if � 2 F(�).
2

A translation of a con�guration is thus a �rst-order theory including the R{
literals which are present in the diagram of the con�guration, and the set of
monadic formulae [�]�(�) that correspond to the declarative units present in the
con�guration. Therefore a �rst{order translation of a given con�guration is a set
of ground literals of the language Mon(LL;LM ).

De�nition 3.8 (Semantic entailment in a MLDS)
Let S = hhLL;LMi;A;Ri be a MLDS and let A+ be the extended algebra
of A. Let C = hD;Fi and C

0

= hD
0

;F
0

i be two con�gurations of S and
FOT (C) = D [DU and FOT (C

0

) = D
0

[ DU
0

their respective �rst order trans-
lations. The con�guration C semantically entails C

0

, written C j=S C
0

, if

� A+; FOT (C) j=FOL � for each � 2 D
0

� A+; FOT (C) j=FOL [�]�(�) for each [�]�(�) 2 DU
0

2

Notation 3.1
Given two con�gurations C and C

0

and their �rst order translation FOT (C) =
D [DU and FOT (C

0

) = D
0

[ DU
0

, we write A+; FOT (C) `FOL FOT (C
0

) if

A+; FOT (C) `FOL � for each � 2 D
0

A+; FOT (C) `FOL [�]�(�) for each [�]�(�) 2 DU
0

and we write A+; FOT (C) j=FOL FOT (C
0

) if

A+; FOT (C) j=FOL � for each � 2 D
0

A+; FOT (C) j=FOL [�]�(�) for each [�]�(�) 2 DU
0

/

3.2 Soundness Theorem

We have now presented both the notions of proof and semantic entailment in a
MLDS. Next, we will prove that if there exists a natural deduction proof of a con-
�guration C

0

from a given con�guration C, then the con�guration C semantically
entails the con�guration C

0

. In other words, we will show that our natural deduc-
tion system is sound. We will take advantage of the soundness and completeness
of �rst order classical logic, as shown informally in the diagram below:
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A+ [ FOT (C) `FOL FOT (C
0

)
?

-

C `S C
0 - C j=S C

0

6

A+ [ FOT (C) j=FOL FOT (C
0

)

(2)

(3)

(1)

(4)

Figure 1 { Proof of the Soundness Theorem

The arrow labelled with (1) corresponds to the soundness statement. It is also
given by the composition of the arrows (2), (3), (4). In this composition, arrow
(4) is given by De�nition 3.8 and arrow (3) is given by Proposition 3.2 (below)
based on soundness of �rst order logic. Arrow (2) will be proved in Lemma 3.1
(below).

Proposition 3.2
Let S = hhLL;LM i;A;Ri be a MLDS and let C = hD;Fi and C

0

= hD
0

;F
0

i be
two con�gurations of S. If A+; FOT (C) `FOL FOT (C

0

) then A+; FOT (C) j=FOL

FOT (C
0

).

Proof:
The hypothesisA+; FOT (C)`FOLFOT (C

0

) means thatA+; FOT (C)`FOL
� for each � 2 D

0

and A+; FOT (C)`FOL [�]�(�) for each [�]�(�) 2
DU

0

. Then by soundness of �rst order logic, A+; FOT (C) j=FOL� for
each � 2 D

0

and A+; FOT (C) j=FOL [�]�(�) for each [�]�(�) 2 DU
0

.
Hence A+; FOT (C) j=FOLFOT (C

0

).

By Proposition 3.2 and De�nition 3.8, it is su�cient to prove (Lemma 3.1 below)
that if a con�guration C

0

is derivable from a con�guration C, then all the for-
mulae of its �rst order translation are derivable from the �rst order translation
of C, together with the extended algebra A+ (Arrow (2) in the previous diagram).

We �rst introduce the notions of size of a member of an inference rule and size
of a derivation in a MLDS, which will be used in Lemma 3.1. The de�nition of
size of a member of an inference rule is based on the following notation.

Notation 3.2
In the MLDS's de�ned in Section 2, four sets of inference rules can be identi�ed.
The �rst one is the singleton set fIC�Rg, which we shall write as I00. IC�R is
the only inference that does not infer new declarative units or new R{literals and
does not use any subderivation in MLDS as condition.
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The second set consists of inference rules that infer new declarative units and/or
new R{literals without using any subderivation as conditions. We denote it as
I0, so that

I0=fI^E;I^I;I_I ;I!E;I:E;I3E;I3I;I2E;IR�Ag.
The third set consists of those inference rules that require one subderivation as
a condition. We denote it as I+, so that

I+=fI!I ;I:I;I2I ;IR�Ig.
The fourth set refers to inference rules that use two subderivations as conditions.
We denote it as I++, so that

I++=fI_Eg.
We also observe that I00 [ I0 [ I+ [ I++=R.

/

De�nition 3.9 (Size of a member of an inference rule in MLDS)
Let S = hhLL;LM i;A;Ri be a MLDS, let Ii 2 R and let C=C

0

2 Ii. The size of
C=C

0

with respect to Ii, written l(C=C
0

;Ii), is de�ned as follows:

� If Ii 2 I00 then l(C=C
0

;IC�R) = 0

� If Ii 2 I0, then l(C=C
0

;Ii) = 1.

� If Ii 2 I+, then l(C=C
0

;Ii) = 1 + l1 where l1 is the smallest of the sizes
of all subderivations (de�nded below) that can be used as condition of the
rule.

� If Ii 2 I++, then l(C=C
0

;I_E) = 1 + l1 + l2 where l1 is the smallest of the
sizes of all subderivations that can be used as its �rst condition and l2 is
the smallest of the sizes of all subderivations that can be used as its second
condition.

2

De�nition 3.10 (Size of a proof)
Let S = hhLL;LM i;ARi be a MLDS. The size of a proof hfC0; : : : ; Cng;mi,
written l(hfC0; : : : ; Cng;mi), is de�ned as follows:

l(hfC0; : : : ; Cng;mi) =
n�1X

k=0

l(Ck=Ck+1;m(k))

2

Proposition 3.3
Let S = hhLL;LM i;A;Ri be a MLDS, let A+ be the associated extended alge-
bra and let hfC0; : : : ; Ck; : : : ; Cng;mi be a proof where k � 0 and n > k. Let
m(j) = IC�R for all k � j < n and let A+; FOT (C0) `FOL FOT (Ck). Then
A+; FOT (C0) `FOL FOT (Cn).
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Proof:
For all j, k � j < n, Cj+1 � Cj , since m(j) = IC�R. Then Cn � Ck
and, by reexivity of `FOL, A+; FOT (Ck) `FOL FOT (Cn). Moreover
by hypothesis and reexivity of `FOL,A+; FOT (C0) `FOL A+; FOT (Ck).
Hence, by transitivity of `FOL, A+; FOT (C0) `FOL FOT (Cn).

Lemma 3.1
Let S = hhLL;LM i;A;Ri be a MLDS and let A+ be the extended algebra of A.
Let C and C

0

be two con�gurations of S and let FOT (C) and FOT (C
0

) be their
respective �rst order translations. If C `S C

0

then A+; FOT (C) `FOL FOT (C
0

).

Proof:
Proof is by induction on the smallest size of derivations of the form
hfC0; : : : ; Cng;mi, where C0=C and Cn=C

0

.
In what follows, hfC0; : : : ; Cng;mi is a proof of this smallest size.

Base Case
The base case is when l(hfC0; : : : ; Cng;mi) = 0. Then Cn � C0, by
De�nition 3.10, and FOT (Cn) � FOT (C0). Hence by reexivity of
`FOL A

+; FOT (C0) `FOL FOT (Cn).

Inductive Step
Suppose that l(hfC0; : : : ; Cng;mi) = L, L > 0, and the lemma is true
whenever there is a smallest derivation of size less than L.

Without loss of generality, we can assume m(n � 1) 6= IC�R. (This
is because Proposition 3.3 allows us to extend the end of any proof
with any �nite number of applications of IC�R without a�ecting the
statement of the lemma, or the size of the proof). Then there are two
cases to consider:

(i) n = 1. In this case n � 1 = 0 and l(Cn�1=Cn;m(n� 1)) = L. It
remains to show by cases that A+; FOT (Cn�1) `FOL FOT (Cn)
for any rule m(n� 1) 2 R�fIC�Rg.

(ii) n > 1. In this case 0 < l(Cn�1=Cn;m(n � 1)) � L and 0 �
l(hfC0; : : : ; Cn�1g;m

0

i) < L (where m
0

(i) = m(i) for all 0 � i �
n � 2). Hence by the inductive hypothesis and by reexivity of
`FOL, A+; FOT (C0) `FOL A+; FOT (Cn�1). So as in case (i), it
remains to show by cases that A+; FOT (Cn�1) `FOL FOT (Cn)
for any rule m(n� 1) 2 R�fIC�Rg, since then, by transitivity
of `FOL, A+; FOT (C0) `FOL FOT (Cn).
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^{Elimination
Suppose that Cn�1=Cn 2 I^E. Then there exists a declarative unit
of the form � : �^� 2 Cn�1, and Cn is either equal to Cn�1 + [� : �]
or to Cn�1 + [� : �]. We consider only the �rst case since the ar-
gument for the second case is analogous. Let Cn�1 = hDn�1;Fn�1i,
and Cn = hDn;Fni. Then (�^�) 2 Fn�1(�), Dn = Dn�1 and Fn is
such that Fn(�) = Fn�1(�) [ f�g, and for each �

0

2 Func(LL;LM ),
�

0

6= �, Fn(�
0

) = Fn�1(�
0

). Therefore [�^�]�(�) 2 FOT (Cn�1)
and FOT (Cn) = FOT (Cn�1) [ f[�]�(�)g. Since, by reexivity of
`FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it remains to show that
A+; FOT (Cn�1) `FOL [�]�(�). This is proved applying axiom schema
(Ax1), as shown in the following derivation:

A+ FOT (Cn�1)
. .
. .
. .

8x([� ^ �]�(x)! ([�]�(x) ^ [�]�(x))) .
[� ^ �]�(�)! ([�]�(�) ^ [�]�(�)) [� ^ �]�(�)

[�]�(�) ^ [�]�(�)
[�]�(�)

^{Introduction
Suppose that Cn�1=Cn 2 I^I . Then there exist declarative units of the
form � :� 2 Cn�1, and � :� 2 Cn�1, and Cn is equal to Cn�1+[� :�^�].
Let Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni. Then f�; �g�Fn�1(�),
Dn = Dn�1 and Fn is such that Fn(�) = Fn�1(�)[f�^�g, and
for each �

0

2 Func(LL;LM), �
0

6= �, Fn(�
0

) = Fn�1(�
0

). There-
fore f[�]�(�); [�]�(�)g � FOT (Cn�1) and FOT (Cn) = FOT (Cn�1)[
f[�^�]�(�)g. Since, by reexivity of `FOL, A+; FOT (Cn�1) `FOL
FOT (Cn�1), it remains to show that A+; FOT (Cn�1)`FOL [�^�]�(�).
This is proved applying axiom schema (Ax1), as shown in the follow-
ing derivation:

A+ FOT (Cn�1) FOT (Cn�1)
. . .
. . .

8x([� ^ �]�(x) � ([�]�(x) ^ [�]�(x))) . .
8x(([�]�(x) ^ [�]�(x))! [� ^ �]�(x)) [�]�(�) [�]�(�)

([�]�(�) ^ [�]�(�)) ! [� ^ �]�(�) [�]�(�) ^ [�]�(�)
[� ^ �]�(�)
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_{Introduction
Suppose that Cn�1=Cn 2 I_I . Then there exists a declarative unit
of the form � : � 2 Cn�1, and Cn is either equal to Cn�1 + [� : �_�]
or to Cn�1 + [� : �_�]. We consider only the �rst case since the
argument for the second case is analogous. Let Cn�1 = hDn�1;Fn�1i,
and Cn = hDn;Fni. Then f�g�Fn�1(�), Dn = Dn�1 and Fn is such
that Fn(�) = Fn�1(�)[f�_�g, and for each �

0

2 Func(LL;LM ),
�

0

6= �, Fn(�
0

) = Fn�1(�
0

). Therefore f[�]�(�)g � FOT (Cn�1) and
FOT (Cn) = FOT (Cn�1)[f[�_�]�(�)g. Since, by reexivity of `FOL,
A+; FOT (Cn�1)`FOLFOT (Cn�1), it remains to show that

A+; FOT (Cn�1)`FOL [�_�]�(�).
This is proved applying axiom schema (Ax3), as shown in the follow-
ing derivation:

A+ FOT (Cn�1)
. .
. .

8x([� _ �]�(x) � ([�]�(x) _ [�]�(x))) .
8x([�]�(x) _ [�]�(x)! [� _ �]�(x)) [�]�(�)
([�]�(�) _ [�]�(�))! [� _ �]�(�) [�]�(�) _ [�]�(�)

[� _ �]�(�)

!{Elimination
Suppose that Cn�1=Cn 2 I!E . Then there exist declarative units of
the form � :�!�2Cn�1, and � :�2Cn�1, and Cn is equal to Cn�1+[� :
�]. Let Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni. Then f�!�; �g�
Fn�1(�), Dn = Dn�1 and Fn is such that Fn(�) = Fn�1(�)[f�g, and
for each �

0

2 Func(LL;LM ), �
0

6= �, Fn(�
0

) = Fn�1(�
0

). Therefore
f[�! �]�(�); [�]�(�)g � FOT (Cn�1) and FOT (Cn) = FOT (Cn�1)[
f[�]�(�)g. Since, by reexivity of `FOL,A+; FOT (Cn�1)`FOLFOT (Cn�1),
it remains to show that A+; FOT (Cn�1)`FOL [�]

�(�). This is proved
applying axiom schema (Ax4), as shown in the following derivation:

A+ FOT (Cn�1) FOT (Cn�1)
. . .
. . .

8x([�!�]�(x) � ([�]�(x)! [�]�(x))) . .
[�!�]�(�)! ([�]�(�)! [�]�(�)) [�!�]�(�) .

[�]�(�)! [�]�(�) [�]�(�)
[�]�(�)
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:{Elimination
Suppose that Cn�1=Cn 2 I:E. Then there exists a declarative unit
of the form � : ::� 2 Cn�1, and Cn is equal to Cn�1 + [� : �]. Let
Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni. Then f::�g � Fn�1(�),
Dn = Dn�1 and Fn is such that Fn(�) = Fn�1(�)[f�g, and for
each �

0

2 Func(LL;LM ), �
0

6= �, Fn(�
0

) = Fn�1(�
0

). Therefore
f[::�]�(�)g � FOT (Cn�1) and FOT (Cn) = FOT (Cn�1)[f[�]

�(�)g.
Since, by reexivity of `FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it
remains to show that A+; FOT (Cn�1) `FOL [�]�(�). This is proved
applying axiom schema (Ax2) as shown in the following derivation:

FOT (Cn�1) A+ A+

. . .

. . .

. [::�]�(�) � :[:�]�(�) .
[::�]�(�) [::�]�(�)! :[:�]�(�) :[:�]�(�) � ::[�]�(�)

:[:�]�(�) :[:�]�(�)! ::[�]�(�)

::[�]�(�)
[�]�(�)

?{Introduction
Suppose that Cn�1=Cn 2 I?I . Then there exists an R{literal � such
that � 2 Cn�1 and :� 2 Cn�1, and Cn is equal to Cn�1 + [� : �]
where � : � is any declarative unit. Let Cn�1 = hDn�1;Fn�1i, and
Cn = hDn;Fni. Then f�;:�g � Dn�1, Dn = Dn�1 and Fn is
such that Fn(�) = Fn�1(�)[f�g, and for each �

0

2 Func(LL;LM ),
�

0

6= �, Fn(�
0

) = Fn�1(�
0

). Therefore f�;:�g � FOT (Cn�1) and
FOT (Cn) = FOT (Cn�1)[f[�]�(�)g. Since, by reexivity of `FOL,
A+; FOT (Cn�1)`FOLFOT (Cn�1), it remains to prove that

A+; FOT (Cn�1)`FOL [�]�(�).
Since f�;:�g � FOT (Cn�1), FOT (Cn�1)`FOL?. Then FOT (Cn�1)
is inconsistent and so FOT (Cn�1)`FOL [�]�(�). Hence, by monotonic-
ity of `FOL, A+; FOT (Cn�1) `FOL [�]�(�).

3{Elimination
Suppose that Cn�1=Cn 2 I3E. Then there exists a declarative unit
of the form � : 3� 2 Cn�1, and Cn is equal to Cn�1 + [f�(�) : �] +
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[R(�; f�(�)] (where f�(�) is a ground term of Func(LL;LM )). Let
Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni. Then f3�g � Fn�1(�),
Dn = Dn�1[fR(�; f�(�))g and Fn is such that Fn(f�(�)) = Fn�1(f�(�))[
f�g, and for each �

0

2 Func(LL;LM ), �
0

6=f�(�), Fn(�
0

) = Fn�1(�
0

).
Therefore f[3�]�(�)g � FOT (Cn�1) and FOT (Cn) = FOT (Cn�1)[
fR(�; f�(�)); [�]�(f�(�))g.
Since, by reexivity of `FOL, A

+; FOT (Cn�1)`FOLFOT (Cn�1), it re-
mains to show that A+; FOT (Cn�1)`FOLR(�; f�(�)) and
A+; FOT (Cn�1) `FOL [�]�(f�(�)). These are proved applying axiom
schema (Ax6), as shown in the following derivations:

A+ FOT (Cn�1)
. .
. .
. .

8x([3�]�(x)! (R(x; f�(x)) ^ [�]�(f�(x)))) .
([3]�(�)! (R(�; f�(�)) ^ [�]�(f�(�)))) [3�]�(�)

R(�; f�(�)) ^ [�]�(f�(�))

3{Introduction
Suppose that Cn�1=Cn 2 I3I. Then there exists a declarative unit
of the form �2 : � 2 Cn�1, an R-literal of the form R(�1; �2) 2 Cn�1,
and Cn is equal to Cn�1 + [�1 : 3�]. Let Cn�1 = hDn�1;Fn�1i, and
Cn = hDn;Fni. Then �2Fn�1(�2), and R(�1; �2)2Dn�1, Dn = Dn�1

and Fn is such that Fn(�1) = Fn�1(�1)[f3�g, and for each �
0

2
Func(LL;LM), �

0

6=�1, Fn(�
0

) = Fn�1(�
0

). Therefore
f[�]�(�2); R(�1; �2)g�FOT (Cn�1) and FOT (Cn) = FOT (Cn�1)[

f[3�]�(�1)g. Since, by reexivity of `FOL,
A+; FOT (Cn�1)`FOLFOT (Cn�1),

it remains to show that A+; FOT (Cn�1) `FOL [3�]�(�1). This is
proved applying axiom schema (Ax7), as shown in the following deriva-
tions:

FOT (Cn�1) FOT (Cn�1) A+

. . .

. . .

. . .
R(�1; �2) [�]�(�2) .

R(�1; �2) ^ [�]�(�2) .
9y(R(�1; y) ^ [�]�(y)) 9y(R(�1; y) ^ [�]�(y))! [3�]�(�1)

[3�]�(�1)
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2{Elimination
Suppose that Cn�1=Cn 2 I2E . Then there exists a declarative unit
of the form �1 : 2� 2 Cn�1, an R-literal of the form R(�1; �2) 2
Cn�1, and Cn is equal to Cn�1 + [�2 : �]. Let Cn�1 = hDn�1;Fn�1i,
and Cn = hDn;Fni. Then 2� 2 Fn�1(�1), and R(�1; �2) 2 Dn�1,
Dn = Dn�1 and Fn is such that Fn(�2) = Fn�1(�2)[f�g, and for
each �

0

2 Func(LL;LM), �
0

6= �2, Fn(�
0

) = Fn�1(�
0

). Therefore
f[2�]�(�1); R(�1; �2)g � FOT (Cn�1), and FOT (Cn) = FOT (Cn�1)[
f[�]�(�2)g.
Since, by reexivity of `FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it
remains to show that A+; FOT (Cn�1) `FOL [�]�(�2). This is proved
applying axiom schema (Ax8), as shown in the following derivation:

A+ FOT (Cn�1) FOT (Cn�1)
. . .
. . .

[2�]�(�1)!8y(R(�1; y)! [�]�(y)) [2�]�(�1) .

8y(R(�1; y)! [�]�(y)) .
R(�1; �2)! [�]�(�2) R(�1; �2)

[�]�(�2)

R-Assertion
Suppose that Cn�1=Cn 2 IR�A. Let Cn�1 = hDn�1;Fn�1i. Then
there exists an R{literal � such that there exists a �rst{order deriva-
tion Dn�1;A `FOL � and such that Cn is equal to Cn�1 + [�]. Let
Cn = hDn;Fni. Then for each � 2 Func(LL;LM ), Fn(�) = Fn�1(�),
and Dn = Dn�1[f�g. Therefore FOT (Cn) = FOT (Cn�1)[f�g.
Since, by reexivity of `FOL, A

+; FOT (Cn�1)`FOLFOT (Cn�1), it re-
mains to show that A+; FOT (Cn�1)`FOL�. SinceDn�1 � FOT (Cn�1),
A � A+ and Dn�1;A`FOL�, by monotonicity of `FOL,

A+; FOT (Cn�1)`FOL�.

!{Introduction
Suppose that Cn�1=Cn 2 I!I . Then there exist declarative units of the
form � :�, � :�, � :�!� such that Cn�1+[� :�] `S � :� and Cn is equal
to Cn�1 + [� :�! �]. Let Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni.
Then Dn = Dn�1 and Fn is such that Fn(�) = Fn�1(�) [ f�! �g,
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and for each �
0

2 Func(LL;LM ), �
0

6= �, Fn(�
0

) = Fn�1(�
0

). There-
fore FOT (Cn) = FOT (Cn�1)[f[�! �]�(�)g. Since, by reexivity
of `FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it remains to show that
A+; FOT (Cn�1)`FOL [�!�]�(�).
Let hfCn�1+[� :�]; : : : ; ~Cg; ~mi, with � :� 2 ~C, be a proof of the smallest
size of Cn�1 + [� :�] `S � :�, condition of I!I . By De�nition 3.9 and
by hypothesis of the inductive step, 0 < l(Cn�1=Cn;I!I) = 1+ l1 � L.
Then 0 � l1 = l(hfCn�1 + [� :�]; : : : ; ~Cg; ~mi) < L. By inductive hy-
pothesis, A+; FOT (Cn�1)[f[�]�(�)g `FOL FOT ( ~C) and in particular
A+; FOT (Cn�1) [ f[�]�(�)g `FOL [�]�(�). By the Deduction Theo-
rem of �rst order logic, A+; FOT (Cn�1) `FOL [�]�(�)! [�]�(�). So
by axiom schema (Ax4), A+; FOT (Cn�1) `FOL [�!�]�(�) as shown
in the following derivation:

A+ A+ ; FOT (Cn�1)
. .
. .
. .

8x(([�]�(x)! [�]�(x))! [�!�]�(x)) .

([�]�(�)! [�]�(�))! [�!�]�(�) [�]�(�)! [�]�(�)
[�!�]�(�)

:{Introduction
Suppose that Cn�1=Cn 2 I:I . Then there exists a declarative unit
of the form � : � and a term � of Func(LL;LM ) such that Cn�1 +
[� : �] `S � : ? and Cn is equal to Cn�1 + [� : :�]. Let Cn�1 =
hDn�1;Fn�1i, and Cn = hDn;Fni. Then Dn = Dn�1 and Fn is such
that Fn(�) = Fn�1(�)[f:�g, and for each �

0

2Func(LL;LM ), �
0

6=�,
f

0

(�
0

) = f(�
0

). Therefore FOT (Cn) = FOT (Cn�1)[f[:�]�(�)g. Since,
by reexivity of `FOL, A+; FOT (Cn�1)`FOL FOT (Cn�1), it remains
to show that

A+; FOT (Cn�1)`FOL [:�]�(�).
Let hfCn�1+[� :�]; : : : ; ~Cg; ~mi, with � :? 2 ~C, be a proof of the small-
est size of Cn�1+[� :�] `S � :?, condition of I:I . By De�nition 3.9 and
by hypothesis of the inductive step, 0 < l(Cn�1=Cn;I:I) = 1+ l1 � L.
Then 0 � l1 = l(hfCn�1 + [� : �]; : : : ; ~Cg; ~mi) < L. By inductive
hypothesis, A+; FOT (Cn�1) [ f[�]�(�)g `FOL FOT ( ~C) and in par-
ticular A+; FOT (Cn�1) [ f[�]�(�)g `FOL ?. By the Deduction The-
orem of �rst order logic, A+; FOT (Cn�1) `FOL [�]�(�) ! ?. So,
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since [�]�(�)! ? is equivalent to :[�]�(�), by axiom schema (Ax2),
A+; FOT (Cn) `FOL [:�]�(�) as shown in the following derivation:

A+; FOT (Cn�1) A+

. .

. .
:[�]�(�) :[�]�(�)! [:�]�(�)

[:�]�(�)

2{Introduction
Suppose that Cn�1=Cn 2 I2I . Then there exists an R{literal of the
form R(�; box�(�)) and a w� � such that Cn�1 + [R(�; box�(�))] `S
box�(�) :� and Cn is equal to Cn�1+[� :2�]. Let Cn�1 = hDn�1;Fn�1i,
and Cn = hDn;Fni. Then Dn = Dn�1 and Fn is such that Fn(�) =
Fn�1(�) [ f2�g, and for each �

0

2 Func(LL;LM ), �
0

6= �, Fn(�
0

) =
Fn�1(�

0

). Therefore FOT (Cn) = FOT (Cn�1)[f[2�]�(�)g.
Since, by reexivity of `FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it
remains to show that A+; FOT (Cn�1) `FOL [2�]�(�). Let hfCn�1 +
[R(�; box�(�))]; : : : ; ~Cg; ~mi, with box�(�) : � 2 ~C, be a proof of the
smallest size of Cn�1+[R(�; box�(�))] `S box�(�) :�. By De�nition 3.9
and by hypothesis of the inductive step,

0 < l(Cn�1=Cn;I2I) = 1 + l1 � L. Then
0 � l1 = l(hfCn�1 + [R(�; box�(�))]; : : : ; ~Cg; ~mi) < L.

By inductive hypothesis,A+; FOT (Cn�1)[fR(�; box�(�))g `FOL FOT ( ~C)
and in particularA+; FOT (Cn�1)[fR(�; box�(�))g `FOL [�]�(box�(�)).
By the Deduction Theorem of �rst order logic,

A+; FOT (Cn�1) `FOL R(�; box�(�))! [�]�(box�(�)).
So by axiom schema (Ax8), A+; FOT (Cn�1) `FOL [2�]�(�) as shown
in the following derivation:

A+ A+ ; FOT (Cn�1)
. .
. .

(R(�; box�(�))! [�]�(box�(�)))! [2�]�(�) R(�; box�(�))! [�]�(box�(�))
[2�]�(�)

35



R{Introduction
Suppose that Cn�1=Cn 2 IR�I . Then there exists an R{literal �
such that Cn�1 + [�] `S �

0

: ? for some term �
0

, and Cn is equal
to Cn�1 + [�]. Let Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni. Then
Dn = Dn�1 [ f�g and Fn is such that for each � 2 Func(LL;LM ),
Fn(�) = Fn�1(�). Therefore FOT (Cn) = FOT (Cn�1)[f�g. Since,
by reexivity of `FOL, A

+; FOT (Cn�1)`FOL FOT (Cn�1), it remains
to show that A+; FOT (Cn�1) `FOL�. Let hfCn�1 + [�]; : : : ; ~Cg; ~mi,
with �

0

:? 2 ~C, be a proof of the smallest size of Cn�1 + [�] `S �
0

:?.
By De�nition 3.9 and by hypothesis of the inductive step,

0 < l(Cn�1=Cn;IR�I) = 1 + l1 � L. Then
0 � l1 = l(hfCn�1 + [�]; : : : ; ~Cg; ~mi) < L.

By inductive hypothesis, A+; FOT (Cn�1)[f�g `FOL FOT ( ~C) and in
particularA+; FOT (Cn�1)[f�g `FOL ?. By the Deduction Theorem
of �rst order logic, A+; FOT (Cn�1) `FOL�!?.
Since � ! ? is equivalent to :�, which is also equivalent to �,
A+; FOT (Cn�1) `FOL�.

_{Elimination
Suppose that Cn�1=Cn 2 I_E. Then there exist declarative units of
the form � : �_�, � : �, � : �, and � : , such that � : �_� 2 Cn�1,
Cn�1 + [� : �] `S � : , Cn�1 + [� : �] `S � : , and Cn is equal
to Cn�1 + [� : ]. Let Cn�1 = hDn�1;Fn�1i, and Cn = hDn;Fni.
Then Dn = Dn�1 and Fn is such that Fn(�) = Fn�1(�) [ fg, and
for each �

0

2 Func(LL;LM ), �
0

6= �, Fn(�
0

) = Fn�1(�
0

). There-
fore FOT (Cn) = FOT (Cn�1) [ f[]�(�)g. Since, by reexivity of
`FOL, A+; FOT (Cn�1) `FOL FOT (Cn�1), it remains to show that
A+; FOT (Cn�1) `FOL []�(�). Let hfCn�1 + [� : �]; : : : ; ~Cg; ~mi, with
� : 2 ~C, be a proof of the smallest size of Cn�1 + [� :�] `S � : (the
�rst condition of I2I). Analogously, let hfCn�1 + [� :�]; : : : ; ~C

0

g; ~m
0

i,
with � : 2 ~C

0

, be a proof of the smallest size of Cn�1 + [� :�] `S � :
(the second condition of I2I ). By De�nition 3.9 and by hypothesis of
the inductive step,

0 < l(Cn�1=Cn;I_I) = 1 + l1 + l2 � L. Then
0 � l1 = l(hfCn�1 + [� :�]; : : : ; ~Cg; ~mi) < L, and

0 � l2 = l(hfCn�1 + [� :�]; : : : ; ~C
0

g; ~m
0

i) < L.
By inductive hypothesis, A+; FOT (Cn�1) [ f[�]�(�)g `FOL FOT ( ~C)
and A+; FOT (Cn�1) [ f[�]�(�)g`FOL FOT ( ~C). In particular

A+; FOT (Cn�1) [ f[�]�(�)g`FOL []�(�) and
A+; FOT (Cn�1) [ f[�]�(�)g`FOL []�(�).

By the Deduction Theorem of �rst order logic,
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A+; FOT (Cn�1) `FOL [�]�(�)! []�(�) and
A+; FOT (Cn�1) `FOL [�]�(�)! []�(�).

So by axiom schema (Ax3), A+; FOT (Cn�1) `FOL []�(�) as shown
in the following derivation:

A+; FOT (Cn�1) A+; FOT (Cn�1) A+; FOT (Cn�1)
. . .
. . .
. . .

[�]�(�)! []�(�) [�]�(�)! []�(�) .

(([�]�(�)! []�(�)) ^ ([�]�(�)! []�(�))) .
([�]�(�) _ [�]�(�))! []�(�) [�]�(�) _ [�]�(�)

[]�(�)

Theorem 3.1 (Soundness)
Let S = hhLL;LM i;A;Ri be a MLDS and let C, C

0

be two con�gurations of S.
If C `S C

0

then C j=S C
0

.

Proof:
If C `S C

0

, by Lemma 3.1 A+; FOT (C) `FOL FOT (C
0

), where A+ is
the extended labelling algebra of A, and FOT (C), FOT (C

0

) are the
respective �rst order translations of C and C

0

. By Proposition 3.2
A+; FOT (C) j=FOL FOT (C

0

). Rewriting FOT (C
0

) as D
0

[ DU
0

,
A+; FOT (C) j=FOL FOT (C

0

) means that A+; FOT (C) j=FOL � for
each �2D

0

and A+; FOT (C) j=FOL [�]�(�) for each [�]�(�) 2 DU
0

.
Hence by De�nition 3.8, C j=S C

0

.

Discussion

In this section, we have de�ned a semantics for a MLDS in terms of �rst{order
semantics. The traditional notions of a Kripke model together with the associ-
ated satis�ability conditions are embedded in the axiomatization of the extended
algebra A+. In this way, a semantic structure of a MLDS is given by a classical
model of A+. The axiom schemas (Ax7) and (Ax8) semantically characterize the
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labels generated by the function symbol box� as `arbitrary accessible worlds', and
the axiom schemas (Ax5) and (Ax6) semantically characterize the labels gener-
ated by the function symbol f� as `particular accessible worlds'. Corresponding
proof theoretical characterizations will be provided in the next section.

The notion of the size of an inference rule has been introduced to simplify the
proof of the soundness theorem. The typical features of making and discharging
assumptions in a natural deduction proof (see [Fitting-83]) is realized in a MLDS
by de�ning conditions on inference rules (in the two classes of inference rules I+

and I++). Since these conditions are subderivations8, the de�nition of a proof,
as sequence of rules, is recursive. Nevertherless, a MLDS also includes rules (all
members of the class I0) that do not rely on subderivations and so are `single
step' rules. Using the de�nition of size of inference rules, the former type of rules
can be expressed as sequences of single step rules. In the same way, using the
de�nition of size of proof, we can consider a derivation as a sequence of single step
rules. As a consequence, the recursive feature of a derivation is eliminated and
induction on the size of a proof can be used to prove properties of derivations, as
we have shown in the proof of the soundness theorem. In this type of induction,
we often use the con�guration reduction rule as the base case. In fact, since it
infers information already contained in the initial con�guration, it is considered
as an `empty'9 application of single step rules.

8They correspond indeed to the notion of `boxes' de�ned in [Prawitz-65]
9Hence its size has been de�ned as zero

38



4 Completeness of a MLDS

In this section we show that the proof system developed in Section 2 is complete
with respect to the semantics described in Section 3. In the proof of completeness,
we will only consider entailments C j=S C

0

in which the con�guration di�erence
(written C

0

� C and de�ned formally below) is �nite 10.

The completeness proof which follows is based on a Henkin style methodology
(see for example [Hughes-68]).

We give now a proof theoretical de�nition of Consistency. This de�nition holds
for any MLDS S.

De�nition 4.1 (Inconsistent con�guration)
Let S = hhLL;LM i;A;Ri be a MLDS and let C be a con�guration of S. C is
inconsistent if C ` � :? for some ground term � of Func(LL;LM ).

2

De�nition 4.2 (Consistent con�guration)
Let S = hhLL;LM i;A;Ri be a MLDS and let C be a con�guration of S. C is
consistent if it is not inconsistent.

2

In the de�nition of a con�guration, labels are terms of the language Func(LL;LM ).
Terms generated by function symbols, f� and box�, can be consistentely used in
an initial con�guration only in certain cases. The following proposition provides
syntactic `constraints' on consistent con�gurations with respect to the use of such
function symbols.

Proposition 4.1 (`Constraints' on consistent con�guration)
Let S = hhLL;LM i;A;Ri be a MLDS and let C = hD;Fi be a consistent con�g-
uration of S. Let � be a ground term of Func(LL;LM ) and let � be a w� of LM .
The following two statements hold.

1. If 3� 2 F(�) then :R(�; f�(�)) 62 D and :� 62 F(f�(�))

2. If :2� 2 F(�) then � 62 F(box�(�)) and :R(�; box�(�)) 62 D

Proof:
The proof is by contradiction.

10We could prove completeness in a more general case, by adjusting the de�nition of the
derivability relation `S
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1. Suppose that 3� 2 F(�) and that :R(�; f�(�)) 2 D. Then
C `S � :?, as shown in the following derivation. Hence C is in-
consistent which is in contradiction with the original hypothesis.

Ch� :3�;:R(�; f�(�))i 3-E
C

0

hR(�; f�(�));:R(�; f�(�)); f�(�) :�i ?-I
C

00

h� :?i

Now suppose that 3� 2 F(�) and that :� 2 F(f�(�)). Then
C `S f�(�) :? as shown in the following derivation. Hence C is
inconsistent which is in contradiction with the original hypothe-
sis.

Ch� :3�; f�(�) ::�i 3-E
C

0

hR(�; f�(�)); f�(�) :�; f�(�) ::�i ^-I
C

00

hf�(�) :?i

2. Suppose that :2� 2 F(�) and that � 2 F(box�(�)). Then C `S
� :? as shown in the following derivation. Hence C is inconsistent
which is in contradiction with the original hypothesis.

Ch� ::2�; box�(�) :�i 2-I
C

0

h� :2�; � ::2�i ^-I
C

00

h� :?i

Now suppose that :2� 2 F(�) and that :R(�; box�(�)) 2 D.
Then C `S � :? as shown in the following derivation. Hence C is
inconsistent which is in contradiction with the original hypothe-
sis.

Ch� ::2�;:R(�; box�(�))i
C

0

h:R(�; box�(�))i + [R(�; box�(�))] (new assumption)
C

0

1hbox�(�) :�i (?{I)
C1h� ::2�; � :2�i (2{I)
C2h� :?i (^{I)

We prove now that, given a MLDS S, the derivability relation `S is monotonic,
reexive and transitive.
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De�nition 4.3 (Finite con�guration)
Let S = hhLL;LMi;A;Ri be a MLDS and let C = hD;Fi be a con�guration of
S. C is �nite if

� D is �nite
� there exists a �nite set T of ground terms of Func(LL;LM ) such that,

for each ground term � 2 Func(LL;LM ), if � 2 T then F(�) is �nite,
and if � 62 T then F(�) = fg

2

Notation 4.1
We write C + [�1; �2; �3; : : : ; �n] for the con�guration C + [�1] + [�2] + : : :+ [�n],
where each �i, 1 � i � n, is a declarative unit or an R{literal.

/

De�nition 4.4 (Con�guration di�erence)
Let S = hhLL;LM i;A;Ri be a MLDS and let C = hD;Fi and C

0

= hD
0

;F
0

i
be two con�gurations of S. The con�guration di�erence C

0

� C is de�ned as the
con�guration hDdi� ;Fdi� i where

� Ddi� = D
0

�D11

� Fdi� (�) = F
0

(�) �F(�) for each ground term � 2 Func(LL;LM )

2

The di�erence between two con�gurations, in which one is �nite, can be espressed
via the following notation.

Notation 4.2
Given a con�guration C = hD;Fi, the declarative unit � :� and the R{literal �,
then

1. C � [� :�] is the con�guration hD;F
0

i, such that

� F
0

(�) = F(�)� f�g

� F
0

(�
0

) = F(�
0

) for each ground term �
0

2 Func(LL;LM ), �
0

6= �

2. C � [�] is the con�guration hD
0

;Fi, such that

� D
0

= D � f�g /

11We assume the following set theoretic de�nition of A� B for sets A and B.
e 2 A� B iffdef e 2 A and e 62 B.
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De�nition 4.5 (Con�guration union)12

Let S = hhLL;LM i;A;Ri be a MLDS and let C = hD;Fi and C
0

= hD
0

;F
0

i, be
two con�gurations of S. The con�guration union C [ C

0

is de�ned as the con�g-
uration hDu;Fui where

� Du = D [D
0

� Fu(�) = F(�) [ F
0

(�) for each ground term � in Func(LL;LM)
2

Proposition 4.2 (Monotonicity)
Let S = hhLL;LM i;A;Ri be a MLDS and let C, C

0

and C
00

be three con�gurations
of S such that C `S C

0

and C � C
00

. Then C
00

`S C
0

.

Proof:
Let hfC0; : : : ; Cng;mi (where C0 = C and Cn = C

0

) be a proof of
C `S C

0

. By hypothesis C � C
00

, so C
00

=C 2 IC�R. Letm
0

be a mapping
from the set f0; : : : ; ng to the set R such that m

0

(0) = IC�R and for
each i, 1 � i � n, m

0

(i) = m(i�1). Then the pair hfC
00

; C : : : ; C
0

g;m
0

i
is a proof in S. Hence by De�nition 2.3, C

00

`S C
0

.

Proposition 4.3 (Reexivity of `S)
Let S be a MLDS, and let C be a con�guration of S, then C `S C.

Proof:
By De�nition 2.20, C=C 2 IC�R. Then let m be a mapping from the
set f0g to the set R such that m(0) = IC�R. The pair hfC; Cg;mi is
a proof in S. Hence by De�nition 2.3 C `S C.

Proposition 4.4 (Transitivity of `S)
Let S = hhLL;LM i;A;Ri be a MLDS and let C,C

0

,C
00

be three con�gurations of
S such that C `S C

0

and C
0

`S C
00

. Then C `S C
00

.

Proof:
Let the pair hfC0; : : : ; Chg;mi (where C0 = C and Ch = C

0

) be a
proof of C `S C

0

and the pair hfC
0

0; : : : ; C
0

kg;m
0

i (where C
0

0 = C
0

and
C

0

k = C
00

) be a proof of C
0

`S C
00

. Let m be a mapping from the set
f0; : : : ; h + k � 1g to the set R such that for each i, 0 � i � h � 1,
m(i) = m(i), and for each i, h � i � h + k � 1, m(i) = m

0

(i � h).
Then the pair hfC0; : : : ; Ch; : : : ; C

0

kg;mi is a proof of S. Hence by
De�nition 2.3 C `S C

00

.

12A union of con�gurations, in which one is �nite, can be expressed via the notation `+0

already de�ned in Section 2
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We observe that monotonicity, reexivity and transitivity properties of the deriv-
ability relation `S hold for both �nite and in�nite con�gurations.

Lemma 4.1
Let S = hhLL;LM i;A;Ri be a MLDS, let I be an inference rule and let C, C

0

and C be three con�gurations of S. Let C=C
0

2 I. Then (C [ C)=(C
0

[ C) 2 I.

Proof:
This follows directly from the de�nition of I and from Proposition 4.2
(monotonicity).

Theorem 4.1 (Characterization of derivability)
Let S = hhLL;LMi;A;Ri be a MLDS, and let C, C

0

be two con�gurations of
S such that the con�guration C

0

� C is �nite. C `S C
0

if and only if for each
� 2 C

0

� C, C `S �, where � is either a declarative unit or an R{literal.

Proof:
`Only if' half:

By hypothesis C `S C
0

. Notice that if � 2 C
0

� C then � 2 C
0

. Hence
by Notation 2.1 for each � 2 C

0

� C, C `S �.
`If' half:
In order to prove that C `S C

0

, we need to show that there exists
a proof hfC; : : : ; C

0

g;mi. Let �1; �2; �3; : : : ; �n be a (possibly empty)
enumeration of all the elements (declarative units and R{literals) of
the con�guration C

0

� C. The proof is by induction on n.

Base Case
The base case is when n = 0 (empty enumeration). Then C

0

� C. By
De�nition 2.20, C=C

0

2 IC�R. Then hfC0; C1g;mi is a proof, where
C0 = C, C1 = C

0

and m(0) = IC�R. So by De�nition 2.3 C `S C
0

.

Inductive Step
Assume, by the inductive hypothesis, that for any pair of con�gura-
tions ~C and ~C 0, such that ~C 0 � ~C = [~�1; : : : ; ~�n�1], and such that for
each ~� 2 ~C

0

� ~C, ~C `S ~�, then ~C `S ~C
0

.

Let C be the con�guration C + [�1; : : : ; �n�1] and let C
00

= C + [�n],
so that for each � 2 C

00

� C, C `S �. Notice that by the inductive
hypothesis C `S C, and, since C

0

� C
00

, C
00

`S C
0

. Therefore, by the
transitivity property of `S , in order to prove that C `S C

0

it is suf-
�cient to prove that C `S C

00

. By the original hypothesis, C `S �n.
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Since C � C, by the monotonicity property of `S , C `S �n. Then by
Notation 2.1, there exists a con�guration C�n such that C `S C�n and
�n 2 C�n . Let

hfC0; : : : ; Chg;mi (i)

be a proof of C `S C�n, where C0 = C and Ch = C�n and m is a map-
ping from the set f0; : : : ; (h� 1)g to the set R. We construct now a
corresponding proof

hf ~C0; : : : ; ~Chg;mi (ii)

in the following way. ~C0 = C0 and for each 0 � i � (h � 1),
if m(i) = IC�R then ~Ci+1 = ~Ci, otherwise ~Ci+1 = ~Ci [ Ci+1. By
Lemma 4.1, (ii) is a proof. Moreover, since in any inference rule dif-
ferent from IC�R the infered con�guration contains the antecedent
con�guration, it follows that C0 � ~Ch. Since C0 = C and �n 2 ~Ch, then
C

00

� ~Ch. So by De�nition 2.20 ~Ch=C
0

2 IC�R. Then from the proof
(ii) we construct a proof

hf ~C0; : : : ; ~Ch; ~Ch+1g;mi (iii)

where ~Ch+1 = C
00

and m is a mapping from the set f0; : : : ; hg to
the set R such that for each i, 0 � i � (h � 1), m(i) = m(i) and
m(h) = IC�R. Hence by De�nition 2.3, C `S C

00

.

We show now two important properties of a consistent con�guration.

Proposition 4.5
Let S = hhLL;LMi;A;Ri be a MLDS. Let C be a consistent con�guration of
S and let � be a declarative unit or an R{literal. If C + [�] is a consistent
con�guration then for any con�guration C

0

, C
0

� C, C
0

+ [�] is consistent too.

Proof:
The proof is by contradiction. Suppose C

0

+ [�] is not consistent.
Then by De�nition 4.1 C

0

+ [�] `S � :?, for some ground term � of
Func(LL;LM). Since C

0

� C, C
0

+ [�] � C + [�]. Then, by the mono-
tonicity property of `S, Proposition 4.2, C+[�] `S � :?. Hence C+[�]
is inconsistent which is in contradiction with the original hypothesis.
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Proposition 4.5, shows a property of the consistency of a con�guration C with
respect to the set of its `sub{con�gurations' C

0

(C
0

� C). No assumption is made
about the �niteness of C

0

. A second property of a consistent con�guration C is
proved in Proposition 4.6 (see below) which shows that a con�guration is consis-
tent if every �nite sub{con�guration is consistent. Before proving Proposition 4.6,
it is important to prove the following theorem.

Theorem 4.2
Let S = hhLL;LM i;A;Ri be a MLDS and let C be a con�guration of S. Let �
be a declarative unit or an R{literal. If C `S � then there exists a con�guration
C

0

such that C
0

� C, C
0

`S � and C
0

is �nite.

Proof:
It is only necessary to prove the case when C is not �nite. By hypoth-
esis C `S �. Then by Notation 2.1, there exists a con�guration C such
that C `S C and � 2 C. The proof is by induction on the smallest
size of derivations of the form hfC0; : : : ; Cng;mi, where C0 = C and
Cn = C. In what follows, hfC0; : : : ; Cng;mi is a proof of the smallest
size.

Base Case
The base case is when l(hfC0; : : : ; Cng;mi) = 0. Then Cn � C0, by
De�nition 3.10. Since � 2 Cn, then � 2 C0. If � is an R{literal
then let C

0

= hD
0

;F
0

i, where D
0

= f�g and for each ground term
� 2 Func(LL;LM ), F

0

(�) = fg . If � is a declarative unit, � :�, then
let C

0

= hD
0

;F
0

i, where D
0

= fg, F
0

(�) = f�g and for each ground
term �

0

2 Func(LL;LM ), �
0

6= �, F
0

(�
0

) = fg. In both cases (declar-
ative unit or R{literal), C

0

is �nite and C
0

� C0. Notice that � 2 C
0

and C
0

=C
0

2 IC�R. Then hfC
0

0; C
0

1g;m
0

i is a proof, where C
0

0 = C
0

1 = C
0

and m
0

(0) = IC�R. Then by De�nition 2.3, C
0

`S C
0

. Hence by Nota-
tion 2.1, C

0

`S �.

Inductive Step
Assume, by the inductive hypothesis, that for any con�guration C�

and �� (declarative unit or R{literal) such that there exists a small-
est derivation hfC�0 ; : : : ; C

�
ng;m

�i (where C�0 = C� and �� 2 C�n) of size
l(hfC�0 ; : : : ; C

�
ng;m

�i) < L, then there exists a �nite con�guration C�f
such that C�f � C�0 and C

�
f `S �

�.

Suppose that l(hfC0; : : : ; Cng;mi) = L, L > 0. We assume with-
out loss of generality that m(0) 6= IC�R and that � 62 C0. Then
� 2 Cn�C0. For all j, 0 � j � n�1, and for all m(j) 2 R�IC�R, we
write [ ]j = Cj+1�Cj, where [ ]j represents the new declarative unit(s)
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and/or R{literal(s) infered at the step j of the proof. We also assume,
without loss of generality, that n > 1. Then 0 < l(C0=C1;m(0)) � L,
and 0 � l(hfC1; : : : ; Cng;m

0

i) < L (where m
0

(i) = m(i) for all 1 � i �
n�1)13. By the inductive hypothesis there exists a �nite con�guration
C

0

1 � C1, such that C
0

1 `S �. Notice that C1 = C0 + [ ]0. So if C
0

1 � C0
then the theorem is proved. Suppose now that C

0

1 6� C0. Then, by
the transitivity property of `S , it remains to show that there exists a
�nite con�guration C

0

� C0 such that C
0

`S C
0

1. We prove it by cases
on m(0).

m(0) = ^{Elimination
Suppose that m(0) = I^�E. C0=C1 2 I^�E. Then there exists a
declarative unit of the form � : � ^ � 2 C0 and C1 is either equal to
C0 + [� : �] or equal to C0 + [� : �]. We consider the �rst case since
the argument for the second case is analogous. [ ]0 = [� :�]. By the
inductive hypothesis, C

0

1 � C1 and C
0

1 is �nite. By assumption C
0

1 6� C0.
So [� : �] 2 C

0

1, but it is not necessary the case that � : �^� 2 C
0

1.
Then let C

0

be the con�guration (C
0

1 � [� :�]) + [� :�^�]. Then C
0

is
a �nite con�guration and hfC

0

; C
0

+ [� : �]; C
0

1g;mi is a proof, where
m(0) = I^E and m(1) = IC�R. Hence C

0

`S C
0

1.

R{Assertion
Suppose that m(0) = IR�A so that C0=C1 2 IR�A. Let C0 = hD0;F0i.
Then there exists an R{literal � such that D0;A `FOL �. C1 =
C0 + [�]. Let � � D0 be the set of R{literals assumptions used in
the �rst{order derivation D0;A `FOL �. Since a proof in classical
logic is a �nite sequence of inference rules and each inference rule
uses a �nite set of assumptions, then � is �nite. Notice now that
[ ]0 = [�]. By the inductive hypothesis, C

0

1 � C1 and C
0

1 is �nite. By
assumption C

0

1 6� C0. So [�] 2 C
0

1, but it is not necessary the case
that � � C

0

1. Let C
0

= (C
0

1 � [�]) + �. Then C
0

is a �nite con�gu-
ration and hfC

0

; C
0

+ [�]; C
0

1g;mi is a proof, where m(0) = IR�A and
m(1) = IC�R. Hence C

0

`S C
0

1.

The argument for any other inference rule Ii 2 I0, such that m(0) =
Ii and C0=C1 2 m(0), is analougous to ^{Elimination.

!{Introduction
Suppose that m(0) = I!I . C0=C1 2 I!I . Then there exist declarative

13For n = 1 it is always possible to extend a smallest size proof hfC0; C1g;m(0)i, where
m(0) 2 R, to a proof of the same size of the form hfC0; C1; C1g;m

0

i, where m
0

(0) = m(0) and
m

0

(1) = IC�R
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units of the form � :�, � :�, � :�! � such that C0 + [� :�] `S � : �
and C1 = C0 + [� :�! �]. Then [ ]0 = [� :�! �]. By the inductive
hypothesis C

0

1 � C1 and C
0

1 is �nite. By assumption C
0

1 6� C0, so that
[� : �! �] 2 C

0

1. Let hfC0 + [� : �]; : : : ; ~Cng; ~mi (with � : � 2 ~Cn) be
a proof of the smallest size of C0 + [� :�] `S � :�. Since by hypoth-
esis 0 < l(C0=C1;I!I ) � L, then by De�nition 3.9, 0 � l(hfC0 + [� :
�]; : : : ; ~Cng; ~mi) < L. Then by the inductive hypothesis, there exists
a �nite con�guration C�0 � C0 + [� :�] such that C�0 `S � : �. Let C

0

be the con�guration (C
0

1 � [� :�! �]) [ (C�0 � [� : �]). Then C
0

is a
�nite con�guration and C

0

� C0. Since C�0 � C
0

+ [� :�], by the mono-
tonicity property of `S , C

0

+ [� : �] `S [� : �]. So by De�nition 2.9,
C

0

=C
0

+ [� :�!�] 2 I!I . Therefore hfC
0

; C
0

+ [� :�!�];C
0

1g;mi is a
proof, where m(0) = I!I and m(1) = IC�R. Hence C

0

`S C
0

1.

The argument for any other inference rule Ii 2 I+, such that m(0) =
Ii and C0=C1 2 m(0), is analogous to !{Introduction.

_{Elimination
Suppose that m(0) = I_E. C0=C1 2 I_E. Then there exist declarative
units of the form � :�, � :�, � :�_� and � : such that � : �_� 2 C0,
C0+[� :�] `S � :, C0+[� :�] `S � : and C1 is equal to C0+[� :]. Then
[ ]0 = [� :]. By the inductive hypothesis C

0

1 � C1 and C1 is �nite. By
assumption C

0

1 6� C0, so that [� :] 2 C
0

1. Let hfC0 + [� :�]; : : : ; ~Cg; ~mi
(with � : 2 ~C) be a proof of the smallest size of C0 + [� :�] `S � :.
Analogously let hfC0 + [� :�]; : : : ; ~C

0

g; ~m
0

i (with � : 2 ~C
0

) be a proof
of the smallest size of C0 + [� : �] `S � : . Since by hypothesis
0 < l(C0=C1;I_I) � L, by De�nition 3.9

0 � l(hfC0 + [� :�]; : : : ; ~Cg; ~mi) < L and
0 � l(hfC0 + [� :�]; : : : ; ~C

0

g; ~m
0

i) < L.
By the inductive hypothesis, there exist �nite con�gurations C� �
C0 + [� :�] and ~C� � C0 + [� :�] such that C� `S � : and ~C� `S � :.
Let C

0

be the con�guration
((C

0

1 � [� :]) + [� :� _ �]) [ (C� � [� :�]) [ ( ~C� � [� :�]).
Then C

0

is a �nite con�guration, C
0

� C0 and � :� _ � 2 C
0

. More-
over since C� � C

0

+ [� : �], by the monotonicity property of `S ,
C

0

+ [� : �] `S � : . Analogously, since ~C� � C
0

+ [� : �], by the
monotonicity property of `S, C

0

+ [� :�] `S � : . By De�nition 2.8,
C

0

=C
0

+ [� : ] 2 I_E. Therefore hfC
0

; C
0

+ [� : ]; C
0

1g;mi is a proof,
where m(0) = I_E and m(1) = IC�R.
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Proposition 4.6
Let S = hhLL;LM i;A;Ri be a MLDS. Let C be a con�guration of S. If for any
�nite con�guration C

0

, C
0

� C, C
0

is consistent then C is consistent.

Proof:
We prove the contrapositive statement. Suppose that C is inconsis-
tent. By de�nition of inconsistency, C `S � : ?, for some ground
term � of Func(LL;LM ). Then, by Theorem 4.2, there exists a �nite
con�guration C

0

� C such that C
0

`S � :?, so that C
0

is inconsistent.

So far we have de�ned the notion of a consistent con�guration of a MLDS S and
we have proved some consistency properties. We are now interested in showing
that the MLDS S proposed in Section 2 is complete with respect to the semantics
de�ned in Section 3. Informally the completeness theorem, whose proof is given
below, shows that given a MLDS S and two con�gurations C, C

0

of S, such that
their con�guration di�erence C

0

�C is �nite, if C
0

is semantically entailed from C
then C

0

is also derived from C. We prove this following the Henkin{style method-
ology [Hughes-68]. We give here an informal description of the proof, underlining
the main steps and theorems that will be used. The overall structure of the proof
is illustrated in Figure 4.

The proof will be done by contrapositive. The contrapositive equivalent state-
ment of the completeness theorem says that given two con�gurations C and C

0

,
such that their con�guration di�erence C

0

�C is �nite, if C
0

is not derivable from
C then C

0

is not semantically entailed from C. This statement corresponds to the
arrow labelled with (1) in the diagram below. Arrow (1) is also given by the com-
position of the arrows (2) and (3). In this composition, arrow (2) is already given
by De�nition 3.8, while arrow (3) represents the main part of the completeness
theorem. Its proof is based on the statement if C is a consistent con�guration
then C is satis�able, known as `Model Existence Lemma', and informally it will
be proved in the following way.

The hypothesis that C
0

is not derivable from C, C 6`S C
0

, implies, by Theorem 4.1,
that there exists a � 2 C

0

� C (where � is a declarative unit or an R{literal)
such that C 6`S �. So C + [:�] is a consistent con�guration (see Proposition 4.7
below). So, by the Model Existence Lemma (see Lemma 4.2 below) and by Corol-
lary 4.1, the con�guration C + [:�] is satis�able. This means, by the de�nition
of satis�ability of a con�guration, that there exists a semantic structure M of
S (i.e. a model of the associated extended algebra A+) which satis�es C and
that also satis�es :�. Then, as will be shown below, the semantic structure
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M does not satisfy �. So, since � 2 C
0

, by the de�nition of satis�ability of a
con�guration,M does not satisfy C

0

. This proves arrow (3) in the diagram below.

Arrow (3) and De�nition 3.8 (arrow(2) in the diagram below), allow us to con-
clude that the con�guration C

0

is not semantically entailed from C.

Figure 2 - Proof of the Completeness Theorem

C 6`S C
0 - C 6j=S C

0

6

A+ [ FOT (C) 6j=FOL FOT (C
0

)

PPPPPPPPPPPPPPq

(1)

(3)(2)

As pointed out above, the main step of the completeness proof is then arrow (3)
(Figure 4) whose proof is based on the Model Existence Lemma 4.2. The proof
of this lemma is based on the construction of a maximal consistent con�guration.
By the term `maximal consistent con�guration', we mean a consistent con�gura-
tion of a MLDS S, such that any declarative unit or R{literal not already part
of it, if added, would make it inconsistent. Then `model existence lemma' will be
proved by showing that for any consistent con�guration it is possible to construct
a maximal consistent con�guration (Proposition 4.8 below) which includes it and
for which there exists a semantic structure of S that satis�es it. Then such se-
mantic structure will also satisfy the initial consistent con�guration (Remark 4.1
below).

Proposition 4.7
Let S = hhLL;LM i;A;Ri be a MLDS and let C be a con�guration of S. Let �
be a declarative unit or an R{literal such that � 62 C. If C 6`S � then C + [:�] is
a consistent con�guration.

Proof:
There are two cases to consider: (i) � is a declarative unit and (ii) �
is an R{literal.

(i) Suppose that � is a declarative unit of the form � :�. We prove the
contrapositive of the proposition statement. Assume that C+[� :
:�] is not consistent. By De�nition 4.1, C+[� ::�] `S �

0

:?, for
some ground term �

0

of Func(LL;LM ). Let C
0

= C+[� :::�] and
C� = C

0

+ [� :�]. By De�nition 2.11, the pair of con�gurations
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C=C
0

2 I:I and by De�nition 2.12, the pair of con�gurations
C

0

=C� 2 I:E. So hfC; C
0

; C�g;mi is a proof, where m(0) = I:I
and m(1) = I:E. Since � :� 2 C�, by Notation 2.1, C `S � :�.

(ii) Suppose that � is an R{literal �. We prove the contrapositive
of the proposition statement. Assume that C + [:�] is not con-
sistent. By De�nition 4.1, C + [:�] `S �

0

:?, for some ground
term �

0

of Func(LL;LM ). Then by De�nition 2.18, the pair of
con�gurations C=C+ [�] 2 IR�I . So hfC; C+ [�]g;mi is a proof,
where m(0) = IR�I . Hence by Notation 2.1, C `S �.

De�nition 4.6 (Maximal Consistent Con�guration, Cmcc)
Let S = hhLL;LM i;A;Ri be a MLDS. Cmcc is a maximal consistent con�guration
relative to S, if it is a consistent con�guration and if for any � 62 Cmcc (where � is
a declarative unit or an R{literal), the con�guration Cmcc +[�] is not consistent.

2

We are going now to show that given a consistent con�guration C of S, we can
always construct a maximal consistent con�guration Cmcc which contains it. To
do this we assume that the set of all declarative units and R{literals of S is
ordered so that we can speak of the 1st, 2nd, 3rd, : : :, nth, : : :, etc. element �
of S (where � is a declarative unit or an R{literal). Using this assumption, we
show in De�nition 4.7 and Proposition 4.8, how to expand an initial consistent
con�guration C into a maximal consistent con�guration Cmcc . Informally, the
construction is based on the following procedure. We start from the con�guration
C, and we go through all the elements �i of S (where �i is a declarative unit or
an R{literal) in the ordering we have chosen, adding each in turn if and only if
it can consistently be done. This is formally de�ned as follows.

De�nition 4.7 (Contruction of MCC(C))
Let S = hhLL;LMi;A;Ri be a MLDS. Let �1; �2; �3; : : : ; �n; : : : be an ordering
on the set of all declarative units and R{literals of S14. Let C be a consistent
con�guration of S. Let C0 = C.
Consider the �rst element �1 in the chosen ordering. If C0+[�1] is consistent then
let C1 = C0 + [�1], otherwise let C1 = C0. Then take the second element �2 of the
chosen ordering. If C1 + [�2] is consistent then let C2 = C1 + [�2], otherwise let
C2 = C1. Then apply the same process on each element �i of S in turn according
to the chosen ordering.

14For each i � 0, �i is a declarative unit or an R{literal
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C0 = C
C1 = C0 + [�1] if C0 + [�1] is consistent
C1 = C0 otherwise
: : : : : :
Cn = Cn�1 + [�n] if Cn�1 + [�n] is consistent
Cn = Cn otherwise
: : : : : :

Let C0; C1; C2; : : : ; Cn; : : : be the sequence of con�gurations constructed above.
MCC(C) is the con�guration which contains all the elements �i (declarative units
and R{literals) which are in any con�guration Ci.

MCC(C) =
[

i�0

Ci

2

We will usually write MCC(C) as Cmcc.

Remark 4.1
The sequence of con�gurations C0, C1, C2, : : :, Cn, : : :, described in De�nition 4.7, is
such that for each i � 0, Ci � Cmcc . Moreover, the con�guration C0 is consistent by
assumption (C0 = C), and for each i � 0, if Ci is consistent then by `construction'
also Ci+1 is consistent. Hence for each i � 0, Ci is a consistent con�guration.

�

We prove now that the con�guration Cmcc , described in De�nition 4.7, is a max-
imal consistent con�guration.

Proposition 4.8
Let S = hhLL;LM i;A;Ri be a MLDS, let C be a consistent con�guration and
let Cmcc be the con�guration speci�ed in De�nition 4.7. The two following state-
ments hold

1. Cmcc is consistent
2. Cmcc is maximal

Proof:

1. To prove that Cmcc is a consistent con�guration we use Propo-
sition 4.6. Let C

0

be a �nite con�guration such that C
0

� Cmcc .
Enumerate all the elements (declarative units and R{literals) of
C

0

according to the ordering chosen in De�nition 4.7. Let �n
be the last element of C

0

. Then C
0

� Cn. By Remark 4.1, Cn
is a consistent con�guration. Then, by Proposition 4.5, C

0

is
also consistent. Hence, by Proposition 4.6, Cmcc is a consistent
con�guration.
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2. To prove that Cmcc is a maximal con�guration, it is su�cient
to prove, by De�nition 4.6, that for any � of S (where � is a
declarative unit or an R{literal), which is consistent with Cmcc ,
� 2 Cmcc . Let �n be a declarative unit or an R{literal of S, in
the chosen ordering speci�ed in De�nition 4.7, such that �n is
consistent with Cmcc . Since Cmcc is a consistent con�guration, by
Proposition 4.5, for any con�guration C

0

� Cmcc , C
0

+[�n] is also a
consistent con�guration. Let Cn�1 be the con�guration speci�ed
in De�nition 4.7. Cn�1 � Cmcc , by Remark 4.1. Then Cn�1+ [�n]
is a consistent con�guration. Therefore by De�nition 4.7, Cn�1+
[�n] = Cn, where by Remark 4.1 Cn � Cmcc . Hence �n 2 Cmcc .

So far we have shown that given a consistent con�guration C, it is always possible
to construct a maximal consistent con�guration Cmcc relative to S, such that
C � Cmcc . We are now going to prove some properties of a maximal consistent
con�guration.

Proposition 4.9
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. Then for any declarative unit � :�, � :� and � ::�
are not both in Cmcc .

Proof:
The proof follows directly from the de�nition of ^{Introduction rule.

Proposition 4.10
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. Then for any R{literal �, � and :� are not both in
Cmcc .

Proof:
The proof follows directly from the de�nition of ?{Introduction rule.

Proposition 4.11
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. For any declarative unit � :�, either � :� 2 Cmcc or
� ::� 2 Cmcc .
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Proof:
The proof is by contradiction. Suppose that � : � 62 Cmcc and that
� ::� 62 Cmcc . Then, since Cmcc is a maximal consistent con�guration,
Cmcc + [� :�] and Cmcc + [� ::�] are inconsistent con�gurations. By
De�nition 4.1 Cmcc + [� : �] `S �

0

:?, and Cmcc + [� : :�] `S �
00

:?,
for some ground terms �

0

, �
00

of Func(LL;LM ). By Theorem 4.2,
there exist two �nite con�gurations C1 � Cmcc and C2 � Cmcc , such
that C1 + [� :�] `S �

0

:?, and C2 + [� ::�] `S �
00

:?. Let C
0

be the
con�guration C

0

= C1 [ C2. By monotonicity, C
0

+ [� : �] `S �
0

: ?.
So C

0

=C
0

+ [� ::�] 2 I:I and hfC
0

; C
0

+ [� ::�]g;mi is a proof, where
m(0) = I:I . So C

0

`S C
0

+ [� ::�]. By the monotonicity property of
`S , C

0

+ [� ::�] `S �
00

:?. Then by the transitivity property of `S ,
C

0

`S �
00

:?. Since C
0

� Cmcc , by the monotonicity property of `S ,
Cmcc `S �

00

:?. Hence Cmcc is inconsistent which is in contradiction
with the original hypothesis.

Proposition 4.12
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. For any R{literal � either � 2 Cmcc or :� 2 Cmcc .

Proof:
The proof is by contradiction. Suppose that � 62 Cmcc and that :� 62
Cmcc . Since Cmcc is a maximal consistent con�guration, Cmcc+[�] and
Cmcc + [:�] are inconsistent con�gurations. Then by De�nition 4.1,
Cmcc + [�] `S �

0

: ? and Cmcc + [:�] `S �
00

: ?, for some ground
terms �

0

, �
00

of Func(LL;LM ). By Theorem 4.2, there exist two �nite
con�gurations C1 � Cmcc and C2 � Cmcc , such that C1 + [�] `S �

0

:?,
and C2 + [:�] `S �

00

:?. Let C
0

be the con�guration C
0

= C1 [ C2.
By the monotonicity property of `S , C

0

+ [�] `S �
0

:?. Then C
0

=C
0

+
[:�] 2 IR�I and hfC

0

; C
0

+ [:�]g;mi is a proof, where m(0) = IR�I .
Then C

0

`S C
0

+ [:�]. Moreover by the monotonicity property of
`S , C

0

+ [:�] `S �
00

: ?. Then by the transitivity property of `S ,
C

0

`S �
00

:?. Since C
0

� Cmcc , by the monotonicity property of `S ,
Cmcc `S �

00

:?. Hence Cmcc is inconsistent which is in contradiction
with the original hypothesis.
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Proposition 4.13
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. Let � be a ground term of Func(LL;LM ) and let �
and � be two w�s of LM . Then � :� ^ � 2 Cmcc , if and only if � :� 2 Cmcc and
� :� 2 Cmcc .

Proof:
`Only if' half:
The proof is by contradiction. By hypothesis � :�^ � 2 Cmcc , and we
assume that either � :� 62 Cmcc or � :� 62 Cmcc . We consider only the
�rst case since the argument for the second case is analogous. If � :� 62
Cmcc , then by Proposition 4.11 � ::� 2 Cmcc . Then Cmcc is inconsistent
as shown in the following derivation. This is in contradiction with the
original hypothesis.

Cmcch� :� ^ �; � ::�i ^{E
C

0

h� :�; � ::�i ^{I
C

00

h� :?i

`If' half:
By hypothesis � : � 2 Cmcc and � : � 2 Cmcc . We assume that � :
� ^ � 62 Cmcc . Then, by Proposition 4.11 � ::(� ^ �) 2 Cmcc . Hence
Cmcc is inconsistent, as shown in the following derivation, which is in
contradiction with the original hypothesis.

Cmcch� ::(� ^ �); � :�; � :�i ^{I
C

0

h� :� ^ �; � ::(�^ �)i ^{I
C

00

h� :?i

Proposition 4.14
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. Let � be any ground term of Func(LL;LM) and let
�, � be two w�s of LM . Then � : � _ � 2 Cmcc , if and only if � : � 2 Cmcc or
� :� 2 Cmcc .

Proof:
`Only if' half
The proof is by contradiction. By hypothesis � : � _ � 2 Cmcc

and we assume that � : � 62 Cmcc and that � : � 62 Cmcc . Then
by Proposition 4.11, � : :� 2 Cmcc and � : :� 2 Cmcc . Therefore
Cmcc + [� : �] `S � : ? and Cmcc + [� : �] `S � : ?. So, by the _{
Elimination rule, Cmcc `S � :?. Hence Cmcc is inconsistent which is in
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contradiction with the original hypothesis.

`If' half
The proof is by contradiction. By hypothesis either � :� 2 Cmcc or � :
� 2 Cmcc . We consider the �rst case since the argument for the second
case is analogous. Assume, by contradiction, that � : � _ � 62 Cmcc .
Then by Proposition 4.11 � ::(� _ �) 2 Cmcc . So Cmcc is inconsistent
as shown in the following derivation. This is in contradiction with the
original hypothesis.

Cmcch� ::(� _ �); � :�i _{I
C

0

h� :� _ �; � ::(�_ �)i ^{I
C

00

h� :?i

Proposition 4.15
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent
con�guration relative to S. Let � be a ground term of Func(LL;LM ) and �, �
be two w�s of LM . If � ::� 2 Cmcc or � : � 2 Cmcc then � :�! � 2 Cmcc .

Proof:
Suppose that � ::� 2 Cmcc . Assume by contradiction that
� : � ! � 62 Cmcc . Then by Proposition 4.11, � : :(� ! �) 2 Cmcc .
Then Cmcc is inconsistent as shown in the following derivation. This
is in contradiction with the original assumption.

Cmcch� ::(�!�); � ::�i
~Ch� ::(�!�); � ::�_ �i (_{I)

C
0

0h� ::� _ �; � :�i (new assumption)
C

00

0 h� ::� _ �; � :�; � ::�i (new assumption)
C

00

1 h� ::� _ �; � :�; � ::�; � :?i (_{E)
C

0

1h� ::� _ �; � :�; � :::�i (:{I)
C

0

2h� ::� _ �; � :�; � :�i (:{E)
~C1h� ::(�!�); � :�!�i (!{I)
~C2h� :?i (^{I)

Now suppose that � :� 2 Cmcc . Assume by contradiction that � :�!
� 62 Cmcc . Then by Proposition 4.11, � : :(� ! �) 2 Cmcc . Hence
Cmcc is inconsistent as shown in the following derivation. This is in
contradiction with the original hypothesis.
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Cmcch� ::(�!�); � :�i
C

0

h� ::(�!�); � :�;� :�i (new assumption)
C

0

1h� :�i (C-R)
C1h� ::(�!�); � :�!�i (!{I)
C2h� :?i (^{I)

Proposition 4.16
Let S = hhLL;LM i;A;Ri be a MLDS and let Cmcc be a maximal consistent con-
�guration relative to S. Let � be a ground term of Func(LL;LM ) and let �, �,
be two w�s of LM . If � :� 2 Cmcc and � :�!� 2 Cmcc then � :� 2 Cmcc .

Proof:
The proof is by contradiction. Suppose that � : � 62 Cmcc . Then
by Proposition 4.11 � : :� 2 Cmcc . Then Cmcc `S � : ? as shown
in the following derivation. Hence Cmcc is inconsistent and this is in
contradiction with the original hypothesis.

Cmcch� :�; � :�!�; � ::�i !{E
C

0

h� :�; � ::�i ^{I
C

00

h� :?i

Proposition 4.17
Let S = hhLL;LMi;A;Ri be a MLDS, let Cmcc be a maximal consistent con�gu-
ration relative to S and let � be a ground term of Func(LL;LM) and let � be a
w� of LM . If � :3� 2 Cmcc then f�(�) :� 2 Cmcc and R(�; f�(�)) 2 Cmcc .

Proof:
Let Cmcc be the con�guration hDmcc ;Fmcci. By hypothesis � :3� 2
Cmcc , or equivalently, 3� 2 Fmcc(�). Then by Proposition 4.1,
:R(�; f�(�)) 62 Dmcc and :� 62 Fmcc(f�(�))15. Hence by Proposi-
tion 4.12, R(�; f�(�)) 2 Cmcc and by Proposition 4.11, f�(�) : � 2
Cmcc .

15Equivalently :R(�; f�(�)) 62 Cmcc and f�(�) ::� 62 Cmcc
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Proposition 4.18
Let S = hhLL;LMi;A;Ri be a MLDS, let Cmcc be a maximal consistent con�gu-
ration relative to S, let �, �

0

be two ground terms of Func(LL;LM ) and let � be
a w� of LM . If � :2� 2 Cmcc and R(�; �

0

) 2 Cmcc , then �
0

:� 2 Cmcc .

Proof:
The proof is by contradiction. Suppose that �

0

: � 62 Cmcc . Then
by Proposition 4.11, �

0

: :� 2 Cmcc . Then Cmcc `S �
0

: ? as shown
in the following derivation. Hence Cmcc is inconsistent and this is in
contradiction with the original hypothesis.

Cmcch� :2�;R(�; �
0

); �
0

::�i 2{E
C

0

h�
0

:�; �
0

::�i ^{I
C

00

h�
0

:?i

Proposition 4.19
Let S = hhLL;LMi;A;Ri be a MLDS, let Cmcc be a maximal consistent con�gu-
ration relative to S, let �1 and �2 be two ground terms of Func(LL;LM ) and let
� be a w� of LM . If R(�1; �2) 2 Cmcc and �2 :� 2 Cmcc then �1 :3� 2 Cmcc .

Proof:
The proof is by contradiction. Suppose that �1 : 3� 62 Cmcc . Then
by Proposition 4.11, �1 ::3� 2 Cmcc . Then Cmcc `S �1 :? as shown
in the following derivation. Hence Cmcc is inconsistent and this is in
contradiction with the original hypothesis.

CmcchR(�1; �2); �2 :�; �1 ::3�i 3{I
C

0

h�1 :3�; �1 ::3�i ^{I
C

00

h�1 :?i

Proposition 4.20
Let S = hhLL;LMi;A;Ri be a MLDS, let Cmcc be a maximal consistent con�gu-
ration relative to S, let � be a ground term of Func(LL;LM ) and let � be a w�
of LM . If :R(�; box�(�)) 2 Cmcc or box�(�) :� 2 Cmcc then � :2� 2 Cmcc .

Proof:
Let Cmcc be the con�guration hDmcc ;Fmcci. Suppose by contradiction
that � : 2� 62 Cmcc . Then by Proposition 4.11, � : :2� 2 Cmcc ,
or equivalently :2� 2 Fmcc(�). Then by Proposition 4.1, � 62
Fmcc(box�(�)) and :R(�;Box�(�)) 62 Dmcc . Hence box�(�) :� 62 Cmcc ,
and :R(�;Box�(�)) 62 Cmcc , which are together in contradiction with
the original hypothesis.
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So far we have proved properties of a maximal consistent con�guration that hold
in any MLDS S. However there exist some extra properties that depend on the
particular labelling algebra A of a MLDS S. These properties refer only to the
R{literals of a maximal consistent con�guration. As shown in De�nition 1.4, a
labelling algebra A is a �nite set of axioms on the predicate R of the language
Func(LL;LM). Regarding the predicate R as the Kripke accessibility relation
between possible worlds, each labelling algebra A de�nes a particular MLDS S
in the class of normal modal logics (K, T , K4, KB, S4, S5, D, D4, DB). For
example, a MLDS K is de�ned by an empty-set labelling algebra, A = fg16. In
a MLDS K4 the labelling algebra A is the singleton set given by axiom (4) of
De�nition 1.4 17. Analogously, in a MLDS T the labelling algebra A is the sin-
gleton set given by axiom (T ) of De�nition 1.4 18. So, for each MLDS S di�erent
from K, there are further properties of a maximal consistent con�guration to be
proved.

Proposition 4.21
Let T = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x)g. Let Cmcc be a
maximal consistent con�guration relative to T . Then for each ground term � of
Func(LL;LM), the R{literal R(�; �) 2 Cmcc .

Proof:
The proof is by contradiction. Let �

0

be a ground term of Func(LL;LM )
such that R(�

0

; �
0

) 62 Cmcc . Then by Proposition 4.12, :R(�
0

; �
0

) 2
Cmcc . Then Cmcc `T �

00

:?, for some ground term �
00

2 Func(LL;LM ),
as shown in the following derivation. Hence Cmcc is inconsistent which
is in contradiction with the original hypothesis.

Cmcch:R(�
0

; �
0

)i R{Assertion
C

0

h:R(�
0

; �
0

); R(�
0

; �
0

)i ?{I
C

00

h�
00

:?i

Proposition 4.22
Let D = hhLL;LMi;A;Ri be a MLDS where A = f8xR(x; succ(x))g. Let Cmcc

be a maximal consistent con�guration relative to D. Then for each ground term
� of Func(LL;LM ), the R{literal R(�; succ(�)) 2 Cmcc .

16In a modal logic K the accessibility relation does not have any property
17In a modal logic K4 the accessibility relation is transitive
18In a modal logic T the accessibility relation is reexive
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Proof:
The proof is by contradiction. Let �

0

be a ground term of Func(LL;LM )
such thatR(�

0

; succ(�
0

)) 62 Cmcc . Then by Proposition 4.12, :R(�
0

; succ(�
0

)) 2
Cmcc . Then Cmcc `D �

00

:?, for some ground term �
00

2 Func(LL;LM ),
as shown in the following derivation. Hence Cmcc is inconsistent which
is in contradiction with the original hypothesis.

Cmcch:R(�
0

; succ(�
0

))i R{Assertion
C

0

h:R(�
0

; succ(�
0

)); R(�
0

; succ(�
0

))i ?{I
C

00

h�
00

:?i

Proposition 4.23
LetK4 = hhLL;LM i;A;Ri be a MLDS whereA = f8x; y; z((R(x; y)^R(y; z))!
R(x; z))g. Let Cmcc be a maximal consistent con�guration relative to K4. Let
�1,�2,�3 be three ground terms of Func(LL;LM) such that R(�1; �2) 2 Cmcc and
R(�2; �3) 2 Cmcc . Then R(�1; �3) 2 Cmcc .

Proof:
The proof is by contradiction. Suppose that R(�1; �3) 62 Cmcc . Then
by Proposition 4.12, :R(�1; �3) 2 Cmcc . Then Cmcc `K4 �

0

: ?, for
some ground term �

0

2 Func(LL;LM), as shown in the following
derivation. Hence Cmcc is inconsistent which is in contradiction with
the original hypothesis.

Cmcch:R(�1; �3)i R{Assertion
C

0

h:R(�1; �3); R(�1; �3)i ?{I
C

00

h�
0

:?i

Proposition 4.24
Let KB = hhLL;LM i;A;Ri be a MLDS where A = f8x; y(R(x; y)! R(y; x))g.
Let Cmcc be a maximal consistent con�guration relative to KB. Let �1,�2 be two
ground terms of Func(LL;LM) such that R(�1; �2) 2 Cmcc . Then R(�2; �1) 2
Cmcc .

Proof:
The proof is by contradiction. Suppose that R(�2; �1) 62 Cmcc . Then
by Proposition 4.12, :R(�2; �1) 2 Cmcc . Then Cmcc `KB �

0

: ?, for
some ground term �

0

2 Func(LL;LM), as shown in the following
derivation. Hence Cmcc is inconsistent which is in contradiction with
the original hypothesis.
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Cmcch:R(�2; �1)i R{Assertion
C

0

h:R(�2; �1); R(�2; �1)i ?{I
C

00

h�
0

:?i

Proposition 4.25
Let S4 = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x); 8x; y; z((R(x; y)^
R(y; z))! R(x; z))g. Let Cmcc be a maximal consistent con�guration relative to
S4. Then the two following statements hold

1. For any ground term � of Func(LL;LM ), R(�; �) 2 Cmcc

2. Given three ground terms �1,�2,�3 of Func(LL;LM ) such that R(�1; �2) 2
Cmcc and R(�2; �3) 2 Cmcc , then R(�1; �3) 2 Cmcc .

Proof:
1. This follows from Proposition 4.21
2. This follows from Proposition 4.23

Proposition 4.26
Let S5 = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x); 8x; y; z((R(x; y)^
R(y; z)) ! R(x; z)); 8x; y(R(x; y) ! R(y; x))g. Let Cmcc be a maximal consis-
tent con�guration relative to S5. Then the following statements hold

1. For any ground term � of Func(LL;LM ), R(�; �) 2 Cmcc

2. Given three ground terms �1,�2,�3 of Func(LL;LM ) such that R(�1; �2) 2
Cmcc and R(�2; �3) 2 Cmcc , then R(�1; �3) 2 Cmcc .

3. Given two ground terms �1,�2 of Func(LL;LM) such that R(�1; �2) 2 Cmcc ,
then R(�2; �1) 2 Cmcc .

Proof:

1. This follows from Proposition 4.21

2. This follows from Proposition 4.23

3. This follows from Proposition 4.24
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We have already pointed out earlier in this section, that, given a MLDS S, the
proof of the completeness theorem is based on the Model Existence Lemma 4.2.
We have also said that the proof of this lemma requires two main steps. The �rst
step consists of proving that it is always possible to expand a given consistent
con�guration into a maximal consistent con�guration. The second step consists
of constructing a semantic structure of S which satis�es the maximal consistent
con�guration. So far we have proved the �rst step in Proposition 4.8. We are now
going to show how to construct a semantic structure which satis�es a maximal
consistent con�guration Cmcc .

De�nition 4.8 (Maximal Interpretation, M(Cmcc))
Let S = hhLL;LM i;A;Ri be a MLDS. Let Cmcc = hDmcc;Fmcci be a maximal
consistent con�guration relative to S. Let FOT (Cmcc) be its �rst{order trans-
lation. FOT (Cmcc) = Dmcc [ DUmcc, where DUmcc = f[�]�(�) j � : � 2 Cmccg.
Let U be the Herbrand Universe of the language Mon(LL;LM). I(Cmcc) is the
interpretation function on the language Mon(LL;LM), de�ned as follows.

� For each ground term � 2Mon(LL;LM)

k � kI(Cmcc) = � 2 U .

� For the binary predicate R 2Mon(LL;LM)

k R kI(Cmcc) = fh�i; �ji j R(�i; �j) 2 FOT (Cmcc)g19.

� For each monadic predicate [�]� 2Mon(LL;LM )

k [�]�kI(Cmcc) = f�i j [�]�(�i) 2 FOT (Cmcc)g

M(Cmcc) = hU ; I(Cmcc)i is a maximal interpretation.
2

Remark 4.2
Let S be a MLDS, let Cmcc be a maximal consistent con�guration relative to S, let
FOT (Cmcc) be its �rst{order translation. Then we observe that for any ground
atomic formula of Mon(LL;LM ) of the form R(�i; �j), M(Cmcc) j=FOL R(�i; �j)
if and only if R(�i; �j) 2 FOT (Cmcc); analogously for any ground atomic for-
mula of Mon(LL;LM ) of the form [�]�(�), M(Cmcc) j=FOL [�]�(�) if and only if
[�]�(�) 2 FOT (Cmcc).
Now let V be a variable assignment from the set of variables of the language
Mon(LL;LM ) to the Herbrand Universe U . The truth value of any w� of
Mon(LL;LM ) is de�ned as follows.

� M(Cmcc); V j=FOL R(x; y) if and only if hV (x); V (y)i 2k R kI(Cmcc)

19Notice that FOT (Cmcc) contains only ground literals
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� M(Cmcc); V j=FOL [�]�(x) if and only if V (x) 2k [�]� kI(Cmcc)

� for any w� � ofMon(LL;LM ), the truth value of � with respect toM(Cmcc)
and V is de�ned in the usuall way (see for example [Genesereth-88]).

�

We are now going to prove that, given a MLDS S = hhLL;LM i;A;Ri, the max-
imal interpretation M(Cmcc) = hU ; I(Cmcc)i of De�nition 4.8 is a model of the
associated extended algebra A+. Then by De�nition 3.3, M(Cmcc) is a semantic
structure of S. The proof is based on two steps. In the �rst step, we prove that
M(Cmcc) satis�es all the axioms of the labelling algebra A. Then we prove that
M(Cmcc) satis�es all the axiom schemas (Ax1){(Ax8) of the associated extended
algebra A+. The �rst step depends on the particular MLDS S; we prove it for S
equal to T , D, K4, S4, S520. The second step, instead, is common to any MLDS
S.

For any variable assignment V and any variable x, of the languageMon(LL;LM),
V (x) refers to some ground term in the Herbrand Universe U . Hence, for sim-
plicity, we will use V (x) to stand for an arbitrary ground term in the arguments
that follow.

Proposition 4.27
Let T = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x)g. Let Cmcc be a
maximal consistent con�guration relative to T and let FOT (Cmcc) be its �rst{
order translation. Then M(Cmcc) j=FOL 8xR(x; x).

Proof:
Let V be an arbitrary variable assignment. It is su�cient to prove that
M(Cmcc); V j=FOL R(V (x); V (x)). By Proposition 4.21, R(V (x); V (x)) 2
Cmcc and so R(V (x); V (x)) 2 FOT (Cmcc). So, by De�nition 4.8,
hV (x); V (x)i 2k R kI(Cmcc). Hence, by Remark 4.2,M(Cmcc); V j=FOL

R(V (x); V (x)).

Proposition 4.27 shows that given a MLDS T = hhLL;LMi;A;Ri, a maximal
interpretationM(Cmcc) is a model of the labelling algebra A = f8xR(x; x)g. We
prove similar results for the MLDS D, K4, S4 and S5. Analogous results can be
easly shown for the D4{MLDS, the DB{MLDS and the KB{MLDS.

20For S is equal K, we don't need to prove the �rst step, since the associated labelling algebra
A is the empty set
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Proposition 4.28
Let D = hhLL;LMi;A;Ri be a MLDS where A = f8xR(x; succ(x))g. Let Cmcc

be a maximal consistent con�guration relative to D and let FOT (Cmcc) be its
�rst{order translation. Then M(Cmcc) j=FOL 8xR(x; succ(x)).

Proof:
Let V be an arbitrary variable assignment. It is su�cient to prove
that M(Cmcc); V j=FOL R(V (x); succ(V (x))). By Proposition 4.22,
R(V (x); succ(V (x))) 2 Cmcc and so R(V (x); succ(V (x))) 2 FOT (Cmcc).
So, by De�nition 4.8, hV (x); succ(V (x))i 2k R kI(Cmcc). Hence, by Re-
mark 4.2, M(Cmcc); V j=FOL R(V (x); succ(V (x))).

Proposition 4.29
LetK4 = hhLL;LM i;A;Ri be a MLDS whereA = f8x; y; z((R(x; y)^R(y; z))!
R(x; z))g. Let Cmcc be a maximal consistent con�guration relative to K4 and let
FOT (Cmcc) be its �rst{order translation. ThenM(Cmcc) j=FOL 8x; y; z((R(x; y)^
R(y; z))! R(x; z)).

Proof:
Let V be an arbitrary variable assignment. It is su�cient to prove that
M(Cmcc); V j=FOL (R(V (x); V (y))^R(V (y); V (z)))! R(V (x); V (z)).
By the truth table of !, we assume that

M(Cmcc); V j=FOL (R(V (x); V (y)) ^ R(V (y); V (z)))
and it remains to show that

M(Cmcc); V j=FOL R(V (x); V (z)).
By assumption,M(Cmcc); V j=FOL R(V (x); V (y)) andM(Cmcc); V j=FOL

R(V (y); V (z)). Then by Remark 4.2, hV (x); V (y)i 2k R kI(Cmcc)
and hV (y); V (z)i 2k R kI(Cmcc). By De�nition 4.8, R(V (x); V (y)) 2
FOT (Cmcc) and R(V (y); V (z)) 2 FOT (Cmcc). Then R(V (x); V (y)) 2
Cmcc andR(V (y); V (z)) 2 Cmcc . By Proposition 4.23, R(V (x); V (z)) 2
Cmcc . Then R(V (x); V (z)) 2 FOT (Cmcc). So, by De�nition 4.8,
hV (x); V (z)i 2k R kI(Cmcc). Hence, by Remark 4.2 M(Cmcc); V j=FOL

R(V (x); V (z)).

Proposition 4.30
Let S4 = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x); 8x; y; z((R(x; y)^
R(y; z))! R(x; z))g. Let Cmcc be a maximal consistent con�guration relative to
S4 and let FOT (Cmcc) be its �rst{order translation. Then
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1. M(Cmcc) j=FOL 8xR(x; x)

2. M(Cmcc) j=FOL 8x; y; z((R(x; y)^R(y; z))! R(x; z))

Proof:

1. This follows from Proposition 4.27
2. This follows from Proposition 4.29

Proposition 4.31
Let S5 = hhLL;LM i;A;Ri be a MLDS where A = f8xR(x; x); 8x; y; z((R(x; y)^
R(y; z)) ! R(x; z)); 8x; y(R(x; y) ! R(y; x))g. Let Cmcc be a maximal consis-
tent con�guration relative to S4 and let FOT (Cmcc) be its �rst{order translation.
Then

1. M(Cmcc) j=FOL 8xR(x; x)

2. M(Cmcc) j=FOL 8x; y; z((R(x; y)^R(y; z))! R(x; z))

3. M(Cmcc) j=FOL 8x; y(R(x; y)! R(y; x))

Proof:

1. This follows from Proposition 4.27

2. This follows from Proposition 4.29

3. Let V be an arbitrary variable assignment. It is su�cient to
prove thatM(Cmcc); V j=FOL (R(V (x); V (y))! R(V (y); V (x))).
By the truth table of !, we assume that M(Cmcc); V j=FOL

(R(V (x); V (y)) and we show that

M(Cmcc); V j=FOL R(V (y); V (x))).
By assumption and Remark 4.2, hV (x); V (y)i 2k R kI(Cmcc).
Then by De�nition 4.8, R(V (x); V (y)) 2 FOT (Cmcc). There-
fore R(V (x); V (y)) 2 Cmcc . Then by Proposition 4.25,

R(V (y); V (x)) 2 Cmcc . So R(V (y); V (x)) 2 FOT (Cmcc) and by
De�nition 4.8, hV (y); V (x)i 2kRkI(Cmcc). Hence, by Remark 4.2,
M(Cmcc); V j=FOL R(V (y); V (x))).
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We now show that, given a MLDS S, any maximal interpretation M(Cmcc) of
De�nition 4.8 is a model of the axiom schemas (Ax1){(Ax8) of the associated
extended algebra A+.

Theorem 4.3 (Model existence for A+ �A)
Let S = hhLL;LM i;A;Ri be a MLDS. Let A+ be the extended algebra associated
with S and let Cmcc be a maximal consistent con�guration relative to S. and let
FOT (Cmcc) be its �rst{order translation. Then M(Cmcc) is a model of A+ �A.

Proof:
Let U , V be arbitrary variable assignments, and let �, � be two w�s of
LM . The proof is by cases on each of the axiom schemas (Ax1){(Ax8).

� (Ax1): 8x([�^ �]�(x) � ([�]�(x) ^ [�]�(x))
By the truth table of the logical connectives �, ^, it is su�cient
to prove that M(Cmcc); V j=FOL [� ^ �]�(V (x)) if and only if
M(Cmcc); V j=FOL [�]�(V (x)) andM(Cmcc); V j=FOL [�]�(V (x)).

`Only if' half
We assume that M(Cmcc); V j=FOL [� ^ �]�(V (x)). Then, by
De�nition 4.8, [�^�]�(V (x)) 2 FOT (Cmcc). Then V (x) :�^� 2
Cmcc . By Proposition 4.13, V (x) :� 2 Cmcc and V (x) :� 2 Cmcc .
Then [�]�(V (x)) 2 FOT (Cmcc) and [�]�(V (x)) 2 FOT (Cmcc).
Therefore V (x) 2k [�]� kI(Cmcc) and V (x) 2k [�]� kI(Cmcc). Hence
by Remark 4.2, M(Cmcc); V j=FOL [�]�(V (x)) and

M(Cmcc); V j=FOL [�]�(V (x)).

`If' half
We assume that M(Cmcc); V j=FOL [�]�(V (x)) and that

M(Cmcc); V j=FOL [�]�(V (x)). By De�nition 4.8, [�]�(V (x)) 2
FOT (Cmcc) and [�]�(V (x)) 2 FOT (Cmcc). Then V (x) :� 2 Cmcc

and V (x) :� 2 Cmcc . Then, by Proposition 4.13, V (x) :� ^ � 2
Cmcc . Then [�^�]

�(V (x)) 2 FOT (Cmcc). Hence by De�nition 4.8
and by Remark 4.2, M(Cmcc); V j=FOL [� ^ �]�(V (x)).

� (Ax2): 8x([:�]�(x) � :[�]�(x))
By the truth table of �, it is su�cient to prove that

M(Cmcc); V j=FOL [:�]�(V (x)) if and only if M(Cmcc); V j=FOL

:[�]�(V (x)).

`Only if' half
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We assume that M(Cmcc); V j=FOL [:�]�(V (x)). By De�ni-
tion 4.8 [:�]�(V (x)) 2 FOT (Cmcc) and then V (x) : :� 2 Cmcc .
Then, by Proposition 4.11, V (x) :� 62 Cmcc . Then [�]�(V (x)) 62
FOT (Cmcc). So V (x) 62k [�]� kI(Cmcc). So M(Cmcc); V 6j=FOL

[�]�(V (x)). HenceMm; V j=FOL :[�]�(V (x)).

`If' half
We assume that M(Cmcc); V j=FOL :[�]�(V (x)). Then by the
truth table of :, M(Cmcc); V 6j=FOL [�]�(V (x)), which implies
that V (x) 62k [�]� kI(Cmcc). Then [�]�(V (x)) 62 FOT (Cmcc) and
then V (x) :� 62 Cmcc . By Proposition 4.11, V (x) ::� 2 Cmcc . So
[:�]�(V (x)) 2 FOT (Cmcc). HenceM(Cmcc); V j=FOL [:�]

�(V (x)).

� (Ax3): 8x([�_ �]�(x) � ([�]�(x) _ [�]�(x))
By the truth tables of � and _, it is su�cient to prove that
M(Cmcc); V j=FOL [�_�]�(V (x)) if and only ifM(Cmcc); V j=FOL

[�]�(V (x)) or M(Cmcc); V j=FOL [�]
�(V (x)).

`Only If' half
We assume thatM(Cmcc); V j=FOL [�_�]�(V (x)). Then, by Def-
inition 4.8, [�_ �]�(V (x)) 2 FOT (Cmcc). So V (x) :�_ � 2 Cmcc .
By Proposition 4.14, V (x) : � 2 Cmcc or V (x) : � 2 Cmcc . So
[�]�(V (x)) 2 FOT (Cmcc) or [�]�(V (x)) 2 FOT (Cmcc). Hence
M(Cmcc); V j=FOL [�]�(V (x)) or M(Cmcc); V j=FOL [�]�(V (x)).

`If' half
We assume that

M(Cmcc); V j=FOL [�]�(V (x)) or M(Cmcc); V j=FOL [�]�(V (x)).
Then either [�]�(V (x)) 2 FOT (Cmcc) or [�]�(V (x)) 2 FOT (Cmcc).
So either V (x) :� 2 Cmcc or V (x) :� 2 Cmcc . Then, by Proposi-
tion 4.14, V (x) :� _ � 2 Cmcc . So [� _ �]�(V (x)) 2 FOT (Cmcc).
Hence by De�nition 4.8 and Remark 4.2, M(Cmcc); V j=FOL

[� _ �]�(V (x)).

� (Ax4): 8x([�! �]�(x) � ([�]�(x)! [�]�(x))
By the truth tables of � and !, it is su�cient to prove that

M(Cmcc); V j=FOL [�!�]�(V (x)) if and only if,

ifM(Cmcc); V j=FOL [�]�(V (x)) then

M(Cmcc); V j=FOL [�]�(V (x)).

`Only if' half
We assume that M(Cmcc); V j=FOL [�!�]�(V (x)) and that
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M(Cmcc); V j=FOL [�]�(V (x)). Then [�!�]�(V (x)) 2 FOT (Cmcc)
and [�]�(V (x)) 2 FOT (Cmcc). Then V (x) : �! � 2 Cmcc and
V (x) : � 2 Cmcc . By Proposition 4.16, V (x) : � 2 Cmcc and
then [�]�(V (x)) 2 FOT (Cmcc). Hence by De�nition 4.8 and Re-
mark 4.2, M(Cmcc); V j=FOL [�]�(V (x)).

`If' half
We assume that
M(Cmcc); V j=FOL :[�]�(V (x)) orM(Cmcc); V j=FOL [�]�(V (x)).
By satis�ability of (Ax2),M(Cmcc); V j=FOL [:�]�(V (x)). Then,
by De�nition 4.8 [:�]�(V (x)) 2 FOT (Cmcc) or [�]�(V (x)) 2
FOT (Cmcc). Then V (x) ::� 2 Cmcc or V (x) : � 2 Cmcc . There-
fore, by Proposition 4.15, V (x) :�!� 2 Cmcc .
So [�! �]�(V (x)) 2 FOT (Cmcc). Hence by De�nition 4.8 and
Remark 4.2, M(Cmcc); V j=FOL [�!�]�(V (x)).

� (Ax5): 8x([3�]�(x)! (R(x; f�(x)) ^ [�]�(f�(x)))).
By the truth tables of ! and ^, it is su�cient to prove that

ifM(Cmcc); V j=FOL [3�]�(V (x)) then

M(Cmcc); V j=FOL R(V (x); f�(V (x)))
21 and

M(Cmcc); V j=FOL [�]�(f�(V (x))).
We assume that M(Cmcc); V j=FOL [3�]�(V (x)). Then, by Def-
inition 4.8 [3�]�(V (x)) 2 FOT (Cmcc) and then V (x) :3� 2 Cmcc .
By Proposition 4.17, f�(V (x)) :� 2 Cmcc andR(V (x); f�(V (x))) 2
Cmcc . So R(V (x); f�(V (x)))2FOT (Cmcc) and [�]�(f�(V (x))) 2
FOT (Cmcc). Hence by De�nition 4.8 and Remark 4.2,

M(Cmcc); V j=FOL R(V (x); f�(V (x))) and M(Cmcc); V j=FOL

[�]�(f�(V (x))).

� (Ax6): 8x(9y(R(x; y)^ [�]�(y))! [3�]�(x)).
We consider the equivalent formula

8x8y(R(x; y)^ [�]�(y))! [3�]�(x)).
By the truth tables of ! and ^, it is su�cient to prove that if
M(Cmcc); V; U j=FOL R(V (x); U(y)) and

M(Cmcc); V; U j=FOL [�]�(U(y)) then

M(Cmcc); V; U j=FOL [3�]�(V (x)).
We assume that M(Cmcc); V; U j=FOL R(V (x); U(y)) and that

M(Cmcc); V; U j=FOL [�]�(U(y)). Then, by De�nition 4.8,

21The de�nition of the interpretation function I(Cmcc) of a maximal interpretationM(Cmcc),
allows us to write f�(V (x)) instead of k f� kI(Cmcc) (V (x))
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R(V (x); U(y)) 2 FOT (Cmcc) and [�]�(U(y)) 2 FOT (Cmcc). Then
R(V (x); U(y)) 2 Cmcc and U(y) : � 2 Cmcc . Then by Proposi-
tion 4.19, V (x) :3� 2 Cmcc . Then [3�]�(V (x)) 2 FOT (Cmcc).
Hence by De�nition 4.8 and Remark 4.2, M(Cmcc); V; U j=FOL

[3�]�(V (x)).

� (Ax7): 8x(R(x; box�(x))! [�]�(box�(x)))! [2�]�(x)).
By the truth table of !, it is su�cient to prove that

if M(Cmcc); V j=FOL :R(V (x); box�(V (x)))22 or

M(Cmcc); V j=FOL [�]�(box�(V (x))), then

M(Cmcc); V j=FOL [2�]�(V (x)).

We assume that eitherM(Cmcc); V j=FOL :R(V (x); box�(V (x)))
or Mm; V j=FOL [�]�(box�(V (x))). Then, by De�nition 4.8, ei-
ther :R(V (x); box�(V (x))) 2 FOT (Cmcc) or [�]

�(box�(V (x))) 2
FOT (Cmcc). Then either :R(V (x); box�(V (x))) 2 Cmcc or
box�(V (x)) :� 2 Cmcc . Then, by Proposition 4.20, V (x) :2� 2
Cmcc . Then [2�]�(V (x)) 2 FOT (Cmcc). Hence by De�nition 4.8
and Remark 4.2, M(Cmcc); V j=FOL [2�]�(V (x)).

� (Ax8): 8x([2�]�(x)! (8y(R(x; y)! [�]�(y))).
We consider the equivalent formula

8x8y(([2�]�(x) ^ (R(x; y))! [�]�(y))
By the truth table of !, it is su�cient to prove that

ifM(Cmcc); V; U j=FOL [2�]�(V (x)) and

M(Cmcc); V; U j=FOL R(V (x); U(y)), then

M(Cmcc); V; U j=FOL [�]�(U(y)).
We assume that M(Cmcc); V; U j=FOL [2�]�(V (x)) and that

M(Cmcc); V; U j=FOL R(V (x); U(y)). Then, by De�nition 4.8,
[2�]�(V (x)) 2 FOT (Cmcc), and R(V (x); U(y)) 2 FOT (Cmcc).
Then V (x) : 2� 2 Cmcc and R(V (x); U(y)) 2 Cmcc . Then,
by Proposition 4.18, U(y) : � 2 Cmcc and then [�]�(U(y)) 2
FOT (Cmcc). Hence by De�nition 4.8 and Remark 4.2,

M(Cmcc); V; U j=FOL [�]�(U(y)).

For each MLDS S we have proved that, given a consistent con�guration C of S,
there exists a maximal consistent con�guration Cmcc such that C � Cmcc . We have

22The de�nition of the interpretation function I(Cmcc) of a maximal interpretationM(Cmcc),
allows us to write box�(V (x)) instead of k box� kI(Cmcc ) (V (x))
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then constructed a maximal interpretationM(Cmcc) and proved that,M(Cmcc) is
a model of the extended algebra A+ associated with S. Therefore we have proved
that the maximal interpretation M(Cmcc) is a semantic structure of S. We are
now going to prove that the semantic structure M(Cmcc) satis�es the maximal
consistent con�guration Cmcc . This last step is called Model Existence Lemma.

Lemma 4.2 (Model Existence Lemma)
Let S = hhLL;LMi;A;Ri be a MLDS, let Cmcc be a maximal consistent con�g-
uration. Then for any � (where � is a declarative unit or an R{literal) of S,
M(Cmcc) j=S � if � 2 Cmcc , and M(Cmcc) 6j=S � if � 62 Cmcc .

Proof:
There are two cases to consider.

1. � is a declarative unit of the form � :�.
If � : � 2 Cmcc , then [�]�(�) 2 FOT (Cmcc). Then by De�-
nition 4.8 M(Cmcc) j=FOL [�]�(�). Hence, by De�nition 3.4,
M(Cmcc) j=S � : �. If � : � 62 Cmcc then [�]�(�) 62 FOT (Cmcc).
Then, by De�nition 4.8 � 62k [�]�kI(Cmcc), and so by Remark 4.2,
M(Cmcc) 6j=FOL [�]�(�). Hence, by De�nition 3.4, M(Cmcc) 6j=S

� :�.

2. � is an R{literal.
Then � can be either equal to R(�i; �j), or equal to :R(�i; �j),
where �i, �j are ground terms of Func(LL;LM ).

� Suppose that � is of the form R(�i; �j). If R(�i; �j) 2
Cmcc , then R(�i; �j) 2 FOT (Cmcc). So by De�nition 4.8
M(Cmcc) j=FOL R(�i; �j). Hence, by De�nition 3.5,
M(Cmcc) j=S R(�i; �j). If R(�i; �j) 62 Cmcc , then R(�i; �j) 62
FOT (Cmcc). Then, by De�nition 4.8M(Cmcc) 6j=FOL R(�i; �j).
Hence, by De�nition 3.5, M(Cmcc) 6j=S R(�i; �j).

� Suppose now that � is of the form :R(�i; �j). If :R(�i; �j) 2
Cmcc then by Proposition 4.12 R(�i; �j) 62 Cmcc .
Then R(�i; �j) 62 FOT (Cmcc). So by De�nition 4.8
M(Cmcc) 6j=FOL R(�i; �j) and thenM(Cmcc) j=FOL :R(�i; �j).
Hence by De�nition 3.5 M(Cmcc) j=S :R(�i; �j).

Corollary 4.1
Let S be one of the normal MLDS's K, T , K4, KB, S4, S5, D, D4 and DB.
Let C be a consistent con�guration of S. Then M(MCC(C)) satis�es C.

Proof:
By De�nition 4.6 and Proposition 4.8, there exists a maximal con-
sistent con�guration MCC(C) such that C � MCC(C). By Theo-
rem 4.3, Proposition 4.27, Proposition 4.29, Proposition 4.30, Propo-
sition 4.26 and De�nition 3.3, the associated maximal interpretation
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M(MCC(C)) is a semantic structure of S. Moreover by Lemma 4.2
and De�nition 3.6,M(MCC(C)) satis�es the con�gurationMCC(C).
HenceM(MCC(C)) satis�es C.

We now prove the completeness theorem.

Theorem 4.4 (Completeness)
Let S = hhLL;LMi;A;Ri be a MLDS. LetA+ be the associated extended algebra.
Let C and C

0

be two con�gurations of S such that the con�guration di�erence
C

0

� C is �nite.

If C j=S C
0

then C `S C
0

.

Proof:
The proof is by contrapositive. Assume that C 6`S C

0

. Then by Theo-
rem 4.1 there exists a � 2 C

0

� C, where � is a declarative unit or an
R{literal, such that C 6`S �. Then by Proposition 4.7, C+[:�] is a con-
sistent con�guration. By Corollary 4.1, Mm = M(MCC(C + [:�]))
satis�es the con�guration C + [:�]. So by De�nition 3.6, Mm j=S C
and Mm j=S :�. There are two cases to consider.

1. � is an R{literal. By De�nition 3.5, Mm j=FOL :�. So by sat-
is�ability condition of �rst{order logic, Mm 6j=FOL �. Then by
De�nition 3.3 and De�nition 3.6, A+; FOT (C) 6j=FOL �. Hence
by De�nition 3.8, C 6j=S C

0

.

2. � is a declarative unit of the form � : �. By De�nition 3.4,
Mm j=FOL FOT (:�), where FOT (:�) = [:�]�(�). SoMm j=FOL

[:�]�(�). Then by Theorem 4.3, Mm j=FOL :[�]
�(�).

SoMm 6j=FOL [�]�(�). Then by De�nition 3.3 and De�nition 3.6,
A+; FOT (C) 6j=FOL �. Hence by De�nition 3.8, C 6j=S C

0

.

Discussion

In this section, we have shown that the MLDS developed in Section 2 is complete
with respect to the semantics de�ned in Section 3. The proof is simpler than
the traditional Henkin style proof of completeness for propositional modal logic.
The latter requires the construction of maximal consistent sets as subordinate
sets (see for example [Hughes-68]). This construction involves �rst de�ning the
`initial world's maximal consistent set', then de�ning its subordinate (or accessi-
ble worlds') maximal consistent sets and repeating the same process for each one
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of them until no more subordinate maximal consistent sets can be constructed.
This process varies for each type of modal logic, since the de�nition of a subor-
dinate set depends on the properties of the accessibility relation (see for example
[Hughes-68]).
In our case, there is no need for subordinate maximal consistent sets. The con-
struction of a maximal consistent con�guration requires only consistently adding
all the declarative units and the R{literals of a MLDL to an initial con�guration.
It does not require a without imposing any distinction between initial maximal
consistent set and subordinate sets. This simpli�cation is due to the fact that
in a declarative unit the association of modal formulae with possible worlds is
explicitly speci�ed. Moreover the natural deduction rules for modal operators
refer explicitly to accessible worlds and to the formulae that hold in accessible
worlds (e.g. 3{Elimination rule).

The construction of a maximal consistent con�guration (De�nition 4.6) is unique
for type of normal modal logic. However no variations in the method of proof
are needed because of di�erent properties of the accessibility relations. Again,
this simpli�cation is due to the modularity of a MLDS. The properties of the
accessibility relation are set aside in a labelling algebra A which a�ects only
the R{literals of a maximal consistent con�guration. The consistency of the
R{literals with respect to A is already guaranteed by the consistency checking
included in the construction of a maximal consistent con�guration.

In addition, it should be noted that the condition of a �nite con�guration di�er-
ence, C

0

� C, introduced in the statement of the completeness theorem, is only a
technical restriction. It depends on the fact that the notion of derivability has
been de�ned on all con�gurations, C `S C

0

(i.e. De�nition 2.3). It is possible to
give this de�nition in a slightly di�erent way to eliminate such condition.

Finally, notice that the MLDS de�ned in Section 2 has the properties of �niteness
and compactness. These properties are proved in Theorem 4.2 and Proposition 4.6
respectively.
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5 Correspondence Theorem

In a MLDS, a modal theory is expressed as a con�guration, i.e. a `structure'
of several `local actual worlds' to which sets of modal formulae are associated.
In this section we substantiate the claim that the notion of a con�guration is
strictly more general then the notion of a theory within traditional modal logic.
We show this by proving the following two results. First, we show that there
exists a correspondence between a MLDS and any sound and complete proof sys-
tem for traditional modal logic, whenever certain restrictions are imposed on the
initial con�guration of a MLDS derivation. Second, we show that this correspon-
dence fails if no restriction is imposed. As far as the �rst result is concerned,
the restriction consists of identifying a particular constant symbol in LL, say W0,
and allowing only initial con�gurations of the form Ci= hDi;Fii where Di=; (i.e.
no R{literal belongs to Ci), and for any ground term �2Mon(LL;LM ), � 6=W0,
Fi(�)=;. With this restriction, the only initial assumptions (if any) are modal
formulae associated with the label W0. We show that this corresponds to a tra-
ditional feature of existing proof systems for modal logic. This is that a theory
is considered to be a collection of formulae holding at only one possible world,
called the initial (or actual) world. More precisely, we show that any declarative
unit of the formW0 : � can be derived from an initial con�guration of the form Ci
if and only if its formula � is derivable, within a sound and complete axiomatic
system for modal logic, from the set of modal formulae that appear in Ci. Before
going into more details about this correspondence theorem, we summarise some
basic notions about axiomatic systems for modal logic, to which we will refer
later in this section.

Background notions
We consider here the de�nition of axiomatic systems for modal logics given in
[Hughes-68]. An axiomatic system for a modal logic S, where S is one of the
normal modal logics K, T ,K4,S4,S5,D, is de�ned by an axiomatic basis and
a derivability relation. Its semantics is the traditional Kripke possible worlds
semantics, in which a model is de�ned as a tuple hW;<; hi, where W is a non{
empty set of possible worlds, < is a binary relation on W (i.e. the accessibility
relation) and h is a valuation function which maps each propositional letter of
the modal language into a subset of W (i.e. the set of possible worlds where the
propositional letter is true). For basic notions of validity, not validity, satis�ability
and not satis�ability within this semantics, the reader is refered to [Hughes-68].

We consider here axiomatic systems which are sound and complete with re-
spect to the Kripke semantics. An axiomatic basis is a set of axiom schemas
(i.e. a selected set of w�s which are valid within the Kripke semantics) and a set
of transformation rules (i.e. a collection of inference rules which generate a new
single formula from a set � of arbitrary formulae together with instantiations of
axiom schemas).
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A proof is de�ned as a �nite sequence of applications of the transformation
rules, from some initial set � of formulae, where each new formula generated
is added to the set �. � is called an assumption set. The length of a proof is
equal to the number of applications of the transformation rules. We say that a
formula � is derivable from an initial assumption set � (possible empty), written
� ` �, if there exists a proof of � from �. If � = ; and ; ` �, then � is
either an instantiation of an axiom schema or a w� derived from applications of
transformation rules using only axiom schemas. In this case, written also as `�,
� is a theorem and, because of the soundness and completeness of the system, it
is semantically valid (i.e. it is true in all the possible worlds of any model of S).
Moreover, if � is an instantiation of an axiom schema and ` �, then its proofs
have length equal to 0. If � 6= ; and there exists a proof of a formula � from �,
then � is said to be derivable from �, written � ` �. Because of the soundness
and completeness of the system, if �`� then � is semantically entailed from the
initial set of assumptions �, written as � j=�.

In the de�nition of semantic entailment of modal logic, initial assumptions
are often distinguished into local assumptions and global assumptions [Fitting-90].
The former are formulae true in some possible words of a given Kripke model (i.e
`assumed truths'), and the latter are formulae true in all the possible worlds of
a given Kripke model (i.e. `logical truths'). However, as will be shown later, this
distinction is not relevant for the discussion which follows.

In the rest of this section we will consider both a MLDS with its semantics,
and an axiomatic system for modal logic with Kripke semantics. It is therefore
important to spe�cy the notation for the axiomatic system in order to avoid any
confusion between the two systems. For a MLDS we still adopt all the notations
introduced so far in the report.

Notation 5.1
We will use the symbol S to denote one of the normal modal logics K,T ,K4,S4,
S5,D. The axiomatic system for a modal logic S is denoted by SAx and its
derivability relation by `SAx . A Kripke model is denoted byMAx and its possible
worlds by mi, for i � 0. Given a modal formula �, we denote withMAx;m j=Ax �
that � is true at the possible world m in the model MAx.

/

We introduce now an axiomatic system for each normal modal logic S, which is
de�ned upon the Hilbert's axiomatisation of propositional calculus [Hilbert-27].
The choice of this system is dictated by the fact that most of its axiom schemas
have a straightforward connection with natural deduction rules and therefore it
will be easier to prove their correspondence with the MLDS rules. We consider
�rst the basic MLDS K and the axiomatic system KAx, and we prove a Simple
Correspondence lemma between K and KAx. Then, since the other MLDS S and
axiomatic systems SAx are given by the systemsK andKAx, extended respectively
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with few extra axioms and axiom schemas, the simple correspondence property
for these systems will be proved as corollaries of the caseK. Finally, we will prove
a Strong Correspondence theorem for any of the normal modal logic S.

De�nition 5.1 (Axiomatic basis for modal logic K)
Let LM be a propositional modal language and let �, � and  be w�s of LM . An
axiomatic basis for a modal logic K in the language LM , written KAx, is de�ned
as the following set of axiom schemas and inference rules.

Axioms about !
�! (� ! �) [A1]
(�! (�! �))! (�! �) [A2]
(�! (� ! ))! (� ! (�! )) [A3]
(� ! )! ((�! �)! (�! )) [A4]

Axioms about ^ and _
� ^ � ! � [A5]
� ^ � ! � [A6]
�! (� ! � ^ �) [A7]
�! � _ � [A8]
� ! � _ � [A9]
((�! ) ^ (� ! ))! ((� _ �)! ) [A10]

Axioms about :
(�! � ^ :�)! :� [A11]
::�! � [A12]

Axioms about 2
2(�! �)! (2�! 2�) [K]
2�! :3:� [A13]
:3:�! 2� [A14]

Axioms about 3
3�! :2:� [A15]
:2:�! 3� [A16]

Inference rules.
�, �! � [MP]

�

`KAx
� [NEC]

2�
2

74



It is important to observe that, in the above de�nition, the antecedents of the
inference rule [MP] can also be arbitrary formulae and in this case the consequence
� will not be a theorem. In contrast, the antecedent of the inference rule [NEC]
can only be a theorem. This is because we should be allowed to infered a formula
2� only under the condition that � is true in all the possible worlds. Obviously,
the formula 2� will also be a theorem.

De�nition 5.2 (Axiomatic basis for modal logic T )
Let LM be a propositional modal language and let KAx be an axiomatic basis for
a modal logic K in the language LM . Let � be a modal formula of LM . Then an
axiomatic basis for a modal logic T in the language LM , written TAx, is the set
of axiom schemas KAx [ f[T ]g, where [T ] is the axiom schema 2�! �.

2

De�nition 5.3 (Axiomatic basis for modal logic K4)
Let LM be a propositional modal language and let KAx be an axiomatic basis for
the modal logic K in the language LM . Let � be a modal formula of LM . Then
an axiomatic basis for a modal logic K4 in the language LM , written K4Ax, is the
set of axiom schemas KAx [ f[4]g, where [4] is the axiom schema 2�! 22�.

2

De�nition 5.4 (Axiomatic basis for modal logic D)
Let LM be a propositional modal language and let KAx be an axiomatic basis for
a modal logic K in the language LM . Let � be a modal formula of LM . Then an
axiomatic basis for a modal logic D in the language LM , written DAx, is the set
of axiom schemas KAx [ f[D]g, where [D] is the axiom schema 2�! 3�.

2

De�nition 5.5 (Axiomatic basis for modal logic S4)
Let LM be a propositional modal language and let KAx be an axiomatic basis
for the modal logic K in the language LM . Let � be a modal formula of LM .
Then an axiomatic basis for a modal logic S4 in the language LM , written S4Ax,
is the set of axiom schemas KAx [ f[T ]; [4]g, where [T ] and [4] are respectively
the axiom schemas 2�! � and 2�! 22�.

2

De�nition 5.6 (Axiomatic basis for modal logic S5)
Let LM be a propositional modal language and let KAx be an axiomatic basis for
the modal logic K in the language LM . Let � be a modal formula of LM . Then
an axiomatic basis for a modal logic S5 in the language LM , written S5Ax, is the
set of axiom schemas KAx [ f[T ]; [4]; [B]g, where [T ], [4] and [B] are respectively
the axiom schemas 2�! �, 2�! 22� and �! 23�.

2
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De�nition 5.7 (Axiomatic system for a modal logic S)
Let LM be a propositional modal language, let SAx be an axiomatic basis for a
modal logic S in the language LM and let `SAx be the derivability relation de�ned
upon SAx. The tuple hSAx;`SAxi is an axiomatic system for S.

2

The axiomatic systems hSAx;`SAx i are sound and complete with respect to their
Kripke semantics [Hughes-68]. In other words, for any modal formula �, `SAx �
if and only if j=Ax �. Analogously, for any set of assumptions f�1; : : : ; �ng and a
formula �, �1; : : : ; �n `SAx � if and only if �1; : : : ; �n j=Ax �, with respect to the
notion of semantic entailment j=Ax given in De�nition 5.8

Lemma 5.1 (Simple Correspondece for modal logic K)
Let K = hhLL;LM i;A;Ri be a MLDS and let hKAx;`KAx

i be the axiomatic
system for modal logic K. Let C;= hD;;F;i, where D;=; and for any ground
term �2Mon(LL;LM ), F;(�)=;. Let � be a formula of LM . Then for all ground
terms �2Mon(LL;LM )

C; `K � : � if and only if `KAx
�

Proof:
`Only if' half:
We prove the contrapositive statement. We show that given a formula
� 2 LM , if 6`KAx

� then there exists a ground term �2Mon(LL;LM )
such that C; 6`K � : �. Since the two derivability relations `KAx

and
`K are both sound and complete with respect to their semantics23, it
is su�cient to prove that if 6j=Ax � then there exists a ground term
�2Mon(LL;LM ) such that C; 6j=K � :�. Suppose that 6j=Ax �. Since
C; is an empty con�guration, it is su�cient to show that there exists
a semantic structure of K (i.e. a model of A+) which satis�es the
declarative unit � ::�. By hypothesis and by Kripke semantic de�ni-
tion of validity, there exists a Kripke model which satis�es the formula
:� (i.e. a countermodel of the formula �). Let MAx = hW;<; hi be
such a model. Thus there exists some possible world m 2 W such that
MAx;m j=Ax :�. We assume now a canonical well{ordering relation
on the setW 24. Let Sat=fmi jmi2W;MAx;mi j=Ax:�g and letm

0

be
the �rst element of Sataccording to W 's canonical well-ordering rela-
tion 25. ThenMAx;m

0

j=Ax:�. Let U =W be a universe of discourse.
Let I be an interpretation function on the language Mon(LL;LM )
de�ned as follows.

23`KAx is complete with respect to the Kripke semantics and `K is complete with respect to
the semantics de�ned in Section 3

24The existence of a well-ordering relation is guarateed by Zermelo'sWell{Ordering Theorem
25The existence of this �rst element is guarateed by the fact that Sat is a non empty subset

of the well{ordered set W

76



� For each constant symbol Wi

k Wi kI= m
0

.

� For each function symbol of the form f�

k f� kI= f� : U �! U such that for each m 2 W

{ If Sat�(m)=f~mj ~m2W;m< ~m and MAx; ~m j=Ax�g is a non{
empty set, then f�(m) = m where m is the �rst element of
Sat�(m) with respect to W 's canoncial well{ordering.

{ Otherwise f�(m) = m0, where m0 is the �rst element of W
according to its assumed canonical well-ordering.

� For each function symbol box�

k box� kI= box� : U �! U such that for each m 2 W

{ If for all ~m2W m 6< ~m, then box�(m) = m

{ If for each mi2Acc(m)=f~mj ~m2W;m< ~mg, MAx;mi j=Ax �,
then box�(m) = m

0

, where m
0

is the �rst element of Acc(m)
with respect to the assumed canonical well-ordering of W .

{ Otherwise box�(m)=m
00

, where m
00

is the �rst element of the
non{empty set Sat:�=f ~mj ~m2W;m< ~m and MAx; ~m j=Ax:�g,
according to W 's canonical well-ordering.

� For each monadic predicate [�]�

k [�]�kI= fm jm2W;MAx;m j=Ax �g

� For the binary predicate R

k RkI = <

We prove now that hU; Ii is a MLDS semantic structure. By Def-
inition 3.3, we need to prove that hU; Ii is a classical model of the
extended algebra A+. We observe that in a MLDS K the labelling
algebra A = fg. Therefore the extended algebra A+ is given only by
the set of axiom schemas (Ax1){(Ax8). The proof is by cases on each
of the axiom schemas (Ax1){(Ax8). Let �,  be two w�s of LM .

� (Ax1): 8x([� ^ ]�(x) � ([�]�(x) ^ []�(x))
Let m2U be an arbitrary element. It is su�cient to prove that
m2k [� ^ ]�kI if and only if m2k [�]� kI and m2k []� kI. This
follows directly from the de�nition of k� ^  kI and the Kripke
semantic de�nition of satis�ability for ^{formulae.

The argument for the axiom schemas (Ax2){(Ax4) is analogous
to (Ax1).

� (Ax5): 8x([3�]�(x)! (R(x; f�(x)) ^ [�]�(f�(x)))).
Let m 2 U be an arbitrary element. It is su�cient to prove
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that if m2k [3�]�kI then the tuple hm; f�(m)i26 2k R kI and
f�(m)2k [�]�kI . We assume that m2k [3�]�kI . By de�nition of
I, MAx;m j=Ax3�. Then, by Kripke semantic de�nition of sat-
is�ability, there exists some possible world ~m 2 W such that
m < ~m and MAx; ~m j=Ax�. Therefore, by de�nition of I, the
set Sat�(m) 6= ; and f�(m) = m, where m is the �rst element
of Sat�(m) according to W 's canonical well{ordering. Then
m<f�(m) and MAx; f�(m) j=Ax�. Hence by de�nition of I, the
tuple hm; f�(m)i2kRkI and f�(m)2k [�]�kI .

� (Ax6): 8x(9y(R(x; y)^ [�]�(y))! [3�]�(x)).
We consider the equivalent formula

8x8y((R(x; y)^ [�]�(y))! [3�]�(x)).
Let m, m

0

be two arbitrary elements of U . It is su�cient to
prove that if the tuple hm;m

0

i 2k R kI and m
0

2k [�]� kI , then
m2k [3�]�kI . We assume that hm;m

0

i 2kR kI and m
0

2k [�]� kI .
By de�nition of I,m<m

0

andMAx;m
0

j=Ax�. Then by Kripke se-
mantic de�nition of satis�ability of the 3 operator, MAx;m j=Ax

3�. Hence by de�nition of I, m2k [3�]�kI .

� (Ax7): 8x((R(x; box�(x))! [�]�(box�(x)))! [2�]�(x)).
Let m be an arbitrary element of U . It is su�cient to prove that
if the tuple hm; box�(m)i27 62k R kI or box�(m) 2k [�]�kI , then
m 2k [2�]�kI . Suppose �rst, that the tuple

hm; box�(m)i 62k R kI . This implies, by de�nition of k box� kI ,
that for all m

0

2W , m 6<m
0

. Then by Kripke semantic de�nition
of satis�ability of the 2 operator,MAx;m j=Ax2�. Hence by def-
inition of I, m 2k [2�]�kI . Suppose now that box�(m)2k [�]�kI .
This yields, by de�nition of k box� kI , to one of the following
two cases. (i) For all m

0

2W , m 6<m
0

. Then by Kripke seman-
tic de�nition of satis�ability of the 2 operator, MAx;m j=Ax2�.
Hence by de�nition of I, m2k [2�]�kI . (ii) For all m

0

2W such
that m<m

0

,MAx;m
0

j=Ax�. Then again by Kripke semantic def-
inition of satis�ability of the 2 operator, MAx;m j=Ax2�. Hence
by de�nition of I, m2k [2�]�kI .

� (Ax8): 8x([2�]�(x)! (8y(R(x; y)! [�]�(y))))
We consider the equivalent formula

8x8y(([2�]�(x) ^ R(x; y))! [�]�(y))
Let m,m

0

be two arbitrary elements of U such that m2k [2�]�kI
and the tuple hm;m

0

i2kRkI. Then by de�nition of I,

26The de�nition of the interpretation function I allows us to write f�(m) instead of kf� kI (m)
27The de�nition of the interpretation function I allows us to write box�(m) instead of

kbox� kI (m)
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MAx;m j=Ax 2� and m<m
0

. By Kripke semantic satis�ability
de�nition of the 2 operator, MAx;m

0

j=Ax�. Hence by de�nition
of I, m

0

2k [�]�kI .

Therefore, the tuple hU; Ii is a model of A+. Thus, since by hypoth-
esis MAx;m

0

j= :� and, by de�nition of I, kWi kI= m
0

, where Wi

are constant symbols of Mon(LL;LM ), there exists a ground term �,
� =Wi for some i � 0, such that I j=FOL [:�]�(�). Hence, by de�ni-
tion of j=K, C; j=K � : :�.

`If' half:
We need to prove that if `KAx

� then C; `K � : �. Suppose that
`KAx

� and that �1; : : : ; �m, where m � 1 and �m = �, is the short-
est proof of � with length l � 0. We prove that C; `K � : � by using
induction on l.

Base Case
The base case is when l = 0. Then � is an instantiation of one of the
axiom schemas of KAx. We prove that C; `K � : � by cases on each
axiom schema of KAx.

[A1 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � :�! (� ! �).

C0hi
C

0

0h[� :�]i (new assumption)
C

00

0 h[� :�]; [� :�]i (new assumption)
C

00

1 h[� :�]; � :�i (C{R)
C

0

1h[� :�]; � :�!�i (! I)
C1h� :�! (�!�)i (! I)

It is easy to see that the other axioms about the ! connective can
be proved within the MLDS K, by a sequence of (! I) and (! E)
rules. The groups of axioms [A5]{[A6] and [A8]{[A9] can be derived
in K using the (^ E) and the (_ I) rules, respectively. Analogously
the axioms [A7] and [A10] can be proved in K by using respectively
the (^ I) and the (_ E) rules. Finally, the axiom [A11] can be derived
in K by using the (: I) rule and the axiom [A12] by using the (: E)
rule.

[K ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � :2(�! �)! (2�!2�).

C0hi
C

0

0h[� :2(�!�)]i (new assumption)
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C
00

0 h[� :2(�!�)]; [� :2�]; i (new assumption)
C

000

0 h[R(�; box�(�))]i (new assumption)
C

000

1 hbox�(�) :�!�i (2 E)
C

000

2 hbox�(�) :�!�; box�(�) :�i (2 E)
C

000

3 hbox�(�) :�i (! E)
C

00

1 h[� :2�]; � :2�i (2 I)
C

0

1h[� :2(�!�)]; � :2�!2�i (! I)
C1h� :2(�!�)! (2�!2�)i (! I)

[A13 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � :2�!:3:�.

C0hi
C

0

0h[� :2�]i (new assumption)
C

00

0 h[� :2�]; [� :3:�]i (new assumption)
C

00

1 hR(�; f�(�)); f�(�) ::�i (3 E)
C

00

2 hf�(�) ::�; f�(�) :�i (2 E)
C

00

3 hf�(�) :?i (^ I)
C

0

1h[� :2�]; � ::3:�i (: I)
C1h� :2�!:3:�i (! I)

[A14 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � ::3:�!2�.

C0hi
C

0

0h[� ::3:�]i (new assumption)
C

00

0 h[� ::3:�]; [R(�; box�(�))]i (new assumption)
C

000

0 h[� ::3:�]; [box�(�) ::�]i (new assumption)
C

000

1 h[� ::3:�]; � :3:�i (3 I)
C

000

2 h� :?i (^ I)
C

00

1 hbox�(�) :::�i (: I)
C

00

2 hbox�(�) :�i (: E)
C

0

1h� :2�i (2 I)
C1h� ::3:�! 2�i (! I)

[A15 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � :3�!:2:�.

C0hi
C

0

0h[� :3�]i (new assumption)
C

00

0 h[� :3�]; [� :2:�]i (new assumption)
C

00

1 hf�(�) :�;R(�; f�(�))i (3 E)
C

00

2 hf�(�) :�; f�(�) ::�i (2 E)
C

00

3 h� :?i (^ I)
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C
0

1h� ::2:�i (: I)
C1h� :3�! :2:�i (! I)

[A16 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We prove that C0 `K � ::2:�!3�.

C0hi
C

0

0h[� ::2:�]i (new assumption)
C

00

0 h[� ::2:�]; [� ::3�]i (new assumption)
C

00

1 h[� ::2:�]; � :2:�i ([A14] and ! E)
C

00

2 h� :?i (^ I)
C

0

1h� :::3�i (: I)
C

0

2h� :3�i (: E)
C1h� ::2:�! 3�i (! I)

Inductive Step
Assume, by inductive hopthesis, that for any formula �

0

such that
`KAx

�
0

and such that there exists a proof �
0

1; : : : ; �
0

m, where �
0

m =
�

0

, of lenght l = n, with n > 0, then for any ground term � 2
Mon(LL;LM ), C; `K � :�

0

.

Suppose now that `KAx
� with a shortest proof �1; : : : ; �m, where

�m = �, of length l = n+ 1, with n � 0. We consider this proof to
be composed of the �rst n{steps (i.e. �1; : : : ; �i, with 1 � i < m) in
which a formula � has been derived (i.e. � 2 f�1; : : : ; �ig) and the last
step in which the formula � is derived. Then `KAx

� accepts a proof of
length strictly less than n+1. Therefore, by the inductive hypothesis,
for an arbitrary ground term � 2Mon(LL;LM), C; `K � : �. Thus,
there exists a con�guration C� such that � : � 2 C� and C; `K C�.
Therefore, by the transitivity property of `K , it is su�cient to prove
that C� `K � :�.

[MP ] Suppose that the last step is given by the application of the
[MP] rule. Then there exist two formulae �k and �k ! � in
the sequence �1; : : : ; �m�1, which are either instantiations of
axiom schemas or derived formulae. In both the two cases,
`KAx

�k and `KAx
�k!� accept proofs of length strictly less than

n + 1. Therefore, by the inductive hypothesis, C; `K � :�k and
C; `K � :�k!�. Since C; � C�, by the monotonicity property of
`K , C� `K � :�k. Therefore there exists a con�guration C

0

such
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that � :�k 2 C
0

and C� `K C
0

. Moreover, since C; � C
0

, by mono-
tonicity, C

0

`K � :�k ! �. Therefore, there exists a con�guration
C

00

such that � :�k ! � 2 C
00

and C
0

`K C
00

. Without loss of gen-
erality we can assume that � :�k 2 C

00

too. Then, C
00

`K � :�.
Hence, by the transitivity property of `K, C� `K � :�.

[Nec ] Suppose that the last step is given by the application of the
[NEC] rule. Then there exists a formula �k in the sequence
�1; : : : ; �m�1 such that `KAx

�k and � = 2�k. Therefore, `KAx
�k

accepts a proof of length less than n + 1 and then by inductive
hypothesis, C; `K � :�k. Since � is any arbitrary ground term of
Mon(LL;LM), it is also the case that C; `K box�k(�) :�k. Since
C; � C�, by the monotonicity property of `K, C� `K box�k(�) :�k.
Analogously, C� + [R(�; box�k (�))] `K box�k(�) : �k. Hence, by
the de�nition of the (2 I) rule of MLDS, C� `K � :2�k.

We show now that the above result holds for the other normal propositional
modal logic S.

Corollary 5.1 (Simple Correspondence for modal logic T )
Let T = hhLL;LM i;A;Ri be a MLDS and let hTAx;`TAxi be an axiomatic system
for modal logic T . Let C; = hD;;F;i, where D; = ; and for any ground term
� 2Mon(LL;LM), F; = ;. Let � be a formula of LM . Then for all ground terms
� 2Mon(LL;LM)

C; `T � : � if and only if `TAx �

Proof:
`Only If' half:
The argument is analogous to the `Only If' half of Lemma 5.1, tak-
ing into account, however, the following observations. Firstly, we
consider in this case a Kripke model MAx = hW;<; hi whose ac-
cessibility relation < is reexive. This means that for any possible
world m 2 W , m < m. Secondly, since in the MLDS T the la-
belling algebra A = f8xR(x; x)g, and therefore the extended algebra
A+ = A [ f(Ax1); : : : ; (Ax8)g, it is also necessary to prove, as ex-
tra case, that the MLDS semantic structure hU; Ii satis�es the axiom
8xR(x; x). This follows directly by the de�nition of k R kI and the
reexivity property of the accessibility relation <.

`If' half:
The proof is similar to the `If' half of Lemma 5.1. However, in the
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base case it is also necessary to consider an extra case for the axiom
schema [T ] whose proof is given below.

[T ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We show that C0 `T � :2�! �.

C0hi
C

0

0h[� :2�]i (new assumption)
C

0

1h� :2�;R(�; �)i (R{A)
C

0

2h� :�i (2 E)
C1h� :2�! �i (! I)

Corollary 5.2 (Simple Correspondence for modal logic D)
Let D = hhLL;LM i;A;Ri be a MLDS and let hDAx;`DAx

i be an axiomatic
system for modal logic D. Let C; = hD;;F;i, where D; = ; and for any ground
term � 2Mon(LL;LM ), F; = ;. Let � be a formula of LM . Then for all ground
terms � 2Mon(LL;LM )

C; `D � : � if and only if `DAx
�

Proof:
`Only If' half:
The argument is analogous to the `Only If' half of Lemma 5.1, tak-
ing into account, however, the following observations. Firstly, we
consider in this case a Kripke model MAx = hW;<; hi whose acces-
sibility relation < respects the seriality property. This means that
for any possible world m 2 W , there exists a possible world m

0

such that m < m
0

. Secondly, since in the MLDS D the labelling
algebra A = f8xR(x; succ(x))g, and therefore the extended algebra
A+ = A [ f(Ax1); : : : ; (Ax8)g, it is also necessary to prove, as ex-
tra case, that the MLDS semantic structure hU; Ii satis�es the axiom
8xR(x; succ(x)). This follows directly by the de�nition of kRkI and
the seriality property of the accessibility relation <.

`If' half:
The proof is similar to the `If' half of Lemma 5.1. However, in the
base case it is also necessary to consider an extra case for the axiom
schema [D] whose proof is given below.

[D ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We show that C0 `D � :2�! 3�.
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C0hi
C

0

0h[� :2�]i (new assumption)
C

0

1h� :2�;R(�; succ(�))i (R{A)
C

0

2hsucc(�) :�i (2 E)
C

0

3h� :3�i (3 I)
C1h� :2�! 3�i (! I)

Corollary 5.3 (Simple Correspondence for modal logic K4)
Let K4 = hhLL;LM i;A;Ri be a MLDS and let hK4Ax;`K4Axi be an axiomatic
system for modal logic K4. Let C; = hD;;F;i, where D; = ; and for any ground
term � 2Mon(LL;LM ), F; = ;. Let � be a formula of LM . Then for all ground
terms � 2Mon(LL;LM )

C; `K4 � : � if and only if `K4Ax �

Proof:
`Only If' half:
The argument is analogous to the `Only If' half of Lemma 5.1, tak-
ing into account, however, the following observations. Firstly, we
consider in this case a Kripke model MAx = hW;<; hi whose accessi-
bility relation < is transitive. This means that for any three possible
worlds m1;m2;m3 2 W , if m1 < m2 and m2 < m3 then m1 < m3.
Secondly, since in the MLDS K4 the labelling algebra is given by
A = f8x; y; z(R(x; y) ^ R(y; z)) ! R(x; z)g, and therefore the ex-
tended algebra A+ = A [ f(Ax1); : : : ; (Ax8)g, it is also necessary to
prove, as extra case, that the MLDS semantic structure hU; Ii satis�es
the axiom 8x; y; z(R(x; y)^ R(y; z))!R(x; z). This follows directly
by the de�nition of kRkI and the transitivity property of the acces-
sibility relation <.

`If' half:
The proof is similar to the `If' half of Lemma 5.1. However, in the
base case it is also necessary to consider an extra case for the axiom
schema [4] whose proof is given below.

[4 ] Let � be an arbitrary ground term of Mon(LL;LM ) and let C0 =
C;. We show that C0 `T � :2�!22�.

C0hi
C

0

0h[� :2�]i (new assumption)
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C
00

0 h[R(�; box2�(�))]i (new assumption)
C

000

0 h[R(box2�(�); box�(box2�(�)))]i (new assumption)
C

000

1 hR(�; box�(box2�(�)))i (R{A)
C

000

2 hbox�(box2�(�))) :�i (2 E)
C

00

1 hbox2�(�)) :2�i (2 I)
C

0

1h� :22�i (2 I)
C1h� :2�!22�i (! I)

Corollary 5.4 (Simple Correspondence for modal logic S4)
Let S4 = hhLL;LM i;A;Ri be a MLDS and let hS4Ax;`S4Axi be an axiomatic
system for modal logic S4. Let C; = hD;;F;i, where D; = ; and for any ground
term � 2Mon(LL;LM ), F; = ;. Let � be a formula of LM . Then for all ground
terms � 2Mon(LL;LM )

C; `S4 � : � if and only if `S4Ax �

Proof:
We observe that the modal logic S4 is equivalent to the union of
modal logics K4 and T . Therefore, the proof follows directly from
Lemma 5.1, Corollary 5.1 and Corollary 5.3.

Corollary 5.5 (Simple Correspondence for modal logic S5)
Let S5 = hhLL;LM i;A;Ri be a MLDS and let hS5Ax;`S5Axi be an axiomatic
system for modal logic S5. Let C; = hD;;F;i, where D; = ; and for any ground
term � 2Mon(LL;LM ), F; = ;. Let � be a formula of LM . Then for all ground
terms � 2Mon(LL;LM )

C; `S5 � : � if and only if `S5Ax �

Proof:
`Only If' half:
The argument is analogous to the `Only If' half of Lemma 5.1, tak-
ing into account, however, the following observations. Firstly, we
consider in this case a Kripke model MAx = hW;<; hi whose ac-
cessibility relation < is riexive, transitive and symmetric. This
means that the extended algebra A+ of the MLDS S5 is given by
the extended algebra A+ of a MLDS S4 together with the axiom
8x; y(R(x; y)!R(y; x)). Then, given the Corollary 5.4, it is still nec-
essary to prove that the MLDS S5 semantic structure hU; Ii satis�es
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the axiom 8x; y(R(x; y)!R(y; x)). This follows directly from the def-
inition of kR kI and from the simmetry property of the accessibility
relation <.

`If' half:
The proof is similar to the `If' half of Lemma 5.1. However, it is also
necessary in the base case to consider an extra case for the axiom
schema [B], given below, as the cases for the axiom schemas [T ] and
[4] are already guarateed by Corollary 5.4.

[B ] Let � be an arbitrary ground term of Mon(LL;LM ) and let
C0 = C;. We show that C0 `T � :�!23�.

C0hi
C

0

0h[� :�]i (new assumption)
C

00

0 h[R(�; box3�(�))]i (new assumption)
C

00

1 hR(box3�(�); �)i (R{A)
C

00

2 hbox3�(�) :3�i (3 I)
C

0

1h� :23�i (2 I)
C1h� : � :!23�i (! I)

Corollary 5.6
Let S = hhLL;LM i;A;Ri be a MLDS and let hSAx;`SAxi be the axiomatic system
for modal logic S. Let C;= hD;;F;i, where D;=; and for any ground term
�2Mon(LL;LM ), F;(�)=;. Let � be a formula of LM . Then for all ground
term �2Mon(LL;LM)

C; j=S � : � if and only if j=Ax �

Proof:
It follows directely from Lemma 5.1, Corollaries 5.1- 5.5, and from
the respective soundness and completeness of `S and `SAx

Corollary 5.6 shows how the Kripke semantics de�nition of validity of a modal
formula � (i.e. j=Ax �) can be reformulated in terms of MLDS semantics. Given
a modal logic S and its Kripke semantics, a formula � is valid if and only if
it holds in all the possible worlds of each model of S. Within a MLDS, this
notion is equivalent to the condition that all the declarative units � :�, obtained
from � by taking each ground term � of Mon(LL;LM ) are true in all the MLDS
semantic structures (i.e in all the models of A+). This result conferms even more
the intuition, pointed out in Section 1, that labels can be regarded as possible
worlds.

86



Moreover, in the `Only If' part of Lemma 5.1 we have also shown how, given a
Kripke modelMAx, it is possible to construct a MLDS semantic structure, hU; Ii
(e.g. a corresponding MLDS model) such that for any modal formula satis�ed in
MAx, there exists a corresponding declarative unit satis�ed in hU; Ii. Therefore,
hU; Ii preserves the set of satis�ed modal formulae. These results yield to the
following formulation in terms of MLDS semantics of Kripke semantics notions
of satis�ability and validity in a Kripke model.

A formula � is valid in a Kripke model MAx if and only if the declarative
unit � : � is satis�ed in the corresponding MLDS model for all the labels � of
Mon(LL;LM ). Analogously, a formula � is satis�ed in a Kripke model MAx, if
and only if there exists a declarative unit � :�, for some label � 2Mon(LL;LM),
which is satis�ed in the corresponding MLDS model.
We extend now the above results to the notion of semantic entailment. We
consider, in particular, the following de�nition of Kripke semantic entailment
[Hughes-68].

De�nition 5.8 (Entailment in Kripke semantics)
Let LM be a propositional modal language, let hSAx;`SAxi be an axiomatic system
for a modal logic S, let hW;<i be a Kripke frame for S and let C be the associated
class of Kripke models hW;<; hii. Let �1; : : : ; �n; � be modal formulae in the
language LM . Then, �1; : : : ; �n semantically entail �, written �1; : : : ; �n j=Ax �,
if for each Kripke model hW;<; hi belonging to C, � is true in all the possible
worlds where �1; : : : ; �n are true.

2

We observe that in [Fitting-90] the notion of semantic entailment is more general.
It is de�ned in terms of global assumptions and local assumptions as follows. A
formula � is said to be entailed from a set of global assumptions G and a set
of local assumptions U if and only if for all the models where the formulae of
G are valid, � is true in all the possible worlds where all the formulae of U
are true. However, we are only interested in global assumptions given by the
instantiations of the axiom schemas of a modal logic S. In this case given a
modal logic S, the class of models validating G is the entire class of models which
characterizes S. Under this assumption, Fitting's notion of semantic entailment
is equivalent to the one given above, where the speci�cation of G has been omitted
for simplicity and where �1; : : : ; �n are local assumptions. We also recall that each
normal modal logic S satis�es the deduction theorem for local assumptions (see
Local Deduction Theorem in [Fitting-90]). We will use this result in the following
theorem.

Theorem 5.1 (Strong Correspondence for a normal modal logic S)
Let N 2 fK;T;K4;KB; S4; S5;D;D4;DBg be a normal propositional modal
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logic. Let hNAx;`NAxi be an axiomatic system for N which is sound and complete
with respect to Kripke semantics. Let N{MLDS be the corresponding MLDS.
Let 	 = f�1; : : : ; �ng (n � 0) be an arbitrary set of w�s of N , and let C be
the con�guration of N{MLDS consisting only of all declarative units of the form
W0 :�i, �i 2 	, and containing no R{literals. Then for any formula  of N ,

C `NW0 :  if and only if 	`NAx 

Proof:
The proof is by induction on n.

Base Case
The base case is when n = 0. Then the theorem holds by Lemma 5.1
and Corollaries 5.1{ 5.5.

Inductive Step
Assume, by inductive hypothesis, that for any con�guration
~ChW0 :�

0

1; : : : ;Wn :�
0

mi, with 0 � m, and ~	 = f�
0

1; : : : ; �
0

mg, then for
any formula 

0

, ~C `N W0 :
0

if and only if ~	 `NAx 
0

.

Suppose that n = m + 1, so n > 0. Let C
0

be the con�guration
C

0

hW0 :�1; : : : ;W0 :�n�1i and let 	
0

be the set f�1; : : : ; �n�1g. We
rewrite C = C

0

[fW0 :�ng and 	 = 	
0

[f�ng. Since the two derivabil-
ity relations `N and `NAx are both sound and complete with respect
to their semantics, it is su�cient to prove that
C

0

[fW0 :�ng j=NW0 : if and only if 	
0

[f�ng j=Ax. We assume that
C

0

[ fW0 :�ng j=N W0 : . By de�nition of j=N , this is equivalent to
A+; FOT (C

0

); [�n]�(W0) j=FOL []�(W0). By the deduction theorem of
�rst{order logic, this is equivalent to A+; FOT (C

0

) j=FOL [�n]�(W0)!
[]�(W0). By axiom schema (Ax4) of A+, we can equivalently write
A+; FOT (C

0

) j=FOL [�n!]�(W0). By de�nition of j=N , this is equiv-
alent to C

0

j=NW0 :�n!. By the inductive hypothesis, this is if and
only if 	

0

j=Ax�n! which is equivalent to 	
0

[ f�ng j=Ax  by the
local deduction theorem of modal logic N .

The above theorem shows an equivalence between a MLDS S and an axiomatic
system SAx, given the restriction on the MLDS that the only initial assumptions
(if any) are modal formulae associated with a particular constant symbol W0.
However, a MLDS allows also for a more general form of initial assumptions {
declarative units in the initial con�guration may have di�erent labels. Moreover,
information may be explicitly given about the accessibility relation. In an ax-
iomatic system for modal logic, local assumptions are formulae that must hold in
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the same possible world. Therefore, it is not possible in general to represent an
initial con�guration of a MLDS in terms of a set of initial assumptions within an
axiomatic system. Hence, the notion of a MLDS is strictly more general than the
conventional notion of a normal propositional modal logic with Kripke semantics.
We expect the greater expressivity MLDS's provide to be an advantage in several
areas of application.

6 Related work

As pointed out in the introduction of this report, a MLDS is an `hybrid' formal-
ization of modal logic, based on implicit and explicit formalisms. Therefore, it is
interesting to compare our natural deduction rules with other proof systems for
propositional modal logic that belong to these two categories. Before going into
detailed comparisons, it is important to underline a major di�erence between a
MLDS and proof systems of the �rst category. A MLDS allows us to consider
more then one local actual world within a modal theory (e.g. a con�guration).
This feature will also be incorporated in predicate MLDS. In contrast, proof sys-
tems of the �rst category refer to a modal theory as a set of formulae holding at
only one possible world, `the initial world'. In this respect, a MLDS is more gen-
eral then any of these systems. Therefore, in the following comparisons we will
restrict our attention to initial con�gurations containing only one label, say W0.
W0, is interpreted as the initial world. Under this restriction, we will assume that
a MLDS corresponds to a traditional formalization of modal logic. We intend to
prove this correspondence formally in future work.

6.1 Fitting's natural deduction system

Fitting's natural deduction system [Fitting-83] is the main reference for proof
theory in natural deduction for modal logic. It is based on the implicit formal-
ization: a modal language is de�ned as extention of a classical language and its
semantics is a Kripke possible worlds semantics. Considering the propositional
case, the inference rules for classical connectives are de�ned in the same style
as [Prawitz-65]. They include introduction and elimination rules for each of the
logical connectives. Some of these rely on the notion of `de�ning and closing new
boxes' to respectively introduce and discharge new assumptions in a proof. This
mechanism requires extra rules, called reiteration rules which specify how formu-
lae can be `reiterated' from the outside to the inside of a box. The proof within
a `box' is considered to be a subordinate derivation in the sense that it provides
a condition for the overlying inference rule to be applied. The same principle is
applied to the inference rules for modal operators, following the idea of Fitch's
strict subordinate derivations [Fitch-52]. Fitting de�nes a particular type of box
called a strict box. The inference rules for modal operators are de�ned as rules for
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`creating' and `closing' strict boxes28. A strict box can represent either a `general
accessible world derivation' or a `particular accessible world derivation'. However,
only one of these interpretations can be used within one proof. In the �rst case
the natural deduction system is said to be in A{style and in the second case in
I{style. Finally, extra rules for reiterating formulae from the outside to the inside
of a strict box are de�ned. These are called strict iteration rules, and are based
on some `special rules' which formalize the properties of the accessibility relation
for the di�erent modal logics.

As far as classical connectives are concerned, in a MLDS the notion of `boxes' is
replaced by explicit de�nitions of subordinate derivations within the particular
inference rules that require them as conditions (e.g. !{Elimination). In this
way, no reiteration rules are needed. Concerning modal operators, a MLDS in-
cludes introduction and elimination rules for both 2 and 3. These rules allow
us to refer to accessible worlds explicitly and to infer formulae associated with
them within the same proof, without introducing strict subordinate derivations
(e.g 3{Elimination rule). This is due to the de�nition of a declarative unit which
explicitly associates labels with modal formulae. Therefore Fitting's strict iter-
ation rules are also unnecessary in a MLDS. In addition, the distiction between
I-style and A-style proofs is eliminated, as are the special rules for the di�erent
modal logics. In fact, the latter are replaced by the the single R{assertion rule,
which allows us to infer R{literals (i.e. relations between labels) according to the
particular labelling algebra A29. In this way, the application of the same modal
rules, together with the inferred R{literals, leads to the same results that are
given by several special rules in the Fitting's system.

A comparison with the predicate case will be part of future work. We can already
point out that the existing natural deduction proof systems for predicate modal
logic do not cover the case of varying domains, which will be the main feature of
a predicate MLDS. Fitting has presented only a tableaux proof system for this
general semantics of predicate modal logics, and has conjectured [Fitting-83] that
similar techniques could be applied in a natural deduction style proof system. We
believe that the predicate extention of the MLDS presented in this report will
add substance to this conjecture.

6.2 Fitting's pre�xed tableaux system

As said in the above section, a particular tableaux proof system has been devel-
oped in [Fitting-83], both for the propositional and predicate case, in order to
deal with a varying domain semantics. This work and the MLDS paradigm seem

28They are not expressed as introduction and elimination rules
29The labelling algebra depends on the particular modal logic
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to have in common the idea of adding explicit declarations of possible worlds
within a proof. Therefore, despite their di�erent methodologies (tableaux and
natural deduction), it is interesting to compare them. We consider in this report
only the propositional case. Future comparisons between a predicate pre�xed
tableaux system and a predicate MLDS will provide a more complete picture of
their respective advantages and disadvantages.

Fitting's pre�xed tableaux system is de�ned upon an expanded modal language
in which modal formulae are pre�xed. A pre�x is a `name' for possible worlds
and it facilitates the construction of alternate tableaux at the occurrences of
modal operators. These pre�xes are de�ned as sequences of characters and are
somewhat analogous to labels. A relation `accessible from' on pre�xes is also
de�ned according to the type of modal logic. In the simple case of a modal logic
K, a pre�x is accessible from another if the latter is `included' in the former.
For example the pre�x 1; 1 is accessible from the pre�x 1. The tableau rules
for modal operators de�ne the accessible pre�xes and the formulae associated
with them. Because of the di�erent de�nitions of the relation `accessible from'
on pre�xes, side conditions are speci�ed next to each modal rule. These side
conditions de�ne the type of infered pre�xes according to the particular modal
logic. The disadvantage of Fitting's pre�xed tableaux system is that it does
not provide a logical way of handling pre�xes and relations between them, even
though it allows for syntactical representation of possible worlds. In contrast,
a MLDS allows for the logical speci�cation of possible worlds and accessibility
relations between them. This simpli�es the natural deduction rules for modal
operators. They no longer require side conditions and they can be applied in a
consistent way in any proof, independently of the particular modal logic.

6.3 Remarks on [Benevides-90]

It is also interesting to compare the work developed in this report with Benev-
ides's proof [Benevides-90]. Both are concerned with extentional techniques to
deal with modal operators (i.e. explicit representation of possible worlds) within
a natural deduction paradigm. However the motivation behind Benevides's work
seems somewhat di�erent from that here. We have shown, with a MLDS, that it
is possible to express possible worlds and accessibility relations syntactically in a
separate theory set aside from modal logic. In this way, the intentional feature of
modal operators30 is explicitly represented. As a consequence, it is possible in a
MLDS to de�ne introduction and elimination natural deduction rules for modal
operators in the same way as classical connectives, without stating any particu-
lar side conditions. Therefore, within a MLDS theory (i.e. con�guration), modal

30For example, given a formula of the form 3A, its interpretation is intentional in the sense
that it relays on the existence of an accessible world where A holds.
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operators and classical connectives are considered to be object level operators.

In contrast, Benevides provides a constructive natural deduction system for propo-
sitional modal logic in which modal operators are presented as `higher order'
connectives, fundamently di�erent from `object level' classical connectives. The
term `constructive' reects the intuition which is behind Benevides's work. A
modal system can be considered as a set of sets of formulae where one is the `ini-
tial set' and the others are sets generated from the initial one as `accessible sets
of formulae', by the application of modal rules31. Each set si has an associated
assertion sign, `si . ``si A' can be read as `the proposition A is asserted to be
in the set si'. Introduction and elimination rules are de�ned only for the modal
operator 2. However a more extended formalization of this system has been pre-
sented subsequently in [Benevides-91] where introduction and elimination rules
for 3 operator are also included. The `indexes' for the di�erent sets of formulae
are constructed using a function symbol f2 (and also a function symbol f3 in
[Benevides-91]) applied repeatedly to the singleton set fs0g (initial world). The
inference rules for the 2 operator are de�ned on di�erent `assertion signs'. For
example, a 2{Elimination rule is as follows.

`s 2A
`f2(s) A

This proof system includes an extra set of inference rules for each type of modal
logic. From this point of view, a MLDS is more general. The syntactical rep-
resentation of the accessibility relation between labels and the de�nition of the
R{Assertion rule make a MLDS system suitable for any type of modal logic. It
does not require any further addition of natural deduction rules.

6.4 Remarks on [Ohlbach-91]

So far, we have compared the work developed in this report with proof systems
based on implicit formalizations of modal logic. However, given the `hybrid' fea-
ture of our work, it is also interesting to investigate the relationship between
a MLDS and proof systems based on translation methods. A �rst translation
method from modal logic to classical logic was de�ned by Moore [Moore-80]. Ac-
cording to this translation a formula 2P is translated into 8x(R(0; x)! P

0

(x)),
where 0 represents the `initial world' and P

0

is identical to P but with an addi-
tional `world context argument'. Ohlbach [Ohlbach-91] de�ned a similar trans-
lation method called relational translation for both propositional and predicate
modal logic. Ohlbach's main concern, in both this work and other work based on
di�erent translation methods, is to provide an e�cient automated theorem prover

31The higher level of modal operators is represented by the fact that their rules de�ne how
to generate `accessible sets of formulae'
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for modal logic. The idea is to develop a general framework for translating logical
formulae from one logic into another for which e�cient theorem provers already
exist. In this way, modal formulae can be translated into predicate logic formu-
lae in order to exploit the well established and e�cient classical predicate logic
theorem provers (e.g. those based on resolution). In a relational translation the
modal logic's possible worlds structure is explicitly formalized by introducing a
distinguished binary predicate symbol, R, to represent the accessibility relation.
For example, formulae of the form 2P are translated into 8x(R(0; x)! P

0

(x))
and formulae of the form 3P are translated into 9x(R(0; x)^P

0

(0)), in the case
where P is a propositional letter. For more complex formulae, the translation
function is applied recursively. Therefore, given a modal formula with n modal
operators, its �rst order translation de�nes a �rst order formula with at least 2n

literals. Hence an exponential number of �rst order clauses is generated. This is
one of the main disadvantages of this type of translation method.

In a MLDS, the idea of formalizing the accessibility relation explicitly and in-
troducing possible world arguments is also used, althought the possible world
argument is represented as an associated label instead of a proper argument.
The main di�erence is that a MLDS also includes a modal logic syntax together
with a �rst order syntax for the accessibility relation. In this way, a complete
translation into �rst order logic is not required before applying a proof system.
This seems to be a promising solution to the ine�ciency problem of Ohlbach's
relational translation. Consider the following example to clarify this point, which
is of a modal theory composed of the following two formulae, in a modal logic K.

332[(2p ^ q) ^ s] (a)
2:32[(2p ^ q) ^ s] (b)

The two formulae are inconsistent, so that it is possible to derive falsity, ?. The
derivation of ?, in the case of a MLDS, is very straight{forward, and it is given
by the following proof. For simplisity, the two formulae are rewritten as (a) 3�
and (b) 2:�, where � is equal to 32[(2p ^ q) ^ s].

ChW0 :3�;W0 :2:�i 3{E
C1hf�(W0) :�;R(W0; f�(W0));2:�i 2{E
C2hf�(W0) :�; f�(W0) ::�i ^{I
C3hf�(W0) :?i

In Ohlbach's �rst order translation the proof of ? is much more complex. The
two formulae are �rst translated into �rst order clauses and then an empty clause
is proved from the resulting �rst order theory. We only show the translation into
clauses here. This gives an idea of the dimension and complexity of the proof.
The formulae (a) and (b) generate respectively the following sets of clauses:
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(a) R(0; a)
R(a; b)
:R(b; x) _ S(x)
:R(b; x) _Q(x)
:R(b; x) _ :R(x; y) _ P (y)

(b) :R(0; x) _ :R(x; y) _R(y; f(x; y))
:R(0; x) _ :R(x; y):S(f(x; y))
:R(0; x) _ :R(x; y) _ :Q(f(x; y))
:R(0; x) _ :R(x; y) _R(y; g(x; y))
:R(0; x) _ :R(x; y) _ :P (g(x; y))

Hence, even for a small modal theory, the translation is complex. The disadvan-
tage is that each resolution on a predicate di�erent from R has to be accompanied
by a chain of resolutions with the R{literals.

Ohlbach has himself pointed out the ine�ciency of the relational translation and
has de�ned [Ohlbach-91] an optimaized translation method of modal logic into
classical logic. It is mainly based on a functional de�nition of the accessibility
relation. But this method still has the disadvantage of requiring a special uni-
�cation algorithm whose complexity is still exponential. We will not compare a
MLDS with this second translation method here since the comparison would be
less direct.

7 Future work

For the purpose of the PhD thesis, this work will be extended as follows.

7.1 A predicate MLDS

We have pointed out in the introduction of this report that a main motivation
for a MLDS is the possibility of de�ning a sound and complete proof system for
predicate modal logic with respect to a semantics of varying domains. So the
extention of the current work to the predicate case will be an essential part of the
future work. In a varying domain semantics (see [Fitting-83]), di�erent universes
of discourse are associated with di�erent possible worlds, even though the possi-
ble worlds might be in relation to each other. Therefore, a corresponding proof
system needs a way of expressing the existence of di�erent elements in di�erent
possible worlds. The explicit declarations of possible worlds (i.e. labels) in a
MLDS will facilitate the de�nition of such proof systems. Before describing the
way in which a MLDS might be extended to the predicate case, we present an ex-
ample of an inference rule for quanti�ers and we illustrate how a predicate MLDS
might be able to distinguish between formulae like 9x3A(x) and 39xA(x) proof
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theoretically.

A simple 9{Elimination rule for a MLDS might be as follows:

Ch� :9xA(x)i
Ch� :A(c(�)); � :c(�)i

If we apply this rule to the two formulae (i) 39xA(x) and (ii) 9x3A(x), we can
generate di�erent proofs, as it is shown below.

(i)

Ch� :39xA(x)i 3-E
C

0

hf9xA(x)(�) :9xA(x); R(�; f9xA(x)(�))i 9{E
C

00

hf9xA(x)(�) :A(c(f9xA(x)(�))); f9xA(x)(�) :c(f9xA(x)(�))i

(ii)

Ch� :9x3A(x)i 9-E
C

0

h� :3A(c(�)); � :c(�)i 3{E
C

00

hfA(c(�))(�) :A(c(�)); R(�; fA(c(�))(�))i

The main idea is to de�ne a predicate modal language LM in which constant
symbols are replaced by unary function symbols with labels as their arguments.
In this way, we could express the link between constants and labels (or possible
worlds). As shown in the above examples, an 9{Elimination rule will introduce
`new unary function symbols' instead of the traditional `skolem constants' (see
[Fitting-83]) and n+1{arity function symbols, where one argument is given by the
label, instead of n{arity `skolem functions' (see [Fitting-83]), in the case where
the existential quanti�er depends on n universally quanti�ed variable. As a conse-
quence, the application of 9{Elimination rule will generate di�erent instantiation
for an existential variable according to the label (or `possible world') in which it
is applied.

This idea has been informally suggested by Gabbay [Gabbay-92a].

A MLDS for predicate case will include elimination and introduction rules for
existential and universal quanti�ers as well as some additional rules, called visa
rules [Gabbay-92a], which will specify the conditions under which `constant sym-
bols' can be transfered from one label to another. Via these rules, it will be
possible to represent in a MLDS modal logics based either on `constant domains'
or on `increasing domains', so that comparisons with other existing proof systems
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will be possible.

In the light of what has been said above, we list the steps that we will be following
in order to extend a MLDS to the predicate case.

Step 1
The language LM will be de�ned as a predicate modal language, where unary
function symbols will be introduced instead of constant symbols. Moreover it
will `share' the set of ground terms of the labelling language LL32

Step 2
Introduction and elimination rules for existential and universal quanti�ers will
be de�ned, in the same style as the natural deduction rules presented in Section
2 of this report. Two extra rules (Visa rules) might be introduced, to deal with
the association of terms of LM with labels. They might possibly be de�ned as
follows.

Ch�1 :c(�
0

); R(�1; �2)i
C

0

h�2 :c(�
0

)i
Ch�2 :c(�

0

); R(�1; �2)i
C

0

h�1 :c(�
0

)i

Step 3
The extended labelling languageMon(LL;LM) will be de�ned as two{sorted �rst
order logic, one sort for the ground terms of the language LL and the other for
the ground terms of LM . Extra predicates will be included in order to express
the association between terms of LM and labels of LL. To do so, we will follow
Ohlbach's idea [Ohlbach-91] of using a two{sorted predicate Exist. Particu-
lar attention will be given to the relation between the monadic predicates of
Mon(LL;LM ) and the arguments of their associated modal formulae. Finally,
new axiom schemas will be introduced in the extended algebra A+ in order to
formalize the semantic properties of varying domains. A+ will be a two{sorted
�rst order theory.

Step 4
A new semantic structure will be de�ned for the two{sorted extended algebra A+.

Step 5
The soundness theorem will be proved, following the same style presented in Sec-
tion 3, with respect to the new extended algebra and the new de�nition of a
semantic structure.

32This is due to the fact that the unary function symbols of LM will have labels of the
language LL, as arguments.
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Step 6
The completeness theorem will also be proved following the method de�ned in
Section 4 of this report. Modi�cations will be made on some of the main de�-
nitions and theorems, such as the construction of a maximal consistent con�gu-
ration and the construction of a maximal interpretation. Further properties of a
maximal consistent con�guration with respect to quanti�ers will be proved.

Step 7
We will also specify the conditions under which a predicate MLDS will correspond
to a constant domain modal logic. We will show that the typical `Barcan formula'
8x2A(x)! 28xA(x) [Hughes-68] could then be proved in a MLDS. Analogously
we will de�ne the conditions under which a predicate MLDS will correspond to an
increasing domain modal logic and we will show, in this case, that the `converse
Barcan formula' 28xA(x)! 8x2A(x) can also be proved.

7.2 Applications

The work presented in this report and its extention to the predicate case suggest
many other avenues of investigation. In fact, it would be interesting to make ap-
plicative case studies, in which states and states transitions are basic phenomena,
within a MLDS framework.

The correspondence between MLDS and a traditional formalization of modal
logic will guarantee that the existing modal logic extentions such as belief logic,
action logic can also be formalized within the framework of a MLDS. Therefore
it would be interesting to investigate, for example, the formalization of systems
based on the treatment of knowledge and belief as a MLDS. In fact, for these
type of systems the idea is important that besides the real world, other worlds
or `frames of mind' have to be taken into account where di�erent facts may hold.
An adequate MLDS formalization for such systems will require the introduction
of di�erent sorts of accessibility relations and the investigation of how they might
interact each other. This might lead to multi{modal labelled deductive systems.

However, we would be particulally interested in de�ning problems or applications
that can be formalized via the propositional MLDS as it has been de�ned in this
report, in which the use of con�gurations as `structures of possible worlds' could
directly be exploited. Any comments or suggestions would be greatly appreciated!
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