
Labelled Natural Deduction for Substructural Logics

Krysia Broda∗, Marcelo Finger†, and Alessandra Russo∗

email: {kb,ar3}@doc.ic.ac.uk, mfinger@ime.usp.br‡

November 1997

Technical report DoC. 97/11

Abstract

In this paper a uniform methodology to perform Natural Deduction over the family
of linear, relevance and intuitionistic logics is proposed. The methodology follows the
Labelled Deductive Systems (LDS) discipline, where the deductive process manipulates
declarative units – formulas labelled according to a labelling algebra. In the system de-
scribed here, labels are either ground terms or variables of a given labelling language
and inference rules manipulate formulas and labels simultaneously, generating (whenever
necessary) constraints on the labels used in the rules. A set of natural deduction style
inference rules is given, and the notion of a derivation is defined which associates a la-
belled natural deduction style “structural derivation” with a set of generated constraints.
Algorithmic procedures, based on a technique called resource abduction, are defined to
solve the constraints generated within a derivation, and their termination conditions dis-
cussed. A natural deduction derivation is correct with respect to a given substructural
logic, if, under the condition that the algorithmic procedures terminate, the associated set
of constraints is satisfied with respect to the underlying labelling algebra. This is shown
by proving that the natural deduction system is sound and complete with respect to the
LKE tableaux system [DG94].

1 Introduction

This paper builds upon the methodology of Labelled Deductive Systems [Gab96] to develop
a uniform and abductive natural deduction system for the family of linear, relevance and
intuitionistic logics. The system is uniform in the sense that the set of labelled natural
deduction rules is the same for all the three logics under consideration, and abductive in that
it incorporates a technique for identifying, when possible, additional assumptions which can
be used to detect, from the given derivation, theorems of the given substructural logic.

∗Department of Computing, Imperial College, 180 Queen’s Gate, London SW7 2BZ
†Departamento de Ciência da Computação, Instituto de Matemática e Estat́ıstica, Universidade de São

Paulo
‡This work was supported by EPSRC grant GR/J17485

1



It is widely believed that natural deduction style proof theory is the only formal approach
which comes as close as possible to informal rules of reasoning used in everyday discourse1.
Despite this, in the field of substructural logics little research has been so far devoted to
defining proof strategies based on natural deduction, and most work on automated theorem
proving has concentrated mainly on sequent calculi [Dôs93]. On the other hand, recent results
have shown that Gabbay’s methodology based on Labelled Deductive Systems (LDS) [Gab96]
provides an ideal framework for developing uniform proof systems for various families of log-
ics. Examples are [DG94] where a uniform labelled semantic tableaux, called LKE system,
is defined for a wide family of substructural logics, and [Rus96] in which a uniform natural
deduction style proof system, called MLDS, is described for a wide family of propositional and
predicate modal logics. Furthermore, in [Gab96] examples of labelled natural deduction rules
for some substructural logics have also been described which show some ways of handling
labels to allow the same rules to be used in different substructural logics. However, this illus-
tration covers only the implication fragment, no general soundness or completeness results for
the rules are given, and moreover it does not include any algorithm for checking relationships
between inferred labels. It is mainly given to illustrate a more general claim – LDS can be
used to develop a uniform proof system for substructural logics. This paper substantiates
this claim for the cases of linear, relevance and intuitionistic logic, also providing some initial
results towards the development of automated labelled natural deduction theorem provers for
substructural logics.

A uniform labelled natural deduction system for the family of linear, relevance and intuition-
istic logics is given, whose set of inference rules is shared by each of these substructural logics.
It is well known in the literature [Dôs93] that such logics can be uniquely defined in terms of
a set of operational rules and a set of structural rules. The former are rules associated to each
operator, whereas the latter are meta-rules which define how formulae can be used within a
derivation. For example, in the case of relevance logic the permutation and contraction struc-
tural rules enforce assumptions to be used at least once but not necessarily in the order they
are given. Results in the literature (see [Dôs93] for a detailed overview on substructural log-
ics) show that the same set of operational rules is shared by the whole family of substructural
logics and that it is each individual set of structural rules which uniquely identifies each logic
by defining the properties of the associated consequence relation. Using these rules different
theorems can be proved in different substructural logics, even though the basic operational
rules are identical. For example, a formula of the form A → ((A ⊗ A → B) → B) can be
proved to be a theorem of relevance logic but not a theorem of linear logic.

In Section 3 a set of labelled natural deduction rules is given, which is common to the three
logics under consideration. These rules are defined on labelled formulae and they perform
the role of operational rules. Structural rules are instead implemented by different labelling
algebras (uniquely associated with each individual logic) which define conditions on labels.
A derivation is defined as a pair composed of a sequence of inferred labelled formulae, called
structural derivation and the set (possible empty) of constraints on labels generated by the
inference rules. The satisfiability of a generated set of constraints depends on the conditions
of the underlying labelling algebra. The same set of constraints can be true with respect to
one labelling algebra and false with respect to another. It is in this sense that the standard

1It is this closeness to the actual reasoning that had prompted Gentzen to put forward his natural deduction
approach [Gen35].

2



manipulation of assumptions given by the use of structural rules (see for instance Gentzen
style calculus [Dôs93]) should be seen in this system – to restrict and to control the use and the
discharge of assumptions via the use of labels and of a labelling algebra, leaving unchanged the
set of labelled natural deduction rules. The three different substructural logics are captured
therefore by simply changing the underlying labelling algebra. This facilitates a uniform proof
system whose derivation processes are well structured and more human-oriented.

In this paper, attention is restricted to the fragment containing the operators → and ⊗.
Extension to the whole set of substructural operators will be the topic of a future paper. In
Section 2 language and syntax of the system are given together with the notion of a labelling
algebra. The latter is defined in terms of a set of elements, a partial ordering relation and
a binary operator. Three different types of labelling algebras are defined by imposing on
the binary operator different properties. Results in [DG94, BDR96] have shown that these
properties correspond to the structural rules of the substructural consequence relation. In
the case of linear logic, the permutation property of the consequence relation is captured
by requiring the binary operator of the labelling algebras to be commutative; for relevance
logic, the binary operator satisfies commutativity and contraction, and for intuitionistic logic
it satisfies also monotonicity. In Section 3 a set of labelled natural deduction rules is defined
and an example is given to illustrate the uniform property of the system. In Section 4 an
algorithmic procedure is given which allows the sets of constraints generated within derivations
to be solved accordingly with the underlying labelling algebra. The termination property and
scope of such algorithms are also discussed. The natural deduction system is shown to be
sound and complete with respect to the LKE tableaux system [DG94]. This is proved by
considering an extended LKE tableaux system and proving the natural deduction system to
be sound and complete with respect to this extended system. This consists in showing that (i)
given a natural deduction derivation of a labelled formula with a satisfied set of constraints,
there exists a closed LKE refutation of that labelled formula, and that (ii) the converse holds.
Part (i) is proved in Section 5.2, whereas part (ii) is briefly discussed in Section 5.1, as already
proved in [BDR96]. On the basis of this result, a natural deduction derivation is correct with
respect to a given substructural logic if, under the condition that the algorithmic procedure
terminates, the set of constraints of the derivation is satisfied with respect to the labelling
algebra associated with the underlying logic. The paper concludes with some final discussion
and comparisons.

Finally, some remarks regarding syntactic notations. Throughout the paper lower-case letters
from u to z are used to refer to terms in the system, whereas upper-case letters denote wffs of
the system. Integer subscripts may also be used with any of these letters. Each of the three
substructural logics considered in this paper will sometimes be referred to as LL for linear
logic, RL for relevance logic and IL for intuitionistic logic.

2 Labelling algebras for substructural logics

In this section basic definitions of the language and syntax of the system are given, together
with the notion of a labelling algebra and the meaning of a labelled formula, for the substruc-
tural fragment {→,⊗}.
The language of the system is defined as an ordered pair 〈L{→,⊗}, LL〉, where LL is a la-

3



belling language and L{→,⊗} is a standard propositional substructural language restricted to
the set of operators {→,⊗}. The labelling language LL is composed of the constant symbol
1, a countable set of symbols {a, b, . . . , f, a1, b1, . . . f1, a2, b2, . . . , f2, . . .} called parameters, a
countable set of variables {γ, δ, γ1, δ1, γ2, δ2, . . .}, a binary function symbol ◦ and a binary
relation v. Terms of the labelling language are defined inductively as consisting of 1, pa-
rameters and variables, together with expressions of the form x ◦ y where x and y are terms.
Wffs of L{→,⊗} are defined in the standard way. Terms are generally referred to as labels, the
term 1 and the parameters are called atomic labels, whereas these and any other term with
no variable occurrence are ground labels. The syntax of the system is given by two different
types of syntactic entity, the declarative unit and the label constraint . A declarative unit is
defined as a pair of the form formula : label , expressing that a formula is true relative to a
piece of information. The formula component is written in L{→,⊗} and the label component
is a term of LL. A label constraint in the language LL is of the form x v y where x and y
are labels.

Both labels and the relation v are interpreted onto a labelling algebra, given in Definition 1.
Atomic labels are interpreted in a labelling algebra as themselves in the style of the Herbrand
Interpretation. In the rest of this paper the term label will sometimes be used to refer to
its interpretation in the algebra. Informally, labels are interpreted as “pieces of information”
relative to which formulae are evaluated true or false. The atomic labels given by the param-
eters of LL are used to name particular pieces of information. The binary relation v behaves
like a kind of Kripke-style accessibility relation between pieces of information, according to
which if a piece of information y is accessible from a piece of information x then y verifies
all the formulae which are verified at x (if any). For simplicity the same notations are used
between the terms of the labelling language and the elements of the labelling algebra, as well
as between the binary relation of LL and the partial ordering of the algebra.

Definition 1 {Labelling algebra} A labelling algebra LA is a tuple(L, ◦, 1,v) such that:

1. L is a set of atomic elements, where 1 ∈ L;

2. v is a partial ordering

3. ◦ is a binary operation on L which satisfies the following properties:

(a) associativity: x ◦ (y ◦ z) = (x ◦ y) ◦ z;

(b) identity: 1 is the identity element of the operation ◦: for every x ∈ L, x ◦ 1 =
1 ◦ x = x.

(c) order preserving: for every x, y ∈ L, if x v y then x ◦ z v y ◦ z and z ◦ x v z ◦ y
for every z ∈ L;

The elements of a labelling algebra are pieces of information, or resources, used to verify
formulae. The ◦ operator allows concatenation of resources. In general, formulae which
are verified by means of individual resources are not necessarily verified by the resource
composition of the individual ones. The associativity property of the ◦ operator means that
composed elements of the algebra, which differ only in the way their own components are
associated, are identical pieces of information. Adopting the view of a labelling algebra as
a “structure” of resources [DG94, BDR96], the associativity property of ◦ implies that the

4



composition over the same “sequence” of resources is arbitrary. This implies that if a formula
is verified by means of a composition of resources of the form x◦(y◦z), then the same formula
can be verified composing the same list of resources in a different way.

In addition to the basic properties in Definition 1 the binary operator ◦ may satisfy other
properties, so defining different types of labelling algebras. In this paper labelling algebras
with one or more of the following properties are considered:

commutativity: x ◦ y v y ◦ x
contraction: x ◦ x v x
monotonicity : x v x ◦ y

The commutativity property states that if a formula is verified by means of a given sequence
of resources, than it can be verified changing the order of the resources in the sequence.
(Notice that the commutativity property could equally be expressed using the = relation.)
The contraction property instead guarantees that if a formula is verified using more than one
occurrence of a given resource than it can be verified using a fewer number of occurrences.
Finally the monotonicity property gives that if a formula is verified by means of a given re-
source than it is still verified if this resource is combined with any other resource. Considering
each atomic resource as uniquely associated to each formula, a sequence of resources can be
read as a sequent of formulae. Under this interpretation, it is possible to see a correspondence
between the above three properties of the ◦ operator and the properties of the substructural
consequence relation. In [Gab96, DG94, BDR96] a proof of such correspondence is given
showing that the commutativity property corresponds to the permutation rule, the contrac-
tion property to the contraction rule and the monotonicity property to the weakening rule.
On the basis of this correspondence it is possible to show that different labelling algebras
identify different substructural logics (see [BDR96] for further details). In this paper, three
types of labelling algebras are considered. These are respectively the labelling algebra whose
operator ◦ is commutative, the labelling algebra whose operator ◦ satisfies commutativity and
contraction, and the labelling algebra whose operator ◦ satisfies commutativity, contraction
and monotonicity. The first corresponds to Girard’s Linear Logic (LL) [Gir87], the second to
Relevance Logic (RL) and the third to Intuitionistic Logic. This is summarised in Table 1,
where the notation L∆ with ∆ ∈ {LL, RL, IL} is also introduced. In addition, the notation
LS

∆ is used to denote the particular algebra L∆ whose set of elements L is equal to a given
set S.

The meaning of a declarative unit is defined in terms of a valuation function.

Definition 2 {Valuation function} Let LA = (L, ◦, 1,v) be a labelling algebra and let
F be the set of wffs of L{→,⊗}. A valuation over LA is a mapping V : F × L −→ {T, F}
satisfying the following conditions:

1. For all formulae A, if V (A,x) = T and x v y, then V (A, y) = T .

2. For all formulae A, if V (A,x) = T for some x ∈ L, then there exists also a ∈ L, called
the A-characteristic, where V (A, a) = T and a is the least such element with respect to
the ordering v. That is, if, for any y ∈ L, V (A, y) = T then a v y.

3. For each wff of the form A → B and for each label x
V (A → B,x) = T ⇔ ∀y[V (A, y) = T implies V (B,x ◦ y) = T ].

5



Conditions on v Labelling algebras

{x ◦ y v y ◦ x} LLL

{x ◦ y v y ◦ x,
x ◦ x v x} LRL

{x ◦ y v y ◦ x,
x ◦ x v x,
x v x ◦ y} LIL

Table 1: Classes of labelling algebras

4. For each wff of the form A ⊗ B and for each label x
V (A ⊗ B,x) = T ⇔ ∃y, z[y ◦ z v x and V (A, y) = T and V (B, z) = T ].

Condition (1) in the above definition expresses the “hereditary” property of the truth values
with respect to the partial ordering v, condition (2) plays an important role in the definition
of some of the natural deduction rules, and in proving the correspondence of the natural
deduction system with respect to the LKE system, whereas conditions (3) and (4) provide
the semantic meaning of the two substructural operators → and ⊗ respectively. Using the
above notion of a valuation function, a declarative unit A : x is said to be satisfied if and only
if V (A,x) = T , where the argument x of V is the interpretation of the label x in the labelling
algebra. Given a labelling algebra L∆, for some ∆ ∈ {LL, RL, IL}, and a valuation V over
L∆, the tuple 〈LA, V 〉 can be seen as a semantic structure for the fragment {→,⊗} of the
substructural logic ∆.

3 A Uniform Natural Deduction System

In this section a uniform labelled natural deduction style proof system is described for the
fragment {→,⊗} of linear, relevance and intuitionistic logics. The set of inference rules is
given together with the definitions of a “structural derivation” and “label constraints”. An
example is also given which shows how the same set of inference rules can be used to construct
derivations in any of the three substructural logics.

It is strongly believed that this system expands the study of the natural deduction formalism,
initially developed by Gabbay in [Gab96], showing how the naturalness and the closeness to
actual reasoning typical of natural deduction calculus can also capture substructural deductive
processes. There is in fact no reason for restricting the attention only to tableau methods
and sequent calculi [DG94, Dôs93]. Natural deduction systems can be equally expressive.

A formal definition of the inference rules is given in Table 2, adopting a presentation style first
introduced in [BEKV94] for the definition of a classical natural deduction style proof system.
A solo parameter is an atomic label such that any other atomic occurrences within a structural
derivation labels only the formula it is first introduced with, and which may occur (as atomic

6



Rules for →

→I

A : a
...

B : x ◦ a

A → B : x

(i)

Rules for ⊗

⊗I

...
A : γ1

...
B : γ2

A ⊗ B : x

(ii)

Tick rule

...
A : x

...
A : y X (iv)

→E
A → B : x
A : y

B : x ◦ y

⊗E A ⊗ B : x
A : a (i)
B : b (iii)

Lemma rule
...

proof of Lemma A : x

A : x Lemma
...

goal

(i) a is a solo parameter
(ii) γ1 ◦ γ2 v x
(iii) b is a solo parameter, and a ◦ b v x
(iv) x v y

Table 2: ND Rules for the substructural fragment {→,⊗}.

label) repeatedly in the derivation whenever such a formula has to be re-introduced. In the
cases of →I and ⊗E , the parameters a and b are respectively solo parameters. The two
introduction rules can be interpreted procedurally as follows: “to show A → B : x, assume
A : a and show B : x ◦ a”, where a is a solo parameter of LL (i.e. it does not appear as an
atomic label of any formula other than A, and any re-introduction of A is labelled with a),
and “to show A ⊗ B : x show A : γ1 and B : γ2”, where γ1 ◦ γ2 v x. They are both used in
reasoning backwards (i.e. reasoning from the goal formula needed to be proven), whereas the
two elimination rules are used forward (i.e. reasoning from the given assumptions).

The introduction and the elimination rules for the → operator together reflect the semantic
interpretation of → given in Section 2 (see condition (3) of Definition 2).

As for the operator ⊗, the introduction and the elimination rules, validated by their satisfied
side conditions, together reflect the semantic interpretation of ⊗ given in Definition 2 (see
condition (4)). Specifically, the side condition of the ⊗I rule corresponds to the condition on
the labels given in the right-hand side of the equivalence (4) where the solo parameters used
in the ⊗E rule can be seen as “Skolem” constants.

The “Tick” rule allows complete sub-proofs to be recognised. It enables forwards and back-
wards reasoning within a derivation to be “linked” together. For example, the application
of the ⊗I rule is conditioned to the provability of its respective sub formulae (or sub-goals).
These sub-goals may be proved by inferring in their respective sub-derivations, with some
forward reasoning steps the same formulae with labels equal or smaller than the one appear-
ing in the sub-goals. Applications of the tick rule would allow in this case the “closure” of
the two sub-derivations. From a semantic point of view, this rule, together with its satisfied
side condition, reflect the hereditary property of the valuation function (i.e. condition (1) of

7



Definition 2).

The “Lemma” rule can be seen as a way of incorporating the notion of “cut” into the natural
deduction system. It is used in a derivation whenever the operational rules cannot derive any
new formula from a given set of assumptions. The rule provides a way of introducing a new
relevant formula not as an assumption but as a lemma whose appropriate proof is constructed
in the sub-derivation of the rule itself. An example of a derivation that requires this rule is
that of proving C : c from the assumption (A → A) → C : c – the lemma rule is needed
because of the formulation of the →E rule. The introduction of such a rule facilitates also an
easier proof of correspondence with the LKE system which includes the cut rule explicitly.
An example derivation which uses the lemma rule is given in Figure 1.

In the ⊗I and Lemma rules, boxes mainly have the function of separating sub-derivations. It
is only in the case of →I that the introduction of a box implies also the introduction of a new
assumption and that its closure implies the discharge of the same assumption. This standard
way of using boxes to handle additional assumptions is in this system redundant, labels
could provide a sufficient book-keeping device on their own. However, the box presentation
technique is here preserved, as it helps in structuring the derivations. It is this structural
property of the derivations that facilitates an easy search of solutions for the generated set of
constraints. This is one of the main advantages of this system which can make it preferable
to other proof systems. For example in the LKE tableau system [DG94], there is no apparent
structure. This can make sometimes the underlying reasoning hard to follow as well as the
resulting constraints difficult to solve.

Label constraints. Most of the labelled natural deduction rules given in Table 2 have side
conditions. These, except condition (i) and the first part of condition (iii), are called label
constraints, and are of the form x v y where x and y are labels in the language LL. For
any given constraint x v y, the terms x and y will often be referred to as the left-hand-side
(LHS) and the right-hand-side (RHS) of the constraint. The satisfiability of label constraints
depends on the properties of the underlying labelling algebra. In Section 4 a basic algorithmic
procedure is defined for solving such label constraints and extensions of this procedure are
also given which take into account the specific additional properties of each type of labelling
algebra. The process of detecting whether a derivation is correct with respect to a given
logic reduces to resolving the set of label constraints generated within the derivation. The
algorithms use also a technique called resource abduction which, whenever they terminate,
provide a way of “abducing” the additional assumptions which can be used to detect theorems
of a given substructural logic.

The label constraints generated within a natural deduction derivation are of two different
types: imposed constraints (ICs) and required constraints (RCs). The imposed constraints
are introduced by the application of the ⊗E rule (see the second part of condition (iii) shown
in Table 2) on ⊗-formulae. Their validity is “imposed” by the occurrences of the ⊗-formulae,
consistently with the semantic interpretation of the ⊗ operator. Notice that, in this type of
constraint, variables occur only on the right hand side. The required constraints are instead
generated by the ⊗I rule and by the Tick rule (respectively conditions (ii) and (iv) shown in
Table 2).

8



The notion of a derivation. In this system the notion of a derivation extends the standard
notion of a natural deduction derivation. A derivation is a pair composed of a sequence of
inferred declarative units, called structural derivation, and a set of generated constraints.
A structural derivation does not guarantee itself the derivability of a formula in a given
substructural logic. Arbitrary structural derivations could in fact be constructed, but only
those whose associated set of generated label constraints is satisfied in the underlying labelling
algebra, are correct derivations. This is captured by the following definitions.

Definition 3 {Set of initial assumptions} A set of initial assumptions T is a set of declar-
ative units of the form F : f , where F is a wff of L{→,⊗} and f is a solo parameter that does
not appear as an atomic label of any other initial assumption in T .

Definition 4 {Structural derivation} Let A be a wff written in the language L{→,⊗}, let
x be a label and let T be a (possibly empty) set of initial assumptions. A structural derivation
of the declarative unit A : x from T is a finite sequence of pairs 〈α1, r1〉, 〈α2, r2〉, . . ., 〈αk, rk〉,
such that αk = A : x, and for each 1 ≤ i ≤ k, if αi is an assumption then ri is empty, otherwise
αi is the declarative unit inferred by the application of the labelled natural deduction rule
ri. The set of atomic labels occurring in this sequence of pairs, extended with the label 1, is
called the domain of the structural derivation.

Definition 5 {Satisfied label constraints and solutions} Let ∆ ∈ {LL, RL, IL}, let
IC1, . . . , ICn and RC1, . . . , RCm, where n ≥ 0 and m ≥ 0 be a set of imposed and required
constraints such that γ1, . . . , γk, with k ≥ 0, are the variables that appear in the constraints
and the set of atomic labels occurring in the constraints be D. Let LD

∆ be the labelling algebra
associated with D. Then the set of constraints {IC1, . . . , ICn, RC1, . . . , RCm} is satisfied in
LD

∆ iff there exists a ground instantiation in LD
∆ of γ1, . . . , γk, called a solution, such that

RC1 ∧ . . . ∧ RCm is true in LD
∆ extended with the conjunction IC1 ∧ . . . ∧ ICn of imposed

constraints.

In Section 4 algorithmic procedures for “solving” a set of label constraints are described.

Definition 6 {Derivability} Given a ∆ ∈ {LL,RL, IL}, a declarative unit A : x and a
(possibly empty) set T of initial assumptions, A : x is derivable from T in the substruc-
tural logic ∆, written T `∆ A : x, if there exists a tuple 〈Γ, {IC1, . . . , ICn, RC1, . . . , RCm}〉,
where Γ = {Γ1, . . . ,Γk} is a structural derivation of A : x from T with domain D and,
for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, ICi and RCj are respectively the imposed and
the required constraints generated by the inference rules in the structural derivation, and
the set {IC1, . . . , ICn, RC1, . . . , RCm} is satisfied in the labelling algebra LD

∆. The tuple
〈{Γ1, . . . ,Γk}, {IC1, . . . , ICn, RC1, . . . , RCm}〉 is called a derivation in ∆ of A : x from T .

Theorems are formulae proved to be derivable from an empty set of initial assumptions, with
the atomic label 1. This is formally defined as follows.

Definition 7 {Theoremhood} Let ∆ ∈ {LL, RL, IL}, then a formula A is a theorem of
∆ if the declarative unit A : 1 is derivable in ∆ from an empty theory. This is sometimes
written as ∅ `∆ A : 1, or simply `∆ A : 1.

9



3.1 Uniformly Coping with Different Logics (An example)

The uniform property of the labelled natural deduction rules claimed in the previous section
is here illustrated with an example. This consists of taking a formula, known to be a theorem
of relevance logic but not of linear logic, constructing a structural derivation, which is the
same whatever underlying logic, and then describing how different logics are accommodated
within the system by means of appropriate solving processes on the label constraints.

The formula under consideration is A → ((A⊗A → B) → B). By Definition 7, to show that
this formula is a theorem of LL or of RL, it is necessary to show that there exists a derivation
with domain D of the declarative unit A : 1 whose set of label constraints is satisfied in LD

LL

or LD
RL. The case of LL is considered first. A structural derivation is given in Figure 1, whose

domain D = {a, b, 1}. The set of generated imposed constraints is empty, since no application
of the ⊗E rule is made, whereas the set of generated required constraints is given in (1).

{a v γ1, a v γ2, γ1 ◦ γ2 v γ3, b ◦ γ3 v 1 ◦ a ◦ b} (1)

 A : a

 A ⊗ A → B : b

 A : γ1
√

a v γ1 A : γ2
√

a v γ2

 A ⊗ A : γ3 ⊗I γ1 ◦ γ2 v γ3

 A ⊗ A : γ3 lemma

 B : b ◦ γ3 →E
 B : 1 ◦ a ◦ b

√
b ◦ γ3 v 1 ◦ a ◦ b

 (A ⊗ A → B) → B : 1 ◦ a →I
 A → ((A ⊗ A → B) → B) : 1 →I

Figure 1: An Example of structural derivation.

This derivation is a correct derivation in LL if and only if its associated set of constraints
is satisfied in LD

LL. In general, a set of constraints is satisfied if each required constraint
“succeeds” for some instantiation values of the variables occurring in x and in y, with respect
to the properties of the underlying labelling algebras extended with the instantiated imposed
constraints. These values are called solutions of the constraints and the process of searching
for solutions of a given required constraint is called the solving process. In the case of LL,
the associated type of labelling algebras include the commutativity property of ◦. In solving
a required constraint, the two properties of associativity and commutativity need be taken
into account. This means, for example, allow required constraint of the form a ◦ b v γ ◦ a to
succeed for γ = b, as by commutativity it could be reduced to the constraint b ◦ a v γ ◦ a. In
the above example derivation, the required constraints a v γ1 and a v γ2 are satisfied in LD

LL

only if γ1 = a and γ2 = a respectively, and the constraint γ1 ◦ γ2 v γ3 is satisfied only if γ3 is
instantiated to a ◦a. The last constraint b ◦γ3 v 1◦a ◦ b is thus reduced to b ◦a ◦a v 1◦a ◦ b,
which, by the identity property of the element 1, is equivalent to b ◦ a ◦ a v a ◦ b, which is not

10



true in LD
LL. The set of required constraints associated with the structural derivation given

in Figure 1 is therefore not satisfied in LD
LL and the proof is not a derivation in LL.

The case of Relevance Logic is now considered. To show that the same formula is a theorem
of Relevance Logic it is necessary to show that there exists a derivation of the declarative unit
A → ((A ⊗ A → B) → B) : 1. This means to show that there exists a structural derivation
with domain D whose set of constraints is satisfied in LD

RL. The same structural derivation,
with domain D, given in Figure 1 is generated also in this case – rule applications do not
depend on the particular underlying logic. However, to show that it is a derivation of RL it
is necessary to show that the set of label constraints in (1) is satisfied with respect to LD

RL.
This labelling algebra includes both the commutativity and contraction properties of ◦. The
contraction property allows the left-hand-side of a constraint to contain more occurrences
than the right-hand-side of any label appearing in the right-hand-side. So, for example, a
required constraint of the form a ◦ b ◦ b v a ◦ b, which would not succeed in LD

LL, does instead
succeed in LD

RL.

To retain the solution process of a constraint x v y and allow also for contraction, a way of
“evening up” the atomic occurrences in the two parts is needed. This is done via the use of
slack variables. For each required constraint x v y, an additional variable, denoted with δ
and called a slack variable, is added to its right-hand-side, giving the new constraint x v y◦δ.
This variable can only be unified with the atomic labels contracted in the left-hand-side. If
no contraction occurs on the left-hand-side of the required constraint then the slack variable
is unified with 1. When instantiations of all the variables (slack and non) occurring in a
constraint are found, which satisfy the equality x = y ◦ δ, it is necessary to check that the
value of the slack variable indeed corresponds to contracted labels. If this checking fails than
the instantiations found are rejected. This is shown below where the constraints in (1) are
solved with respect to LD

RL.

To check whether the set (1) of required constraints is satisfied in LD
RL, it is first necessary

to add slack variables to their right-hand-sides. The set then becomes {a v γ1 ◦ δ1, a v
γ2 ◦ δ2, γ1 ◦ γ2 v γ3 ◦ δ3, b ◦ γ3 v γ ◦ a ◦ b ◦ δ4}. The first two constraints are satisfied
by the instantiation γ1 = γ2 = a and δ1 = δ2 = 1. (No contraction takes place here.) The
third inequality becomes under this instantiation a ◦ a v γ3 ◦ δ3. In this case γ3 can be
either a or a ◦ a or 1. The first instantiation would make δ3 equal to a, which means that a
contraction of one occurrence of a has occurred in the left-hand-side of the constraint. The
second instantiation would make δ3 equal to 1, which means no contraction has occurred.
The third instantiation (γ3 = 1) would instead make δ3 = a ◦ a, which means that all the
occurrences of a in the left-hand-side are included in δ3. The last of these instantiations –
{γ3 = 1, δ3 = a ◦ a} – is however rejected as a slack variable can only “absorb” contracted
occurrences. Substituting either of the other two instantiations (i.e. {γ3 = a, δ3 = a} and
{γ3 = a◦a, δ3 = 1}) to the fourth inequality, the solution γ = 1 can be obtained, thus showing
that A → ((A ⊗ A → B) → B) : γ is a theorem of RL.

This technique of using slack variables on the right-hand-side of a required constraint is still
applicable in Intuitionistic Logic, as contraction is also a property of the labelling algebras
associated with this logic. However, for these type of labelling algebras LIL the solving process
has also to take into account the monotonicity property. Monotonicity means that constraints
with right-hand-side bigger than the left-hand-side succeed. Thus to use the solution process
illustrated above, additional slack variables need also to be added to the left-hand-side of a

11



required constraint to even up the additional labels occurring in its right-hand-side. A full
detailed description of the solving process is given in Section 4.2.

From the example of constraints solution given above, it is evident that the order in which
constraints of a given set are solved facilitates their solutions. Solving a constraint of the form
γ1 ◦γ2 v γ3 without knowing any particular instantiation value for any of the three occurring
variables is in fact much harder. In Section 4.1 it is shown that for any given set of generated
required constraints it is always possible to define an ordering (similar to the one implicitly
used here) which facilitates the search for solutions.

3.2 Resource Abduction

So far it has been illustrated, via an example, how the same structural derivation can be
constructed in different logics and how different logics can be accommodated within the same
basic solving process for label constraints. An extension, and more general approach, to this
proof system is given by the use of a technique called resource abduction. This consists of
showing that for a given formula A there exists a derivation of the declarative unit A : γ (for an
arbitrary variable γ) instead of the declarative unit A : 1. In so doing, some of the constraints
generated within the derivation would refer to the variable γ and their solutions would include
an instantiation value for γ. If γ = 1 is a solution then the given formula is a theorem of the
underlying logic. If this is not the case then a solution for γ provides information of the atomic
formulae that could be added to the given formula (as initial assumptions) in order to prove
this new formula is a theorem of the underlying logic. Consider this technique in the above
example. The declarative unit to be proven is A → ((A ⊗ A → B) → B) : γ. A structural
derivation identical to that given in Figure 1 is constructed, but with each occurrence of 1 in
the labels replaced by γ. The associated set of required constraints is given in (2).

{a v γ1, a v γ2, γ1 ◦ γ2 v γ3, b ◦ γ3 v γ ◦ a ◦ b} (2)

In the case of LL, the only solution of the constraints in (2) is γ1 = a, γ2 = a, γ3 = a ◦ a and
γ = a. Since the value for γ is not 1, the structural derivation in Figure 1 is not a derivation
in LL, as already concluded above. However, the value γ = a together with the fact that a
is a solo parameter occurring in the derivation as atomic label of A, indicates that adding a
“missing A assumption” to the initial formula will prove the new formula to be a theorem of
LL. Introducing such a “missing resource” in the form of “A →” at the front of the initial
formula would give the new formula A → (A → ((A ⊗ A → B) → B)). To prove that this
is a theorem of LL, a structural derivation is first constructed as shown in Figure 2, whose
associated set of constraints is given in (3).

{a v γ1, a v γ2, γ1 ◦ γ2 v γ3, b ◦ γ3 v γ ◦ a ◦ a ◦ b} (3)

A solution of (3) in LD
LL is γ1 = γ2 = a, γ3 = a◦a and γ = 1. The existence of the value γ = 1

shows that the new formula is a theorem of LL. The use of such a resource abduction technique
does not affect derivations which are already correct with respect to a given logic, without
resource abduction. For instance, using this technique in the case of RL, the constraints in
(2), rewritten so to include slack variables, can still be solved in the same way as shown for the
set (1), giving γ = 1 and so proving that the given formula is a theorem of RL. No additional
resource is in this case necessary as the initial formula is already a theorem of RL.

12



 A : a

 A : a

 A ⊗ A → B : b

 A : γ1
√

a v γ1 A : γ2
√

a v γ2

 A ⊗ A : γ3 ⊗I γ1 ◦ γ2 v γ3

 A ⊗ A : γ3 lemma

 B : b ◦ γ3 →E
 B : γ ◦ a ◦ a ◦ b

√
b ◦ γ3 v γ ◦ a ◦ a ◦ b

 (A ⊗ A → B) → B : γ ◦ a ◦ a →I
 A → ((A ⊗ A → B) → B) : γ ◦ a →I
 A → (A → ((A ⊗ A → B) → B)) : γ →I

Figure 2: Structural derivation with resource abduction.

This is a very nice illustration of the power of the resource abduction technique used in this
proof system. Structural derivations which result to be not derivations of a given logic may
be used to “abduce” other theorems of that logic. To the best of the authors’ knowledge,
there is not theorem prover in the literature with such a characteristic.

With respect to a more general idea of abduction, the above technique could also be used
to identify the declarative units necessary to be added to a (possibly empty) set T of initial
assumptions in order to allow the derivation of a given declarative unit from T . A brief
example is given here. A structural derivation with domain D = {a, b, 1} is given in Figure 3,
whose associated set of constraints is given in (4). Notice that in this structural derivation

 A : a

 (A → A) ⊗ A → B : b

 A : a

 A : a ◦ γ1
√

a v a ◦ γ1

 A → A : γ1 →I

A : γ2
√

a v γ2

 (A → A) ⊗ A : γ3 ⊗I γ1 ◦ γ2 v γ3

 (A → A) ⊗ A : γ3 lemma

 B : b ◦ γ3 →E(2, 7)

 B : γ ◦ a ◦ b
√

b ◦ γ3 v γ ◦ a ◦ b

 ((A → A) ⊗ A → B) → B : γ ◦ a →I
 A → (((A → A) ⊗ A → B) → B) : γ →I

Figure 3: Another structural derivation with resource abduction.

13



the declarative unit A : a at line 3 is not necessary, as already assumed in the external box
at line 1.

{a v a ◦ γ1, a v γ2, γ1 ◦ γ2 v γ3, b ◦ γ3 v γ ◦ a ◦ b} (4)

The constraints in (4) are solved in LD
LL considering γ3 = a and γ = 1. Suppose now

that a derivation from an empty initial set T of assumptions of the declarative unit (((A →
A) ⊗ A) → B) → B : γ is required. From the example given in Figure 3, the same structural
derivation would be expected but with the solution γ = a in its associated required constraints.
However, this is not necessary the case. In fact no structural derivation can be constructed
for (((A → A)⊗ A) → B) → B : γ, considering an empty set T of initial assumptions, as the
assumption at line 1 is no longer present, and so A : γ2 at line 3 cannot be proved. What is
needed is the local assumption at line 3 in Figure 3 to be included in T as an initial global
assumption. The declarative unit A : a can then be abduced as part of the initial theory T .
Hence in order to find a derivation of a given declarative unit, additional declarative units
need sometimes to be added to the initial theory T . These are always of the form F : f ,
where F is a subformula of the given formula and f is a solo parameter that does not appear
as an atomic label of any formula other than F .

4 Solving Constraints

In this section formal definitions of the algorithmic procedures adopted to solve label con-
straints are given for each considered substructural logic. As mentioned in the previous
section, the case of LL is the simplest one. Only the properties of associativity and commuta-
tivity of the operator ◦ need to be taken into account when defining its algorithmic procedure.
For the cases of RL and IL, extensions of the LL’s algorithmic procedure are defined which
accommodate the additional properties of contraction and monotonicity.

Before going into the details of the algorithmic procedures it is important to briefly discuss
the issue of defining such algorithms. It has been stated in the previous sections that within
this system the same structural derivation with domain D can be constructed in different
substructural logics, as the “decision” process whether the derivation is a derivation in ∆
is left to the solving process of the label constraints generated in the derivation. To fully
satisfy such a decision requirement, the solving process should be able to identify when the
given formula is a theorem of ∆ or not. Because of the resource abduction technique, this
means providing an algorithm which solves (whenever possible) every required constraint
associated with the structural derivation and which terminates giving a possible instantiation
(i.e. solution) for the variables in the constraints. When the algorithm terminates with a
solution which satisfies the required constraints in the LD

∆ extended with the instantiated
imposed constraints, the derivation is a derivation in ∆.

Given a derivation Π of a declarative unit A : x from a set of initial assumptions T , with
the associated domain D and set S of constraints, the search of solutions for S is made by
the algorithm within the domain D. By Definition 5, the set S of constraints is satisfied if
there exists an instantiation for its variables in LD

∆. The solving process is able to find such
instantiation as long as it is allowed for the number of steps to be unlimited. The declarative
unit A : x is then proved to be derivable in ∆ from T . The solving process is composed of
two steps, namely instantiation and expansion steps. The first one instantiates the variables

14



occurring in a RC whereas the expansion step allows the generation of a new constraint from
a given required constraint, using the information given by the imposed constraints. These
two steps are described in detail in Sections 4.2 and 4.3 respectively. Because of the expansion
steps, the termination property of this process is not always guaranteed. Examples can be
in fact constructed in which infinitely many instantiations of the variables occurring in the
RCs can be found using the ICs and the properties of the underlying labelling algebra, which
would still not satisfy all the label constraints. (See example illustrated in Figure 12.) In such
cases the solving process would not terminate and no kind of decision (neither positive nor
negative) could be reached. The process is therefore semi-decidable. To control the search for
solutions an incremental limit on the number of times ICs are used to generate new possible
solutions needs to be imposed.

The following theorem captures this discussion. Its proof is justified by the formal definitions
of the algorithmic procedures and of the solving process given throughout the rest of this
section.

Theorem 1 {Partial Correctness} Let ∆ ∈ {LL, RL, IL}, E : γ be a declarative unit
and T a set of initial assumptions. Let 〈Γ, {IC1, . . . , ICnRC1, . . . , RCm}〉 be a derivation
of E : γ from T with domain D. If a finite restriction is imposed on the number of ex-
pansion steps, then the solving process terminates. If the set {IC1, . . . , ICn, RC1, . . . , RCm}
of constraints is satisfied in LD

∆, then there exists such a finite restriction on the number
of expansion steps for which the solving process terminates giving the solutions. If the set
{IC1, . . . , ICnRC1, . . . , RCm} is not satisfied in LD

∆, there there is no finite number of expan-
sion steps in which the solving process terminates giving a solution.

As a consequence of Theorem 1, whenever T = ∅ if the set of constraints is satisfied and the
variable γ in the declarative unit E : γ is instantiated to 1, then the formula E is said to be
a theorem of ∆. If γ can only be instantiated with values different from 1, then E has not
been shown to be a theorem of the underlying logic ∆ as there may be a different structural
derivation of E : 1, but the formula of the form T1 → (T2 → (. . . Tk → E) . . .), where Ti is
the subformula associated with the i-th element in the instantiation of γ, is a theorem in ∆.

Before the solving process is applied on a set of generated label constraints, the set of required
constraints is ordered to facilitate an easier search for solutions. This ordering procedure is
defined first in the following section and the definition of the solving process is then given in
Section 4.4.

4.1 Requirements for Required Constraints

This section shows that required constraints generated within a derivation can be brought
to a simple format, which facilitates their solutions. Firstly, some remarks about notation.
In what follows labels of the form a1 ◦ a2 ◦ . . . ◦ an are written more simply as a1a2 . . . an.
Since ◦ is associative and commutative a1a2 . . . an can be interpreted as a multi-set composed
of the elements a1, a2, . . ., an. Therefore standard operations on multisets can be used on
such terms. Specifically, a1a2 . . . an − b1b2 . . . bm, denotes the label obtained by applying the
multi-set “subtraction” operation on the two labels a1a2 . . . an and b1b2 . . . bm. Analogously
x ∈ a1a2 . . . an, denotes a single occurrence of x in the multiset a1a2 . . . an. Similarly for ⊆.

15



Moreover, throughout the rest of this paper the notation vL(RCi) and vR(RCi) is used to
refer to the set of variables occurring on the LHS and to the set of variables occurring on the
RHS of a given required constraint RCi respectively.

As mentioned in the previous sections a required constraint may contain variables in both
its left and right hand sides. Its satisfiability consists in finding instantiations for each of
these variables. In this section it is shown that a set of RCs generated in a natural deduction
derivation satisfies some specific requirements (see Definition 9) which facilitate an ordering
and thus an easier search of solutions. Specifically, these requirements guarantee that any
generated set of RCs can be ordered in such a way that when solved (within this ordering)
each constraint becomes of the form

a1 . . . an v b1 . . . bmγ (5)

where γ is the only variable.

Definition 8 {Circular sequence of variables} Let {RC1, . . . , RCm} be a set of required
constraints. A sequence of variables v1, . . ., vn is circular if there is an ordering RC1, . . .,
RCm of the RCs such that for each 1 ≤ i ≤ n vi ∈ vR(RCi) and vi+1 ∈ vL(RCi) and vn = vj

for some j < n.

For example, given the constraints x1v2 v y1v1, v4x2v3 v y2v2, x3v1 v y3v3, x4 v v4, where
xi, for each 1 ≤ i ≤ 4 and yj, for each 1 ≤ j ≤ 3, are sequences of non-variable atomic labels
and vh, for each 1 ≤ h ≤ 4, are variables, the following two sequences of variables can be
constructed v1, v2, v3, v1, and v1, v2, v4 of which the first is a circular sequence.

Definition 9 {Requirements on generated required constraints} Let Γ be a derivation
of a given labelled formula A : z, such that {RC1, . . . , RCm} is the set of generated required
constraints. Then, the following are requirements on this generated set of constraints.

1. There is exactly one variable on the RHS of each RCi, where 1 ≤ i ≤ m.

2. The constraint RCj corresponding to the leftmost innermost sub proof of Γ satisfies
vL(RCj) = ∅.

3. For each RCi and each vi ∈ vL(RCi) there is exactly one RCj(i), with j(i) 6= i, such
that vR(RCj(i)) = vi. (The equality is justified by requirement 1.)

4. No circular sequence of variables can be formed from the given set of required con-
straints.

In particular, requirement (4) of the above definition implies that for each generated required
constraint RC, vL(RC) ∩ vR(RC) = ∅.

Theorem 2 Any set of required constraints generated by the labelled natural deduction rules
satisfies requirements (1)-(4) given in Definition 9.

Proof outline: Each requirement is considered in turn and it is briefly explained why it is
satisfied by the ND rules.

16



Requirement 1. The introduction of new variables on the RHS of a RC arise only using
the ⊗I rule or the lemma rule. But since these rules always yield new constraints, their
generated RCs will have only one variable on their respective RHSs – i.e. exactly the
new variable introduced. The tick rule instead generates a RC between labels already
introduced in the derivation. Hence, considering also that the label of the initial goal
is a single new variable, the RHS of generated RCs have exactly one variable.

Requirement 2. The uppermost leftmost innermost box2 always uses declarative units
which are either temporary assumptions or derived from the initial assumptions by
the →E or ⊗E rules and therefore the generated labels are always ground. In both cases
these labels occur on the LHS of the required constraints generated by either a ⊗I rule
or a tick rule.

Requirement 3. Variables occurring in the LHS of a RC must have been already introduced
in the structural derivation by applications of ⊗I or lemma rules. In both cases the
associated RCs are new for each rule application. Therefore, there is always exactly
one RC which contains in its RHS the variables used on the LHS of the constraints
introduced in subsequent steps.

Requirement 4. Suppose that some circular sequence γ1, γ2, . . . , γi, . . . , γi can be constructed
from the generated RCs resulting from nesting of ⊗I and lemma rules. This implies,
by Definition 8, that the variables introduced in some of these steps are not new, which
is in contradiction with the definition of these rules.

2

The satisfiability of requirements (1)-(4) shown in the above theorem, allows the set of gen-
erated required constraints to be ordered in a list so that the left occurrences of any variable
always appear in the list after the right occurrence. This is called an ordered list. This list is
formed using the following process:

step 0 Find the set S0 of required constraints such that for each RCi ∈ S0, vL(RCi) = ∅.
(This set is non-empty by requirement (2) of Definition 9.) Let R0 =

⋃

RCi∈S0

vR(RCi).

step k, k ≥ 1 Find the set Sk of required constraints such that for each RCi ∈ Sk vL(RCi) ⊆
Rk−1. Let Rk = (

⋃

RCi∈Sk

vR(RCi)) ∪ Rk−1.

The above process terminates when for some k ≥ 1 the generated set Sk is empty and all the
given required constraints have been considered, so giving the ordered list S0, S1 . . . , Sk. The
termination condition can be shown using the following reasoning by contradiction. Assume
that for some k, k ≥ 1, the associated set Sk is empty and that there are still some required
constraints not considered in the process. Let Sr be the set of these required constraints
(Sr 6= ∅). Then, by the definition of the above process this implies that for each RCi ∈ Sr,
vL(RCi) 6⊆ Rk−1. Let RCi be one of these constraints, with a variable γ1 ∈ γL(RCi) and
γ1 6∈ Rk−1. By requirement (3) there exists a constraint RCj such that γ1 ∈ vR(RCj).
Similarly, vL(RCj) contains a variable γ2 such that γ2 6∈ Rk−1 (else the constraint RCj

2There may be several applications of the lemma rule in a proof, one beneath the other.

17



would belong to Sk contradicting the initial assumption). Continuing finding variables in
this manner it is possible to form a sequence γ1, γ2, . . . , γn. This sequence either stops by
condition (i) of Definition 8, so yielding a RC ∈ Sk, or stops because a variable repeats itself.
In the first case a contradiction arises with the initial assumption and in the second case a
contradiction arises with the requirement (4) of Definition 9 and Theorem 2.

To summarise, any set of required constraints generated in a derivation can be ordered in a
list where the required constraints on the leftmost part of the list will only have variables
on their RHS, and the subsequent constraints will include these variables on their LHS and
have new single variables on their respective RHS, which are themselves included in the LHS
of the constraints coming next in the ordered list. The last constraint (i.e. the rightmost in
the list) will have as its single RHS variable the label of the initial goal formula. Solving the
constraints in the ordering direction “left-to-right” allows then instantiations of variables to
be “propagated” throughout the list. The following sections describe how solutions of a given
ordered list of required constraints can be found, and how the imposed constraints come into
play.

4.2 Instantiating variables

The propagation of variables’ instantiations between required constraints enables variables
occurring on the LHS of a required constraint to be instantiated and the constraint itself to
be reduced to a simplified constraint of the form given in (5), where only one variable occurs in
the RHS. However, in the case of relevance and intuitionistic logics the simplified constraints
have also to include auxiliary variables which are introduced in each required constraint either
on the RHS or both on the LHS and RHS respectively in order to accommodate the additional
properties of contraction and monotonicity. How to instantiate the variables of the resulting
simplified constraints is shown below for each of the three logics.

4.2.1 Linear logic

Simplified constraints are of the form a1 . . . an v b1 . . . bmγ. To instantiate the variable γ it is
sufficient to use the following instantiation algorithm: (i) check first that b1 . . . bm ⊆ a1 . . . an

and (ii) if check (i) succeeds, define γ as

γ = a1 . . . an − b1 . . . bm (6)

4.2.2 Relevance and Intuitionistic logics

Slack variables: Simplified constraints include also auxiliary variables, called slack vari-
ables. In the case of relevance logic a slack variable is added to the RHS of a simplified
constraint in order to cope with contraction. This is illustrated in the following example.
Suppose that the RC to solve is abbccc v bγ. Without applying contraction and adopting
equation (6), γ has to be bound to abccc. But allowing contraction, there are also all the
following possibilities: γ = ac, γ = acc, γ = accc, γ = abc, γ = abcc and γ = abccc. To find
all these solutions, a new variable δR is added to the RHS of the constraint. All the labels
on the LHS that are not present on the right have to be distributed amongst γ and δR. In

18



the case of intuitionistic logic, slack variables are added to the LHS and to the RHS of each
required constraint to accommodate contraction and monotonicity.

In relevance and intuitionistic logics, the instantiation algorithms build upon the one given
in linear logic.

Relevance logics: Simplified constraints are of the form a1 . . . an v b1 . . . bmγδR. The
instantiation algorithm is analogous to that given in linear logic with the difference that the
set-difference a1 . . . an−b1 . . . bm is distributed between γ and δR, with the inclusion restriction
that if x ∈ δR, then x ∈ b1 . . . bmγ. There is always a finite number of solutions.

Using this algorithm in the example given above, for each of the values of γ the following
respective values of δR are found: bcc, bc, b, cc, c and 1. There are ten more candidate
solutions, but none of them satisfies the inclusion restriction.

In general then, the instantiation of δR can only contain additional or contracted occurrences
of a label – i.e. those that have already appeared elsewhere on the RHS. Notice that unique
slack variables are added into each constraint and their values are not propagated as slack
variables do not appear on the LHS of any RC.

Intuitionistic Logics: Simplified constraints are of the form

δLa1 . . . an v b1 . . . bmγδR (7)

To instantiate the variables γ, δR and δL it is sufficient to use the following instantiation
algorithm:

(i) define δL as
δL = b1 . . . bm − a1 . . . an (8)

(ii) define γ and δR as
γδR = δLa1 . . . an − b1 . . . bm (9)

distributing the value of γδR between γ and δR with the inclusion restriction that if x ∈ δR,
then x ∈ b1 . . . bmγ.

The instantiation of δL facilitates the construction of simplest solutions to equation (7).
Consider the following example. Suppose that the constraint to solve is ab v γbc. One
solution is γ = a. Another is γ = ab and a more general solution is γ = aα (because of
monotonicity), where α can be any combination of atomic labels. Now, the solution chosen
for γ will in general be propagated into the LHS of other RCs. The addition of α will therefore
itself be either propagated or contracted until all constraints have been solved. In the last
constraint in the list the aim is for the original goal label to be instantiated to 1 if possible,
otherwise to the simplest label possible. Restricting the solutions found in IL to be the
simplest possible means, in the example, that α would be 1. This is achieved in general by
the definition of δL given above. It is not difficult to check that the above assignments do
yield solutions to constraints of the form given in (7) in IL, allowing for monotonicity and
contraction. This is done by considering the numbers of each atomic label occurring in both
sides of the constraints after substitutions are made for δL, δR and γ.

19



4.3 Using the Imposed Constraints

Imposed constraints are only generated by applications of the ⊗E rule to declarative units of
the form A ⊗ B : x. Therefore, they are always of the form ab v x, where a and b are the
solo parameter labels involved in the rule, and where x may or may not contain a variable.
The use of an imposed constraint on a given required constraint is called expansion and it is
defined as follows.

Definition 10 {Expansion} Let ab v x be an IC and let (δL)y v z be a RC such that
y = aby1, where y1 is an arbitrary sequence of labels. Then, the IC expands the RC into
(δL)xy1 v z. The RC is sometimes said to be expanded into (δL)xy1 v z, and the latter is
sometimes called the expanded constraint .

If an expanded constraint xy1 v z is satisfied then the original required constraint of the form
aby1 v z is also satisfied since aby1 v xy1 v z.

To enforce that the LHS (apart from δL if present) of a generated expanded constraint remains
ground, only ICs with ground RHSs should be used in an expansion step. As far as this is
concerned, ICs of the form ab v x, where x contains a variable, do not need to be used in an
expansion step until x is ground. This is justified by the following observation. Any variable
α in the RHS of an IC must have been derived from some application of the lemma rule.
A system similar to the one described here could be defined by introducing in the labelling
language an additional operator called the residual operator and denoted with /, and using it
in the ⊗E rule. The labelling algebra is extended with the characteristic property of / given
in (10)

y ◦ z v x iff z v x/y (10)

In such a system, instead of deriving TA : a and TB : b, where a ◦ b v x, from TA ⊗ B : x,
TA : a and TB : x/a would be derived, without the generation of the IC. In this case there
would be no corresponding IC to use in the derivation of the sub-proof of a lemma rule
application, so that the RC involving the variable α on its RHS would be solved without the
IC. In the system described in this paper, the same would be true, showing that an IC needs
only to be used to expand the LHS of a RC after it has been introduced, and hence after
its RHS has become ground. However the use of the / would have made the whole solving
process more complex.

It can be seen that the use of ICs increases the possibilities for finding solutions. For example,
in LL suppose that, in addition to the RC abbccc v γb, there is the IC bc v d. Then, there are
two solutions: either after 0 expansion steps, γ = abccc, or after 1 expansion step, γ = adcc.
Note also that a RC such as bca v γd can only be solved by using the IC first, to derive
da v γd.

In RL, contraction might be needed when applying an IC. For example, it is needed in order
to solve the following system of constraints in RL: ab v c as an imposed constraint and
abb v c as a required constraint. This is implemented in the same spirit as the instantiation
step, by including a slack variable δL on the left of the IC. Thus, in RL an imposed constraint
ab v x becomes abδL v x and expansion matches abδL instead of ab, where the restriction
δL ⊆ {a, b} is imposed.

20



In IL, ab v x implies a v x, for a v ab v x, the first step following from monotonicity.
Similarly, b v x is also implied. Hence, in IL an IC of the form ab v x can be used in an
expansion step in three different ways: either to replace an occurrence of ab by x in the RHS
of a RC, or to replace an occurrence of a or an occurrence of b by x in the RHS of a RC. This
reflects the fact that the ⊗ operator in IL behaves exactly as the usual classical conjunction.

4.4 The algorithm

Putting the variable instantiation procedure of Section 4.2 together with expansion, yields
the following algorithm for solving a label constraint problem, called the solving process:

Solving process:
Suppose that 〈IC1, . . . , ICn, RC1, . . . , RCm〉, m ≥ 1, n ≥ 0 is the constraint problem to be
solved, in which the RCs are ordered as described in Section 4.1. In order to solve the RCs,
using the ICs, the following two types of steps are made:

(i: instantiation) in which the variables in a required constraint are instantiated as de-
scribed in Section 4.2;

(ii: expansion) in which an IC is applied to the LHS of a RC (employing the contraction
and monotonic properties as appropriate).

It may be possible to make an arbitrarily large number of expansion steps to a particular
required constraint (see for example the problem illustrated in Figure 12). Therefore, in
order for the solving process to terminate, some kind of limit must be placed on the number
of expansion steps made. To better approximate all solutions an incremental limit should be
used. Further investigations of a possible upper limit are currently being undertaken.

5 Correctness of the Natural Deduction Rules

In this section the set of labelled natural deduction rules described in Table 2 is shown to be
sound with respect to the LKE tableaux system described in [DG94]. This is proved by firstly
extending the LKE system with an additional rule, called (Tch), secondly showing that this
extension is equivalent to the original LKE system and then proving that for each natural
deduction derivation there exists a corresponding extended LKE refutation. Before going into
the details of the proof a brief description of the LKE rules is given.

5.1 The LKE system

The LKE system described in [DG94] is a uniform labelled semantic tableaux system for
substructural logics which generalises the classical logic KE-tableau system [DM94] using the
LDS approach. Within this system, the refutation rules are common to any substructural
logics – they perform the role of operational rules. The standard structural rules of substruc-
tural logics are expressed in terms of conditions on the labels, so different logics are captured

21



by just considering different labelling algebras. Note that in [DG94] a labelling algebra is
defined in terms of a complete lattice. However, the correspondence of theorems in LKE with
respect to a class of labelling algebras associated with a logic ∆, with theorems in the logic
∆ shows that, in the multiplicative fragment, only labels constructed from atomic labels ap-
pearing in an LKE tree and the ◦ operator are necessary. The rule for closing branches takes
into account these conditions allowing then some formulae instead of others to be proved.
Within a LKE system, a formula A is proved to be a theorem of a given substructural logic
if it is possible to show that there exists a refutation of the assumption “A being false at the
identity element 1” for the class of labelling algebras associated with the given logic. Such a
refutation is a LKE tree starting with the labelled signed formula FA : 1, and having all the
branches closed by applications of the (Cl) rule. In this system there is no clear distinction
between semantics and syntax. Semantic notions of a labelling algebra and its consequences,
such as the existence of characteristic labels, are integrated into the proof system.

The set of refutation rules, given in [DG94] and restricted to the fragment {→,⊗} of sub-
structural logics, is listed in Table 3. The rules for the operators → and ⊗ can be proved

(T →)

TA → B : x
TA : y

TB : x ◦ y

(F →)
FA → B : x

TA : a
FB : x ◦ a

where a is the A-
characteristic
atomic label

(T⊗)
TA ⊗ B : x

TA : a
TB : x/a

where a is the A-
characteristic
atomic label

(F⊗)

FA ⊗ B : x
TA : y

FB : x/y

(PB)
FA : x TA : x

(Cl)

TA : x
FA : y

× provided x v y

Table 3: The LKE rules for the substructural fragment {→,⊗}.

[DG94, BDR96] to be respectively equivalent to the clauses (3) and (4) of Definition 2 in
Section 2. In the case of (F →), the use of the A-characteristic atomic label a is justified by
the following reasoning. If x does not verify A → B then by clause (3) of Definition 2 there
exists some label which verifies A and which composed with x does not verify B. This implies
by the same algebraic property 3 given in clause (2) of Definition 1, that there exists a least
label, the A-characteristic, denoted with a, which verifies A. The same argument holds for
the (T⊗) rule, but with respect to the semantic clause (4) of Definition 2. Notice that in the
rules for the multiplicative conjunction ⊗, the operator “/” defined in (10) is used. The (PB)
rule expresses the labelled version of the semantic Principle of Bivalence which states that
any formula A can be either true or false at each element of the labelling algebra. Application
of the (PB) rule can be restricted to sub-formulae of the formulae appearing in the tree. The

3This is a consequence of the definition of labelling algebra used in [DG94].

22



version used here employs free variables, as described in [DG94]. The (Cl) rule instead states
when a branch can be closed, and it is justified by clause (1) of Definition 2 given in Section 2.
The application of this rule depends on the side condition x v y, which can be proved to
hold using the properties of ◦ of the underlying class of labelling algebras. However, the work
in [DG94] does not cover the issue of finding algorithms for solving these kind of conditions.
The first and only example has been given in [BF95] but only for the case of Linear Logic.

Extending LKE The LKE system is here extended by adding an extra rule to those given
in Table 3, called (Tch):

(Tch)
TA : x

TA : a
where a is the A-
characteristic
atomic label (11)

This rule reflects the algebraic property given in clause (2) of Definition 1 and will provide
the link between the use of the / operator in the LKE system and the use of the imposed
constraints in the natural deduction system. Specifically, introduction of a label using / in
the LKE system by the (T⊗) rule, corresponds to the introduction of an IC in the natural
deduction system. Solo parameters of LL used in a natural deduction derivation are mapped
into the LKE characteristic atomic label.

The extended LKE system is equivalent to the original LKE system. This is illustrated in
Figure 4 and explained below.

SC system

LKE + (Tch) systemLKE system

6

(4)

?

(5)

-
(1)

�
(2)

������������������������

(3)

Figure 4: Equivalence between the Extended LKE and the original LKE tableaux system.

Arrows 4 and 5 in Figure 4 describe the completeness and soundness property of the LKE
system with respect to the sequent calculus, proved in [DG94] by Propositions 4 and 5 respec-
tively. Arrow 1 shows that for any refutation in the original LKE system there is a refutation

23



in the extended LKE system. This is trivially true. Hence to show the equivalence between
the two LKE systems (original and extended) it is just sufficient to show that the extended
LKE system is sound with respect to the sequent calculus (arrow 3). This is proved by ex-
tending Proposition 5 of [DG94] to the case of the (Tch) rule. The proof of Proposition 5 in
[DG94] is based on a canonical interpretation, which interprets labels as sets of formulae closed
under the sequent calculus derivability relation and declarative units of the form TA : x as
A ∈ x, and on a canonical valuation v defined as v(A,x) = T iff A ∈ x. Under this canonical
interpretation TA : x holds iff v(A,x) = T . Extending Proposition 5 to cover the (Tch) rule
requires to show that if TA : x holds then TA : a holds, where a is the A-characteristic ele-
ment in the labelling algebra. Using the above canonical interpretation TA : x holds implies
v(A,x) = T , which, by clause (2) of Definition 1, implies that v(A, a) = T and hence TA : a
holds. The reader is referred to [DG94] for further details.

Completeness with respect to LKE In [BDR96] it has been proved that this system of
natural deduction rules is complete with respect to the LKE system. That is, there exists an
algorithm which turns a LKE refutation of a theorem A : 1, formed in a particular way, into a
labelled natural deduction derivation of A : 1, showing also that tableau refutation rules can
be read as backward reasoning in this labelled natural deduction system. For more details
the reader is referred to [BDR96].

5.2 Soundness with respect to LKE

The soundness of the ND system with respect to LKE is shown in this section, but with
respect to the extended LKE system. The equivalence between the LKE system and the
extended LKE system implies the soundness of the ND rules with respect to the LKE system.
In the rest of this section “LKE system” will refer to this extended set of LKE rules.

In the following proof, notions of “lengths of the ND rules” and “length of a derivation” are
used. These are defined as follows. The ND rules which do not have sub-derivations in their
antecedents, with the exception of the ⊗E rule, have length equal to 1 (i.e. these are the Tick
rule and the →E rule), the ⊗E rule has length equal to 2, and the rest of the ND rules have
length equal to the (sum of the) length(s) of the smallest subderivation(s) in their antecedent
incremented with 1. For example, the →I rule has length equal to 1 + l1 where l1 is the
length of the smallest derivation in its antecedent, whereas the length of the ⊗I rule is equal
to 1 + l1 + l2 where l1 and l2 are respectively the lengths of the smallest left-hand-side and
right-hand-side derivations in the rule’s antecedent. The length of a given arbitrary derivation
is thus equal to the sum of the lengths of the inference rules used in that derivation. Notice
that, as in the standard natural deduction, a structural derivation with length equal to 0 is a
derivation with no inference rule application, with an empty set of constraints and with the
goal being a declarative unit already belonging to the given set of initial assumptions.

The proof of Theorem 3 uses a mapping between ND derivations and LKE trees defined as
follows. Each label f of assumptions of the form F : f which occurs in a ND derivation,
is mapped to a corresponding label f in a signed formula TF : f where f is now the F -
characteristic label. For any other non atomic label the mapping is extended in an obvious
way. The restriction imposed on the solo parameters in the ND rules guarantees this mapping
to be a one-to-one function.

24



Theorem 3 {Soundness} Let ∆ be a given substructural logic, let T be a set of initial
assumptions of the form {A1 : a1, . . . , An : an} and let B : z be a declarative unit. If
T `∆ B : z then there exists a closed LKE tableau refutation for TA1 : a1, . . ., TAn : an,
FB : z.

Proof: Let 〈{Γ1, . . . ,Γk}, {IC1, . . . , ICn, RC1, . . . , RCm}〉, with k ≥ 1 and n,m ≥ 0, be the
smallest derivation of B : z in the logic ∆ with length l. The proof is by induction on l.

Base Case

The base case is when l = 0, i.e. there is no inference rule application. Therefore for some
1 ≤ i ≤ n, B : z = Ai : ai (i.e. B = Ai and z = ai). Hence, there is also a closed LKE tableau
refutation for the set TA1 : a1, . . ., TAn : an, FB : z, given by one application of the (Cl)
rule between Ai : ai and B : z.

Inductive Step

Suppose that l > 0 and that the theorem holds for any smallest derivation of length less than
l. The proof is then by cases for any rule application on the last step which generates Γk.
(For simplicity, in each of these cases the initial theory T is subsumed in both the natural
deduction derivations and the corresponding LKE trees.)

Case 1: Tick rule.

In this case Γk = 〈B : z,X〉, a declarative unit of the form B : x, for some label x, is part
of the derivation {Γ1, . . . ,Γk−1}, x v z ∈ {RC1, . . . , RCm} and the associated set of label
constraints {IC1, . . . , ICn, RC1, . . . , RCm} is satisfied in ∆. A LKE refutation of FB : z can
be constructed starting with FB : z and the set of initial assumptions T . A (PB) rule is
applied on B : x. The left branch closes by the inductive hypothesis using the part of the
derivation denoted by Π1, which is the part of the ND derivation which has inferred B : x. A
labelled signed formula of the form TB : x occurs in the right branch, which then closes with
the application of a (Cl) rule. The condition of the (Cl) rule holds by hypothesis.


...

 B : x


...

 B : z X (x v z)

FB : z

FB : x

Π1

×

�� @@
TB : x

x v z

Figure 5: Correspondence between labelled ND and LKE for the Tick rule.

Case 2: →E .

In this case Γk = 〈B : x ◦ y,→E〉 (i.e. z = x ◦ y), declarative units of the form D → B : x
and D : y, for some labels x and y are part of the derivation {Γ1, . . . ,Γk−1}, and the set of
constraints {IC1, . . . , ICn, RC1, . . . , RCm} is satisfied in ∆. A LKE refutation of FB : x ◦ y
can be constructed which starts with FB : z and the set of initial assumptions T . A (PB)

25



rule is applied on D → B : x. The left branch closes by the inductive hypothesis using part
of the derivation denoted with Π1, which is the part of the ND derivation which has inferred
D → B : x and whose length is less than L. On the right branch another (PB) rule is applied
on D : y. Its left branch closes by inductive hypothesis using part of the derivation denoted
with Π2, whereas its right branch closes with the application of (T →) and (Cl) rules as shown
in Figure 6.


...

 TD → B : x


...

 TD : y

 TB : x ◦ y →E

FB : x ◦ y

FD → B : x

Π1

×

�� ZZ
TD → B : x

FD : y

Π2

x

�� @@
TD : y

TB : x ◦ y

×
Figure 6: Correspondence between labelled ND and LKE for the →E rule.

Case 3: ⊗E .

In this case a declarative unit of the form D ⊗ B : x for some label x, is part of the
derivation {Γ1, . . . ,Γk−1}, Γk is either equal to D : d or B : b where d and b are solo
parameters; the constraint d ◦ b v x ∈ {IC1, . . . , ICn}, and the whole set of constraints
{IC1, . . . , ICn, RC1, . . . , RCm} is satisfied in ∆. Consider the first case. A LKE refutation of
FD : d can be constructed by starting with FD : d and applying a (PB) rule on D ⊗ B : x.
The left branch closes by inductive hypothesis using part of the derivation denoted with Π1,
which has inferred D⊗B : x The right branch closes after the application of a (T⊗) rule. This
is shown in Figure 7. The second case, when Γk = B : b, can be proved using an analogous
argument, except that this time TB : b is derived in the right branch from TB : x/d by the
(Tch) rule. This step may appear to use the hereditary property illegally, but remember it is
an application of the (Tch) rule.


...

 D ⊗ B : x

 D : d d ◦ b v x

 B : b

FD : d

FD ⊗ B : x

Π1

×

,, ll
TD ⊗ B : x

TD : d

TB : x/d

×

Figure 7: Correspondence between labelled ND and LKE for the ⊗E rule.

Case 4: →I In this case the tuple Γk is of the form 〈B → C : z,→I〉. The last step is

26



therefore an →I rule. A LKE refutation of FB → C : z can be constructed by starting
with FB → C : z, adding the assumption TB : b, applying the (F →) and by applying for
each preceding ND rule the corresponding LKE rule. (This last step is denoted with Π1 in
Figure 8). The LKE tree closes by inductive hypothesis on Π1.


...

 B : b


...

 C : z ◦ b

 B → C : z →I

FB → C : z

TB : b

FC : z ◦ b

Π1

×
Figure 8: Correspondence between labelled ND and LKE for the →I rule.

Case 5: ⊗I. In this case the tuple Γk is of the form 〈B ⊗ C : z,⊗I〉. A LKE refutation of
FB ⊗C : z can be constructed in the way described below. Start with FB ⊗C : z and apply
a (PB) rule on B : γ1. The left branch closes by inductive hypothesis on the part of the ND
derivation which proves B : γ1 (denoted with Π1 in Figure 9). In the right branch a (F⊗)
rule is applied deriving FC : z/γ1. By inductive hypothesis there exists an LKE refutation
Π2 of FC : /γ2. Since γ1 ◦γ2 v z and hence γ2 v z/γ1 there is also a refutation of FC : z/γ1.




...

 proof Π1


...

 B : γ1

proof Π2

...

C : γ2

 B ⊗ C : z ⊗I(γ1 ◦ γ2 v z)

FB ⊗ C : z

FB : γ1

Π1

×

�� @@
TB : γ1

FC : z/γ1

FC : γ2

Π2

×

Figure 9: Correspondence between labelled ND and LKE for the ⊗I rule.

Case 6: Lemma rule.

In this case the tuple Γk is of the form 〈B : z, Lemma 〉. A LKE refutation of FB : z can be
constructed by starting with FB : z and making an application of (PB) with B : z. The left
branch closes by the inductive hypothesis using part of the derivation denoted by Π1, which
is the part of the ND derivation which has inferred B : z. On the right branch the tree closes
immediately.

27




...


...

 B : z

 B : z Lemma

FB : z

FB : z

Π1

×

�� @@
TB : z

×

Figure 10: Correspondence between labelled ND and LKE for the Lemma rule.

2

As an example of the correspondence between natural deduction and the extended LKE
system Figure 11 shows the tableau corresponding to the natural deduction derivation given
in Figure 1, but with γ replacing each occurrence of 1 in the labels. In this LKE refutation

FA → ((A ⊗ A → B) → B) : γ

TA : a

F (A ⊗ A → B) → B : γ ◦ a

TA ⊗ A → B : b

FB : γ ◦ a ◦ b

FA ⊗ A : γ3

FA : γ1

a v γ1

�� @@
A : γ1

FA : γ3/γ1

FA : γ2

a v γ2

"
"" b

bb
TA ⊗ A : γ3

TB : b ◦ γ3

b ◦ γ3 v γ ◦ a ◦ b

Figure 11: LKE tree corresponding to the ND derivation of Figure 1.

the rightmost branch closes using the required constraint b ◦ γ3 v γ ◦ a ◦ b. The left branch
under the node FA ⊗ A : γ3 closes using the required constraint a v γ1, whereas the other
branch closes using the required constraint a v γ2.

28



6 Conclusion

This paper has shown how a uniform proof method for substructural logics based on natural
deduction can be defined using the LDS approach. This system is sound and complete with
respect to the LKE system. These properties, together with the correspondence of the LKE
system with respect to the sequent calculus, proved in [DG94], implies that the natural
deduction is also sound and complete with respect to the sequent calculus for the class of
substructural logics described in [DG94].

However, the two proof theoretic approaches (ND and LKE system) present significant dif-
ferences. This is briefly discussed in the following section where an example illustrating such
differences is also given.

6.1 Comparison between the ND and LKE systems

One of the features of the natural deduction approach described in this paper is that for a
given derivation many different solutions for the variable label of the initial goal can be found
which satisfy the associated set of label constraints. This is due to the fact that in the solving
process no limit is fixed “a priori” to the number of expansion steps which can be applied to
a given set of required constraints. Often, additional applications of the expansion step lead
to additional solutions, for the same associated structural derivation. In the LKE system,
no use is made of the imposed constraints. The expansion step of the ND’s solving process,
which uses a generated IC, corresponds instead to additional applications of LKE refutation
rules. Consequently, a single ND structural derivation can correspond to more than one (and
possibly to an infinite number of ) closed standard LKE trees4. This is shown in the following
example.

Consider the ND derivation, given in Figure 12, of the declarative unit E : γ from the set
of initial assumptions {A : a, A → D : d, D → E : e, (A → D) → (D → E) → (A →
D) ⊗ (D → E) : c}. The generated set of ICs is given by {de v cde} and the set of required
constraints is {eda v γ}. (In this example, the operator ◦ is omitted for simplicity.) In the
case of LL, there are many solutions for the variable γ which satisfy the label constraints,
namely γ = eda, γ = ecda, γ = eccda and so on. Each of these solutions is obtained by
making use of the imposed constraint de v cde none, one or more times. (In RL and IL all
solutions which have at least one occurrence of c are equivalent because of the contraction
property.) Notice that if in this example the variable γ had been the particular label adeccf ,
for some arbitrary initial assumption F : f , then no solution could have been found; yet the
imposed constraint de v cde would have been applied infinitely many times to the label eda,
but never yielding adeccf . This shows once more the semi-decidability of the solving process
algorithm.

When a comparison is made with the standard LKE system, it is seen that a single natural
deduction structural derivation, such as the one on the left in Figure 12, can correspond to
more than one (and possibly to an infinite number of) closed “standard” LKE-trees. Examples
of two LKE refutations are given, within one tree in the right-hand diagram of Figure 12.
These are obtained by terminating the tree at (i) and (ii) respectively. In this example,

4Standard LKE-trees are LKE trees generated using only the set of rules described in Table 3.

29



 A : a

 A → D : d

 D → E : e

 (A → D) → (D → E) → (A → D) ⊗ (D → E) : c

 (D → E) → (A → D) ⊗ (D → E) : cd (2, 4)

 (A → D) ⊗ (D → E) : cde (3, 5) (∗)
 D : da (1, 2)

 E : eda (1, 2, 3)

 E : γ X eda v γ

(∗) IC= de v cde from (6), (2) and (3)

A → D : d and D → E : e

are already present by step (6) and so are not added again.

FE : γ

TA : a

TA → D : d

TD → E : e

T (A → D) → (D → E) → (A → D) ⊗ (D → E) : c

TD : da

TE : eda (i)

T (D → E) → (A → D) ⊗ (D → E) : cd

T (A → D) ⊗ (D → E) : cde

TD → E : cde/d

TE : (cde/d)da (ii)

×

Figure 12: Example of structural derivation and standard LKE-tree(s)

supposing that the underlying logic is LL, each solution of the variable label γ corresponds to
a different standard LKE-tree, depending on the number of times the signed labelled formula
T (D → E) → (A → D) ⊗ (D → E) : cd (shortened to TX) is used. The first solution,
γ = eda, corresponds to a tree in which such a signed labelled formulae TX is used no times
(i.e. in this case closure is made at the step (i)); on the other hand the second solution,
γ = ecda, corresponds to a tree in which the signed labelled formula TX is used once and the
derived signed labelled formula D → E : cde/d is used to derive E : (cde/d)da (in this case
closure is made at step (ii)). Further solutions correspond to bigger trees5.

This correspondence between the ND system and the LKE system implies that if for a given
structural derivation the solving process does not terminate (e.g. there is no solution to a
given set of label constraints) the set of LKE trees reflecting the natural deduction structural
derivation would also not terminate.

Additional observations about the two systems are: (i) use of free variables is made in both
5For example, the third solution corresponds to a tree in which the signed labelled formula TX is used

twice, and in which T (A → D) ⊗ (D → E) : cd(cde/d) and then D → E : (cd(cde/d))/d are derived and
then finally TE : ((cd(cde/d))/d)da is derived. Using e v cde/d, associativity of ◦ and the simplification rule
for the / operator, namely xz(y/z) v xy, it can be shown that (cde/d)da v ecda and ((cd(cde/d))/d)da v
cd(cde/d)a v eccda.

30



systems (i.e. in the ND Lemma rule and in the LKE (PB) rule) and (ii) limitations, as to
the number of times rules are used in a proof, are still to be thoroughly investigated in both
systems. As far as (i) is concerned, in [DG94] it has been observed that the use of free
variables in the (PB) rule can vastly improve the practicality of the method. That is, instead
of “guessing” the value of the label x to use in a (PB) rule application, a free variable γ can
be used; γ is treated within the proof as a ground label, and it is only at the closure step that
a suitable value for it is given using the closure inequation. The soundness and completeness
of LKE, with respect to the sequent calculus, shows that only values for γ involving ◦ and /
are necessary. This corresponds to the use of a free variable in the ND Lemma rule. However
in the ND system this approach is taken even further, allowing free variables to be used also
in the ⊗I rule. Simple label inequations involving only the ◦ operator generated by the
closure rule can be solved in the LKE system using algorithms based on the AC-unification
technique[Sti81]. (See [BF95] for further details.) For more complex inequations involving
the / operator no algorithm has, to the authors’ knowledge, yet been reported. In the ND
approach, the solving process is much simpler. ND proofs are more structured. This structural
feature facilitates the definition of an ordering procedure on the generated label constraints
which simplifies the instantiation process and therefore the search for solutions.

However, two important practical difficulties still remain when incorporating free variables
into the LKE method. The first one is how to limit the applications of the rules and still
retain completeness. (For example, (T→) may be applied indefinitely to A → A : y given
A : x.) In [DG94], it is stated, but not proven, that the free variable version of the (PB)
rule only need to be used at most once for each occurrence of a T→ or F⊗ signed labelled
formula. This restriction together with an examination of the labels of the F-formulas in an
LKE-tree, which may allow restrictions on the labels of T-formulas derived from applications
of (T→), can be used to impose finiteness on the LKE-trees. The second difficulty is concerned
with algorithms to solve general inequalities involving the / operator. In the LKE approach,
the equivalence (10) given in Section 4.3 may be used to derive some additional general
properties, such as x◦z ◦ (y/x) v z ◦y and (x/y)/z = x/(yz). These properties could be used
to solve constraints between terms involving the / operator. Nevertheless, label inequalities
still remain difficult to solve. In the ND approach, the difficulty of handling terms with the
/ operators is avoided by the introduction of imposed constraints. In fact, applications of
an imposed constraint in an expansion step of the solving process could be seen as using the
general rule x ◦ z ◦ (y/x) v z ◦ y on an LKE constraint involving the / operator. The search
for a limit on the number of rules applications is instead a difficulty for the ND approach as
well.

6.2 Final remarks

The method described here provides a way of carrying out natural deduction proofs for
the three most well known Substructural Logics, namely Linear Logic, Relevance Logic and
Intuitionistic Logic. To cover the cases of other substructural logics which already exist in the
literature or which may be proposed in the future, it is sufficient to appropriately adapt the
solving process algorithm, leaving unchanged the set of labelled ND rules given in Table 2.
For example, in the case of Lambek calculus the simple instantiation algorithm used for
Linear logic can be strengthened to deal with lists rather than multisets in order to avoid
the commutativity property. The case of Mingle’s implication can be obtained by restricting

31



the monotonicity property to the expansion property (i.e. x v x ◦ x). This latter case can be
dealt with by appropriately adapting the instantiation step of the solving process algorithm
for intuitionistic logic.

In this paper the description is limited to the syntactical fragment of substructural logics
containing only material implication and the multiplicative conjunction. Multiplicative nega-
tion can be easily incorporated into the system for classical substructural logics. It would be
sufficient to translate negated formulae of the form ¬A into A → ⊥, where ⊥ is a constant
proposition representing falsity, and introduce the following rule (corresponding to double
negation elimination):

T (A → ⊥) → ⊥ : x

TA : x
(12)

In the presence of negation, A ⊗ B : x can be equivalently translated into ¬(A → ¬B) : x.
This removes the necessity for the expansion step in the algorithm, leading to guaranteed
termination of the solving process for a particular structural derivation and therefore a one
to one correspondence of structural derivations with LKE trees (not using ⊗ either). For
any of the above extensions as well as for the system described in this paper, the decidability
property of the system needs still to be proven. This is also the case of the LKE system as well
as of any other proof theoretic approach to substructural logics. It could be foreseen however
that to obtain such a result additional controls are needed to restrict (i) the number of lemma
rule applications, (ii) the number of →E application and (iii) the number of expansion steps in
the solving process. This is currently under investigation and it is believed that the structural
feature of the natural deduction proofs could help in finding such proof theoretic restrictions.

Finally, the issue of uniformity poses one interesting question: What is the price paid for
such generality? It is known that the multiplicative fragment of LL (i.e. {⊗,→,¬}) is NP-
complete. The algorithm described here is EXP-time for the {→,⊗} fragment of LL and RL.
This appears to be a reasonable complexity, given the theoretical lower bounds. It could be
argued that in a theorem prover for LL only, special heuristics could be developed which would
improve its efficiency. But this could be done only making the theorem prover specific to one
particular logic. In the ND system described in this paper, the modularity of the derivation
process given by the use of the labels, would facilitate such heuristics to be embedded into
the constraint solving mechanism, leaving the set of ND rules general and applicable to any
substructural logic. There is always space then for efficiency gains.

Acknowledgements

The authors would like to thank Marcello D’Agostino and Hans-Jorgen Ohlbach for their
helpful comments and also several anonymous referees for their suggestions for improvements.

References

[BDR96] Krysia Broda, Marcello D’Agostino, and Alessandra Russo. Transformation methods in
LDS. In Logic, Language and Reasoning. An Essay in Honor of Dav Gabbay. Kluwer

32



Academic Publishers, To appear 1996.

[BEKV94] K. Broda, S. Eisenbach, H. Khoshnevisan, and S. Vickers. Reasoned Programming. Prentice
Hall, 1994.

[BF95] Krysia Broda and Marcelo Finger. KE-tableaux for a fragment of linear logic. Technical
report, 4th Workshop on Theorem Proving with Analytic Tableaux and Related Methods,
Ed. Peter Baumgartner, University of Koblenz, 1995.

[DG94] Marcello D’Agostino and Dov M. Gabbay. A generalization of analytic deduction via
labelled deductive systems.Part I: Basic substructural logics. Journal of Automated Rea-
soning, 13:243–281, 1994.

[DM94] Marcello D’Agostino and Marco Mondadori. The taming of the cut. Journal of Logic and
Computation, 4:285–319, 1994.

[Dôs93] Kosta Dôsen. A historical introduction to substructural logics. In P. Schroeder Heister and
Kosta Dôsen, editors, Substructural Logics, pages 1–31. Oxford University Press, 1993.

[Gab96] Dov M. Gabbay. Labelled Deductive Systems, Volume 1 - Foundations. Oxford University
Press, 1996.

[Gen35] Gerhard Gentzen. Unstersuchungen über das logische Schliessen. Math. Zeitschrift, 39:176–
210, 1935. English translation in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Rus96] Alessandra Russo. Generalising propositional modal logic using labelled deductive systems.
In Applied Logic Series (APLS), “Frontiers of Combining Systems, First International
Workshop”, volume 3, pages 57–73, 1996.

[Sti81] M. Stickel. A Unification Algorithm for Associative-Commutative Functions. Journal of
the ACM, 28(3), 1981.

[Sza69] M. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam,
1969.

33


