
BPMPD user's manual

Version 2.20

Csaba M�esz�aros �

Imperial College, Deparment of Computing

Abstract

The purpose of this document is to describe a software package, called

BPMPD, which implements the infeasible primal{dual interior point method

for linear and quadratic programming problems. This manual describes how

to prepare data to solve with the package, how to use BPMPD as a callable

solver library and which algorithmic options can be speci�ed by the user.

1 Problem formulation

BPMPD is a software package to solve linear (LP) and convex quadratic (QP)

problems. For simplicity we will introduce here the quadratic programming problem

which includes the linear programming as special case. Without loss of generality,

the convex QP problem is usually assumed to be in the following form:

min c
T
x+ 1

2
x
T
Qx;

subject to Ax = b;

x � 0

(1)

where A 2 R
m�n of full row rank, Q 2 R

n�n symmetric positive semide�nite

and c; x 2 R
n
; b 2 R

m. It is to be noted that an 1/2 explicit term is given in

the quadratic matrix. The dual associated with this problem can be written as

max b
T
y � 1

2
x
T
Qx;

subject to A
T
y + z �Qx = c;

z � 0

(2)

�The author was supported by EPSRC grant No. GR/J52655

1

where z 2 R
n and y 2 R

m. The constrains of the above problems de�ne con-

vex polyhedrons which are nonempty if a feasible primal{dual solution exists. The

Karush{Kuhn{Tucker optimality conditions for (1) and (2) are:

Ax = b; (3)

A
T
y + z �Qx = c; (4)

Xz = 0; (5)

(x; z) � 0 (6)

where X = diag(x1; :::; xn).

BPMPD implements the infeasible primal{dual interior point algorithm [10, 1]

that is BPMPD generates a sequence of iterates

(xk; yk; zk) k = 0; 1; 2; :::

which satis�es a strict positivity condition (xk; zk) > 0, but feasibility (3,4) and

optimality (5) reached as k �! 1. The primal{dual interior point algorithm is

based on the application of the Newton method to solve the perturbed KKT system.

The perturbation is introduced to retain positivity in (x; z) by replacing (5) with

Xz = �e

where � is the nonnegative centering parameter and e is the n vector of ones.

To derive the primal-dual algorithm one should:

� replace nonnegativity constraints on the variables with logarithmic barrier

penalty terms;

� move equality constraints to the objective with the Lagrange transformation to

obtain an unconstrained optimization problem and write �rst order optimality

conditions for it; and

� apply Newton's method to solve these �rst order optimality conditions (i.e. to

solve a system of nonlinear equations).

Replacing nonnegativity constraints with the logarithmic penalty terms gives the

following logarithmic barrier problem:

minimize c
T
x+ 1

2
x
T
Qx� �

nP
j=1

lnxj

subject to Ax = b:

(7)

2

The Lagrangian for (7) is

L(x; s; y; w; �) = c
T
x+

1

2
x
T
Qx� �

nX
j=1

lnxj � y
T (Ax� b)

and the �rst order optimality conditions for (7) are:

rxL = c� �X
�1
e�A

T
y +Qx = 0;

ryL = b�Ax = 0:

By introducing Z = �X
�1 we can write the �rst order optimality conditions of (7)

as

Ax = b;

A
T
y + z �Qx = c; (8)

XZe = �e:

Let us observe that the �rst two of the above equations are linear and force primal

and dual feasibility of the solution. The last equation is nonlinear and depends on

the barrier parameter �. It becomes the complementarity condition for � = 0, which

together with the feasibility constraints provides optimality of the solutions.

It can be seen that (8) is identical to the Karush-Kuhn-Tucker (KKT) system

for the LP problem, in which the complementarity conditions are perturbed by �.

Hence, (8) is called the perturbed KKT conditions.

A nonnegative solution of (8) is called an analytic center. It clearly depends on

the value of the barrier parameter �. The set of such solutions (x(�)) and (y(�); z(�))

de�nes a trajectory of centers for the primal and dual problem, respectively and is

called the central path. The quantity

g = x
T
z + s

T
w;

measures the error in the complementarity and is called a complementarity gap.

Note that for a feasible point, this value reduces to the usual duality gap. For a

�-center, for example,

g = 2�eT e = 2n�; (9)

and it vanishes at an optimal solution.

One iteration of the primal-dual algorithm makes one step of Newton's method

applied to the �rst order optimality conditions (8) with a given � and then � is

3

updated (usually decreased). The algorithm terminates when the infeasibility and

the complementarity gap are reduced below predetermined tolerances.

Given an x; z 2 Rn
+; y 2 Rm, Newton's direction is obtained by solving the

following system of linear equations2
64
A 0 0

Q A
T

I

Z 0 X

3
75
2
64
�x

�y

�z

3
75 =

2
64

�b

�c

�e�XZe

3
75 ; (10)

where

�b = b�Ax;

and �c = c�A
T
y � z +Qx

denote the violations of the primal and the dual constraints, respectively. We call

the linear system (10) the Newton equations system.

Note that the primal-dual method does not require feasibility of the solutions (�b;

and �c might be nonzero) during the optimization process. Feasibility is attained

during the process as optimality is approached. It is easy to verify that if a step

of length one is made in the Newton's direction (10), then feasibility is reached

immediately. This is seldom the case as a smaller stepsize usually has to be chosen

(a damped Newton iteration is taken) to preserve positivity of x and z. If this is

the case and a stepsize � < 1 is applied, then infeasibilities �b; and �c are reduced

by a factor (1� �).

Once the system (10) has been solved, the maximum stepsizes in primal space

(�P) and dual space (�D) are computed such that the nonnegativity of variables is

preserved:

�P =
1

max
k=1:::n

n
1;��xk

xk

o;

�D =
1

max
k=1:::n

n
1;��zk

zk

o :
Then the common steplengt is de�ned as � = min (�P ; �D). These stepsizes are

slightly reduced with a factor �0 < 1 to prevent hitting the boundary. Finally a new

iterate is computed as follows

x x+ �0��x;

y y + �0��y;

z z + �0��z:

(11)

4

After making the step, the barrier parameter � is decreased by a given factor and

the process is repeated.

Interior point algorithms terminate when the �rst order optimality conditions

(8) are satis�ed with some predetermined tolerance. In the case of the primal{dual

method, this translates to the following conditions imposed on the relative primal

and dual feasibility and the relative duality gap

jjAx� bjj

1 + jjbjj
� 10�p;

jjAT
y + z � w � cjj

1 + jjc+Qxjj
� 10�p;

jcTx+ 1

2
x
T
Qx� (bTy � 1

2
x
T
Qx)j

1 + jbTy + 1

2
xTQxj

� 10�p

where p is the number of digits accurate in the solution. An 8{digits exact solution

(p = 8) is typically required in the literature.

In each iteration BPMPD uses Mehrotra's predictor corrector technique [5] to

compute the search direction and the centering parameter �. Furthermore, the

multiple correction technique [3] is also applied.

2 Installing BPMPD

BPMPD is entirely written in Fortran 77 and is believed to be portable. Only

the timing routine has to be adjusted to the actual platform and compiler. In the

distribution this timing routine is provided for a number of platforms and compilers

and the relevant one can be easily activated. The C version of the timing routine is

also included which is standard under UNIX.

BPMPD can be compiled and linked with a Fortran 77 compiler system. Al-

ternatively, the Fortran 77 source code can be translated to C by using the public

domain f2c system.

To install the executable version of BPMPD one parameter, realmxx has to be

set in bpmain:f for memory allocation prior to compile the source �le. The value

of this parameter depends on the available memory of the platform and determines

the memory allocation. BPMPD will allocate about 14�realmmx bytes of memory,

that is for a computer platform with 64 megabyte operative memory realmmx can

be set to about 4500000.

5

To compile the callable library form of BPMPD, the source �les bpmain.f,

minput.f, mpsinp.f, mpsout.f and convert.f have to be omitted. An interface,

which simpli�es the use of BPMPD as a subroutine can be created (we will describe

such an interface in one of the forthcoming sections) and included to the source �les.

We would like to note that only one routine, mprnt (located in the �le mprnt.f)

contains write statements to external �les.

3 Solution of a problem

The �rst step of the solution process is to generate an input �le which describes

the optimization problem. BPMPD supports the industry{standard MPS format

with some extensions. In the input �le A; b and c, furthermore the bounds on

individual variables and rows are speci�ed by the usual ROWS, COLUMNS, RHS,

BOUNDS, RANGES records of the MPS format [11]. To specify the quadratic part

of the problem, a new section "QUADOBJ" is introduced. It serves to specify the

lower triangular part of the quadratic objective in that relative column order as

it has been given in the COLUMNS section. Otherwise the data records in the

QUADOBJ section are of the same structure than that of the COLUMNS section.

As example for the problem formulation, let us consider the following quadratic

programming problem:

min f(x; y) = 4 + 1:5x � 2y + 4x2 + 2xy + 5y2;

2x + y � 2;

�x + 2y � 6;

0 � x � 20; y � 0:

After implied rewriting:

min f(x; y) = 4 + 1:5x � 2y + 1

2
(8x2 + 2xy + 2yx + 10y2);

2x + y � 2;

�x + 2y � 6;

0 � x � 20; y � 0:

Thus the Q matrix is

"
8 2

2 10

#

6

for which the lower triangular part (to be given) is:"
8

2 10

#
:

Below we have shown the MPS �le corresponding to the example. Note that the

additive term in the objective function is given in the RHS section by opposite sign.

NAME QP example

ROWS

N obj

G r1

L r2

COLUMNS

c1 r1 2.0 r2 -1.0

c1 obj 1.5

c2 r1 1.0 r2 2.0

c2 obj -2.0

RHS

rhs1 obj -4.0

rhs1 r1 2.0 r2 6.0

BOUNDS

UP bnd1 c1 20.0

QUADOBJ

c1 c1 8.0

c1 c2 2.0

c2 c2 10.0

ENDATA

After the input �le has been created the problem can be solved. The optimizer

can be called by the bpmpd command. First, BPMPD will read its parameter �le

called bpmpd.par if presented. If the parameter �le exists and the problem �le name

is speci�ed in it, BPMPD will start to read the problem and to solve it. Otherwise

BPMPD will prompt the user for the the input �le name. It is assumed by BPMPD

that the extension of the input �le is either .mps or .qps. The name of the MPS

input �le has to be given by the user without extension.

Depending on the speci�cations BPMPD will create an optimization report �le

(with extension .log) and a solution �le (with extension .out).

7

4 Using the package as callable library

BPMPD is a modularized software package, written in Fortran 77, in which the

problem input/output and optimization are completely separated. As a stand-alone

solver, BPMPD is prepared to read optimization problems fromMPS �les. The main

program (bpmain.f) contains subroutine call to the MPS input reader (�nput), to

the optimizer driver routine (solver) and to the output writer routine (mpsout).

Additionally, the "built{in" values of the optimization parameters are de�ned here.

BPMPD operates in a column �le and in a row �le. The column �le consists of

two working arrays (one double precision called colnzs and one integer called colidx)

which are of the same dimension. The row �le is one integer working array (called

rowidx). The column �le contains the A and the lower o�{diagonal part of Q as

part of the input in form of sparse vectors. They need to be placed continuously

from the �rst position of the working arrays. The remaining part of the column �le

will be used to hold the factorization during the algorithm, while the purpose of the

row �le is to support row-wise representation of data when necessary.

The problem and memory dimensions are put in the common block /dims/ which

has the following structure:

common/dims/ n,qn,n1,m,mn,nz,qnz,cfree,pivotn,denwin,rfree

integer*4 n,qn,n1,m,mn,nz,qnz,cfree,pivotn,denwin,rfree

The following values needed to be set prior to calling the optimization driver

routine:

Name Description

n Number of variables.

qn Number of quadratic variables.

n1 = n+1.

m Number of rows in A.

mn = n+m.

nz Number of nonzeros in A.

qnz Number of nonzeros in Q.

cfree Lenght of the column �le.

rfree Length of the row �le.

The optimization driver routine can serve as a callable library. The QP problem

has to be passed to this subroutine as input. BPMPD assumes the problem in the

8

following form:
min c

T
x+ 1

2
x
T
Qx;

subject to Ax� Is = b;

u � (x; s)
T
� l

where s 2 R
m are slack variables for rows and u; l 2 R

n+m are (possibly in�nite)

upper and lower bouns. BPMPD computes the primal{dual solution corresponding

this formulation.

The input parameters for this subroutine are:

1.

Name Type Length Description

obj double prec. n Linear part of the objective function.

rhs double prec. m Right hand side.

ubound double prec. n+m Upper bound of variables.

lbound double prec. n+m Lower bounds of variables.

colpnt integer n+1 Column pointers of A.

colidx integer cfree Indices of the columns in A and Q.

colnzs double prec. cfree Nonzero values in A and Q.

qdiag double prec. n Diagonal of the quadratic objective.

qpnt integer n+1 Column pointers of Q.

big double prec. 1 Represents in�nity (1030).

addobj double prec. 1 Additive term to the objective.

Note if qnz=0 then qpnt, if qn=0 then both qpnt and qdiag can be dummy

parameter. The subroutine results in the following outgoing parameters:

Name Type Length Description

xs double prec. n+m Last (optimal) primal iterate.

dv double prec. m Last (optimal) dual iterate.

dspr double prec n+m Last (optimal) dual slack iterate.

code integer 1 Termination code.

iter integer 1 Number of iterations during optimization.

opt double prec. 1 Final primal objective function value.

The termination code can have one of the following values:

9

Code value Statement

< 0 Not enougt memory, optimization was not performed.

1 Suboptimal solution.

2 Optimal solution.

3 Problem is dual infeasible.

4 Problem is primal infeasible.

As an example the following code presents an interface to the optimization driver

routine:

subroutine bpmpd(mm,nn,qnn,qnnz,isiz,rsiz,colnzs,colidx,

x colpnt,qpnt,ubound,lbound,obj,qdiag,rhs,addobj,xs,dv,

x dspr,vstat,opt,big,code)

integer*4 mm,nn,qnn,qnnz,isiz,rsiz,colidx(isiz),

x colpnt(nn+1),qpnt(nn+1),vstat(mm+nn),code

real*8 colnzs(rsiz),ubound(nn+mm),lbound(nn+mm),

x obj(nn),qdiag(nn),rhs(mm),addobj,xs(mm+nn),dv(mm),

x dspr(mm+nn),opt,big

c

common/dims/ n,qn,n1,m,mn,nz,qnz,cfree,pivotn,denwin,rfree

integer*4 n,qn,n1,m,mn,nz,qnz,cfree,pivotn,denwin,rfree

common/logprt/ loglog,lfile

integer*4 loglog,lfile

c

c Local variables to read parameter file

c

real*8 bigbou,at

character*8 objnam,rhsnam,bndnam,rngnam

character*99 namstr,outstr,ofnam

integer*4 i,j,k,l,iter,fnzmax,fnzmin

c

c Setting up problem dimensions

c

10

qn=qnn

qnz=qnnz

n=nn

m=mm

n1=n+1

mn=m+n

nz=colpnt(n+1)-1

c

c Computing the length of the row and column files

c

cfree=rsiz-(13*mn+3*m+3)

rfree=isiz-(11*mn+3)-cfree

if(rfree.lt.0)then

code=-2

goto 999

endif

c

c Set printing log to "stdout only", we do not open logfile

c

loglog=1

c

c Read-in optimization parameters.

c

outstr='bpmpd.par'

call readpar(outstr,i,j,k,namstr,ofnam,

x objnam,rhsnam,bndnam,rngnam,bigbou,at,l)

c

c Call the optimizer

c

code=0

call solver(

x obj,rhs,lbound,ubound,colnzs(rsiz-mn),colnzs(rsiz-2*mn),xs,

x colnzs(rsiz- 3*mn),colnzs(rsiz- 4*mn),colnzs(rsiz- 5*mn),dspr,

x colnzs(rsiz- 6*mn),colnzs(rsiz- 7*mn),colnzs(rsiz- 8*mn),

x colnzs(rsiz- 9*mn),colnzs(rsiz-10*mn),dv,

x colnzs(rsiz-10*mn- m),colnzs(rsiz-10*mn-2*m),

x colnzs(rsiz-10*mn-3*m),colnzs(rsiz-11*mn-3*m),

11

x colnzs(rsiz-12*mn-3*m),colnzs(rsiz-13*mn-3*m),

x qdiag,colnzs,

x colidx(isiz- n),colidx(isiz-mn),colpnt,colidx(isiz-2*mn),

x colidx(isiz- 3*mn),colidx(isiz-4*mn),vstat,colidx(isiz-5*mn),

x colidx(isiz- 6*mn),colidx(isiz -7*mn),colidx(isiz- 8*mn),

x colidx(isiz- 9*mn),colidx(isiz-10*mn),qpnt,

x colidx(isiz-11*mn),colidx,colidx(cfree+2),

x code,opt,iter,i,j,k,fnzmax,fnzmin,addobj,bigbou,big,l)

c

c Solver finished, return

c

999 return

end

The interface expects a double precision array (colnzs) of size rsiz, an integer

array (colidx) of size isiz which represent A and Q. Parameters mm and nn pass the

number of rows and columns in A respectively. Parameter qnn contains the number

of quadratic variables. For pure LP problems this has to be set to zero, and the

allocation of the arrays qdiag and qpnt can be ignored. Parameter qnnz contains

the number of o�-diagonal nonzeros in the lower triangular part of Q. For separable

quadratic problems this has to be set to zero and the allocation of the array qpnt

can be omitted.

The other input parameters colpnt, qpnt, ubound, lbound, obj, qdiag, rhs, addobj,

big and the output parameters xs, dv, dspr, opt, code are as mentioned previously.

An additional output parameter bstat is also passed in our sample interface. This

parameter is an integer vector of size (nn +mm) which contains 0 or 1 as output

corresponding the optimizer's guess on the status of the individual variables / slacks

(non-basic { basic respectively).

It is to be noted that no default values for the optimization parameters are de�ned

in our sample interface routine. These parameters will be set from the parameter

�le by the readpar procedure.

To demonstrate the calling the interface routine let us consider our previous

sample problem. Then, the input parameters need to be de�ned as:

12

mm = 2

mn = 2

qnn = 2

qnnz = 1

addobj = 4.0

isiz = ... (size of the allocated integer memory)

rsiz = ... (size of the allocated double prec. memory)

ubound : (20, big, big, 0)

lbound : (0, 0, 0, -big)

rhs : (2, 6)

obj : (1.5, -2)

qdiag : (8, 10)

colcnt : (1, 3, 5)

qpnt : (5, 6, 6)

colidx : (1, 2, 1, 2, 2)

colnzs : (2, -1, 1, 2, 2)

5 The parameter �le

BPMPD is a research code which allowes to experiment by trying di�erent algo-

rithmic options. To support this, several algorithmic parameters and input/output

options can be speci�ed for BPMPD via the parameter �le called bpmpd.par. In the

parameter �le all parameters must be in lines between the BEGIN and END mark-

ers, other lines will be ignored. It is also important that to preserve compatibility

across platforms and compilers, EACH numerical value MUST contain a decimal

point. Within one line the parameter name and its associated value has to be sep-

arated with at least one space or with one "=" symbol. BPMPD will ignore the

section of a line which is after a "!" symbol, this allows to put comments in the

parameter section.

13

5.1 Input/output options

The purpose of these options is to support MPS �le handling. They can be omitted

in the callable library form of BPMPD.

parameter : NAME default: values : String

This option speci�es the name of the input �le. If it is left blank (as default),

BPMPD will prompt the user for the �lename. The lenght of the string is limited to

36 characters. The extension ".mps" is automatically added to the string read in. If

the opening of the �le is not successful, BPMPD replaces the extension with".qps"

and tries again.

parameter : STARTSOL default: values : String

This string speci�es the name of the �le which contains the starting point used

in warm start. The length of this string is limited to 40 characters. The whole

�lename (with extension) has to be given. BPMPD can read a �le which has been

generated by BPMPD itself previousely with OUTPUT = 1 setting (see parameter

OUTPUT) or which has the same �le format as BPMPD's output �le. If the value

of the parameter is left blank, no �le will be read. If reading the �le is unsuccessful,

BPMPD will automatically switch from warm start to cold start.

parameter : MAXMN default: 250000 values : POSITIVE INTEGER

BPMPD will partition the memory and read the MPS �le by assuming that the

number of rows plus number of columns is less than MAXMN. If this is incor-

rect, BPMPD will repartition the memory and read the MPS �le once more. After

successful reading the MPS �le the dimensions of the problem will be known and

BPMPD will redistribute the memory for its maximal possible exploitation. It is rec-

ommended to give an overestimation on the problem dimension otherwise BPMPD

will need to read the MPS �le twice. If the MAXMN value is too large to form the

corresponding memory partitions BPMPD will automatically decrease it.

parameter : MINMAX default: 1 values : -1 or 1

BPMPD solves minimization problems. For maximization problems MINMAX has

to be speci�ed as -1, then BPMPD will negate the objective function (and minimize

it).

parameter : OUTPUT default:1 values : 0 or 1

14

This parameter de�nes either a whole solution report has to be written or not. When

specifying 1, BPMPD will create an output �le which contains the whole optimal

solution of the problem. Otherwise a short �le will be created containing the most

important statistics about the solution progress.

parameter : OBJNAM default: values : String of 8 character length

This parameter speci�es the name of the objective function in the MPS �le. If it is

left blank, BPMPD will select the �rst row which has the type " N ".

parameter : RHSNAM default: values : String of 8 character length

This parameter speci�es the name of the right hand side in the MPS �le. If it is left

blank, BPMPD will select the �rst right hand side name.

parameter : BNDNAM default: values : String of 8 character length

This parameter speci�es the name of the bounds in the MPS �le. If it is left blank,

BPMPD will select the �rst bound name.

parameter : RNGNAM default: values : String of 8 character length

This parameter speci�es the name of the ranges in the MPS �le. If it is left blank,

BPMPD will select the �rst range name.

parameter : BIGBOUND default:10
15

values : POSITIVE REAL

All bounds and ranges will be considered as in�nity which are larger than this

parameter. This parameter serves to correct those MPS �les in which in�nities are

expressed by very large numbers.

parameter : SMALLVAL default:10
�12

values : POSITIVE REAL

All numerical values in the MPS �le which are less in absolute value than this

parameter will be considered as zero.

parameter : EXPSLACKS default:0 values : 0 or 1

BPMPD will include slack variables as structural ones (and form the constrains as

equalities) if this parameter is set to 1. Otherwise slacks are handled as special

variables for inequality constraints.

parameter : ITERLOG default:3 values : NONNEGATIVE INTEGER

This value speci�es how the iteration log has to be produced. The following values

are possible:

15

0 : BPMPD works in silent mode, no log will be created.

1 : BPMPD sends the iteration log to the standard output.

2 : BPMPD sends the iteration log to the log�le (which has the same name as the

input �le but with ".log" extension).

3 : BPMPD sends the iteration log to both the standard output and log �le.

Larger numbers can be also speci�ed for debugging purposes. In this case BPMPD

will print additional informations during the solution process.

5.2 Parameters for handling sparsity

One of the most important features of BPMPD is the sophisticated methods for

handling sparsity. Two di�erent approaches are implemented to build the factoriza-

tion for computing interior point iterations. One is called as normal equations while

the other is called as augmented system approach. The main di�erence between

them is that by the normal equations the pivot order is computed by symbolical

investigation while by the augmented system it is determined by both symbolical

and numerical tests. The augmented system is more advantageous if the problem

has special structures (e.g. dense columns) but it is more expensive than the normal

equations approach. See more details in [4]. The following parameters in
uence the

heuristic which decides which of the two approaches is preferable by the particu-

lar problems. The implemented method uses an improved version of the heuristic

described in [4].

parameter : DENSGAP default: 0.20 values : POSITIVE REAL

Maximal ratio of the dense columns. At most DENSGAP � n columns are allowed

to be handled as dense.

parameter : DENSLEN default: 10 values : POSITIVE INTEGER

Minimum required column length for dense columns. Shorter columns are not

treated as dense.

parameter : SUPDENS default: 350 values : POSITIVE INTEGER

Minimal column length of 'super' dense columns. Very dense columns are handled

specially in the factorization set{up phase to increase the speed of the process.

16

parameter : LAM default: 10
�5

values : REAL

This parameter represents the minimum acceptable density for "dense" columns.

This parameter can override the result of the heuristic in such a case if the heuristic

decides to handle some columns as "dense" which are of very small density. Posi-

tive LAM means a relative density measure while a negative value is negated and

considered as absolute density value (i.e. column count).

parameter : SETLAM default: 0 values : -1, 0, 1

By default, BPMPD uses its own heuristic to identify dense columns. When speci-

fying -1, BPMPD skips this heuristic and uses LAM as criterion to handle columns

as "dense" and "sparse". Setting up the factorization by the augmented system

approach can be requested by specifying 1 for this parameter.

We would like to note that to request the normal equations approach is possible

when specifying 1.0 for LAM.

5.3 Supernode parameters

BPMPD performs the supernodal Cholesy factorization. A paper [8] is available

which contains the particulars. The parameters introduced here control the supern-

ode partitions of the factorization.

parameter : PSUPNODE default: 4 values : POSITIVE INTEGER

Required minimum number of columns of a primer supernode.

parameter : SSUPNODE default: 4 values : POSITIVE INTEGER

Required minimum number of columns of a secondary supernode.

parameter : MAXSNZ default: 99999999 values : POSITIVE

INTEGER

Maximum number of nonzeros allowed in one supernode. This parameter can be

very important if the computer platform has an e�cient cache memory system.

5.4 Pivot and factorization parameters

These parameters control the pivot searching in the symbolical and numerical pro-

cesses in the factorization set up as well during interior point iterations.

parameter : TPIV1 default: 10
�3

values : POSITIVE REAL

17

First relative pivot tolerance for the augmented system factorization.

parameter : TPIV2 default: 10
�8

values : POSITIVE REAL

Second relative pivot tolerance for the augmented system factorization. If there are

no pivots satisfying the �rst tolerance, the value of the tolerance will be reduced

until TPIV2. See [7] for more details.

parameter : TABS default: 10
�12

values : POSITIVE REAL

Relative pivot tolerance for the starting factorization. When a computed pivot value

in the factorization is less than this parameter, the corresponding row of the problem

will be considered as dependent and will be dropped. This parameter e�ects the

�rst factorization which is performed to compute the starting point.

parameter : TRABS default: 10
�15

values : POSITIVE REAL

Relative pivot tolerance during the algorithm. Pivot values bellow this parameter

will indicate dependent rows.

parameter : TFIND default: 25 values : NONNEGATIVE INTEGER

Pivot searching power. TFIND = 0 will result in the "minimum degree" ordering

while a large number will result in the "minimum local �ll{in" ordering. Inter-

mediate values balances between speed and ordering quality. See more details in

[6].

parameter : ORDERING default: 2 values : 0, 1, 2 or 3.

This parameter selects the ordering algorithm. The following vales are possible:

0 : "Natural" ordering (without investigations).

1 : Minimum degree ordering

2 : Minimum local �ll{in ordering for the normal equations, minimum degree for

the augmented system.

3 : Minimum local �ll{in ordering.

18

5.5 Stopping criterion parameters

BPMPD terminates with optimal status if the relative primal infeasibility

jjAx� bjj

1 + jjbjj
;

the relative dual infeasibility

jjAT
y + z � w � cjj

1 + jjc+Qxjj

and the relative duality gap

jcTx+ 1

2
x
T
Qx� (bTy � u

T
w � 1

2
x
T
Qx)j

1 + jbTy � uTw � 1

2
xTQxj

or the average complementarity gap

x
T
s

n

are less than the predetermined tolerances. Infeasibility is detected if a sharp in-

crease in one of the above terms occurs. This is monitored by the merit function:

jjAx� bjj

1 + jjbjj
+
jjAT

y + z � w � cjj

1 + jjc+Qxjj
+
jcTx+ 1

2
x
T
Qx� (bTy � u

T
w � 1

2
x
T
Qx)j

1 + jbTy � uTw � 1

2
xTQxj

:

parameter : TOPT1 default: 10
�8

values : POSITIVE REAL

BPMPD stops if the current iterate is primal and dual feasible and the relative

duality gap is less than this value.

parameter : TOPT2 default: 10
�20

values : POSITIVE REAL

BPMPD stops if the average complementary gap is less than this tolerance.

parameter : TFEAS1 default: 10
�7

values : POSITIVE REAL

Relative primal feasibility tolerance.

parameter : TFEAS2 default: 10
�7

values : POSITIVE REAL

Relative dual feasibility tolerance.

19

parameter : INFTOL default: 10
5

values : POSITIVE REAL

BPMPD stops if the "merit" value of "non-optimality" grows faster than this value.

parameter : TSDIR default: 10
�16

values : POSITIVE REAL

BPMPD stops if the maximum norm of the search direction is less than this value.

parameter : MAXITER default: 99 values : POSITIVE INTEGER

BPMPD stops if the number of iterations exceeds this limit.

5.6 Numerical tolerances

These parameters are used in special parts of the code. It is not recommended to

change these values.

parameter : TPLUS default: 10
�10

values : POSITIVE REAL

Relative addition tolerance. In some procedures (for example in the aggregator) the

result of a+ b is replaced by zero if abs (a+ b) < max(a; b) � TPLUS.

parameter : TZER default: 10
�35

values : POSITIVE REAL

Absolute zero tolerance. All computed values whose absolute value is less than this

parameter will be considered as zero.

5.7 Iterative re�nement parameters

During computation of the search direction iterative methods can be invoked to

improve numerical accuracy. Three such methods are available in BPMPD, these

are:

� Iterative improvement.

� Conjugate gradient method.

� Quasi minimum residual algorithm.

The application of re�nements can slow down the iterations remarkably if the prob-

lem and its factorization is very sparse. Otherwise, it has less in
uence on the speed.

These methods are highly recommendable due to their advantageous numerical ef-

fect.

20

parameter : TRESX default: 10
�9

values : POSITIVE REAL

Acceptable residual in the primal space.

parameter : TRESY default: 10
�9

values : POSITIVE REAL

Acceptable residual in the dual space. Iterative re�nement will be performed if the

primal or dual residual is not acceptable.

parameter : MAXREF default: 5 values : INTEGER

Base number for computing the maximum allowable re�nement steps. If its value is

positive, the current limit of the iterative re�nements is computed as

MAXREF � log2

flops

fnz

!

where
ops is the number of
oating point operations required for one factorization

and fnz is the number of nonzeroes in the factorization.

If a negative value is presented, BPMPD will do at most {MAXREF re�nements.

parameter : REFMET default: 1 values : 0 to 7 INTEGER

The bits of this value represent turning on{o� individual re�nement techniques. The

following methods are available:

1 Iterative improvement.

2 Conjugate gradient method.

4 Quasi minimum residual method.

5.8 Scaling parameters

Scaling is performed prior to the interior point iterations to improve the condition

and numerical behavior of the problem. The scaling is performed in iterations (called

here as passes). There are the following scaling methods available:

0 No scaling.

1 Simple scaling. Scales each columns and rows to have 1.0 maximum norm.

2 Geometric mean scaling + simple scaling.

21

3 Curtis-Reid's algorithm + simple scaling.

4 Geometric mean scaling only.

5 Curtis-Reid's algorithm only.

There are two possible places for scaling: before the aggregator (which is recom-

mended) and after aggregator (which is not recommended).

parameter : OBJNORM default: 10
2
values : NONNEGATIVE REAL

BPMPD will scale the objective to this maximumnorm. If the problem is quadratic,

the objective will be scaled in such a way that the square of the largest diagonal

element of Q will be OBJNORM. If the value of OBJNORM is zero, no scaling on

the objective will be performed.

parameter : RHSNORM default: 0.0 values : NONNEGATIVE REAL

BPMPD will scale the right hand side to this maximum norm. If this value is zero,

no scaling on the right hand side will be performed.

parameter : MINDIFF default: 1.0 values : POSITIVE REAL

BPMPD will terminate the scaling if the ratio of the largest and smallest absolute

value in the matrix is less than this threshold.

parameter : SIGNORE default: 10
�12

values : POSITIVE REAL

BPMPD will ignore those matrix elements during scaling whose relative absolute

value to the maximum norm of the corresponding column is less than SIGNORE.

This parameter is very useful if small computational errors are presented in the

problem.

parameter : SPASSES1 default: 5 values : NONNEGATIVE INTEGER

Maximum number of passes before the aggregator. This value should be less than

128.

parameter : SMETHOD1 default: 2 values : 0 to 5 INTEGER

Scaling method before aggregator.

parameter : SPASSES2 default: 0 values : NONNEGATIVE INTEGER

22

Maximum number of passes after aggregator. This value should be less than 128.

We do not recommend to scale after doing aggregation, but it can be advantageous

in some cases.

parameter : SMETHOD2 default: 0 values : 0 to 5 INTEGER

Scaling method after aggregator.

5.9 Predictor-corrector and barrier parameters

The parameters de�ned here in
uence the predictor{corrector method [5] as well

the computation of the barrier parameter.

parameter : STOPCOR default: 10
�3

values : POSITIVE REAL

Corrector is ignored if it decreases the steplengts by a larger factor than STOPCOR.

parameter : BARSET default: 0.25 values : NONNEGATIVE REAL

BARSET � x
T s

n
will be used as an upper limit for the barrier parameter.

parameter : BARGROW default: 10
3

values : POSITIVE REAL

Barrier growing bound between two successive iterations.

parameter : BARMIN default: 10
�12

values : NONNEGATIVE REAL

Minimum barrier threshold. Smaller barrier value will be replaced by zero.

parameter : MINCORR default: 1 values : -1, 0 or 1

Number of minimum corrector steps in the predictor{corrector procedure. Value 1

forces to do one correction with iterative re�nement, while values 0 and -1 allow to

skip corrector. When value 0 is speci�ed the predictor is enhanced with iterative

re�nement.

parameter : MAXCORR default: 1 values : NONNEGATIVE

INTEGER

Maximum number of corrections allowed in the predictor{corrector procedure.

parameter : INIBARR default: 0.0 values : NONNEGATIVE REAL

This parameter determines the barrier value for the predictor direction as INIBARR�
xT s

n
.

23

5.10 Centrality corrections parameters

After the predictor{corrector step BPMPD uses centrality corrections. More details

in [3].

parameter : TARGET default: 0.09 values : POSITIVE REAL

Trial steplength improvement.

parameter : TSMALL default: 0.1 values : POSITIVE REAL

Small complementarity bound.

parameter : TLARGE default: 10.0 values : POSITIVE REAL

Large complementarity bound.

parameter : CENTER default: 5.0 values : POSITIVE REAL

Centrality force.

parameter : CORSTOP default: 1.01 values : POSITIVE REAL

Correction stop parameter.

parameter : MINCCORR default: 0 values : NONNEGATIVE

INTEGER

Number of the minimum corrections.

parameter : MAXCCORR default: 9 values : NONNEGATIVE

INTEGER

Base number for computing the number of maximum corrections. The number of

maximum corrections will be computed similarly as described by the parameter

MAXREF.

5.11 Steplenth parameters

Both by LP an QP problems di�erent stepsizes are used in the primal and dual

spaces. In the quadratic case, however, a special technique is implemented which

guarantees the decrease in the primal and dual infeasibilities. The following pa-

rameters are used to prevent to hit the boundary during interior point iterations.

Smaller values can be bene�cial on "di�cult" problems.

24

parameter : PRDARE default: 0.999 values : 0.0 < PRDARE < 1.0

The maximal possible steplengt to the boundary in the primal space is multiplied

by PRDARE.

parameter : DUDARE default: 0.999 values : 0.0 < DUDARE < 1.0

The maximal possible steplengt to the boundary in the dual space is multiplied by

DUDARE.

5.12 Starting point paramerers

There are two possibilities for determination of the starting point: cold start and

warm start (under developing). By cold start BPMPD computes for the primal

variables the solution of the problem:

min jjx̂jj+ P � x̂TQx̂;

Ax̂ = b

where P > 0 weight for the quadratic objective function. For the dual variables

there are two options. Either the optimal solution of the problem

min jjŝjj+ P � ŝTQŝ

A
T
y + ŝ�Qx̂ = c

or ŷ = 0; ŝ = c +Qx̂ is computed. To avoid small or negative values, x̂ and ŝ are

modi�ed (safed).

parameter : PRMIN default: 150.0 values : POSITIVE REAL

Minimum initial primal value. This parameter is used during the modi�cation of x̂

and ŝ:

parameter : UPMAX default: 50000.0 values : POSITIVE REAL

Maximum initial primal value. This parameter is used during the modi�cation of x̂

and ŝ:

parameter : DUMIN default: 150.0 values : POSITIVE REAL

Minimum initial dual slack value. This parameter is used during the modi�cation

of x̂ and ŝ:

25

parameter : LSQWEIGHT default: 10.0 values : POSITIVE REAL

Weight of jjx̂jj by the primal problem.

parameter : SMETHOD default: 2 values : -2, -1, 1 or 2

By this parameter the �rst or second method for the dual can be selected. When

negative value is presented, BPMPD try warm start. If the warm start is not

successful, BPMPD will use -SMETHOD in the cold start process.

parameter : SAFEMET default: -3 values : from -3 to +3

This parameter selects the method for modi�cation of x̂ and ŝ. Negative values im-

plies methods which improves all components otherwise only the small components

are modi�ed. Method 1 (and -1) checks the individual values of the variables while

methods 2 and 3 (as well -2 and -3) consider the complementarity components also.

parameter : REGULARIZE default: 0 values : 0 or 1

Value 1. introduces arti�cial variables (slack variables for equality rows with upper

and lower bounds zero) to the model.

5.13 Presolve parameters

Prior to the solution process BPMPD may apply presolve techniques. These tech-

niques reduce the problem size by detecting �x variables or redundant rows, and

in general, improve the e�ciency of the interior point method. Several presolve

techniques can be invoked. In addition to the presolve, BPMPD is able to eliminate

variables and constraints from the LP/QP problem. A paper is available which

discuss the particulars [9].

parameter : PRESOLV default: 1023 values : 0 to 2047 INTEGER

Presolve action control. The bits of this value represent turning on or o� individual

presolve techniques. The following methods are available:

1 : Singleton row check. Singleton rows are replaced by bounds on variables.

2 : Singleton column check. Free (or implied free) singleton columns are eliminated

from the problem.

4 : Primal feasibility check. This process evaluates the possible minimum and

maximum row values. Based on the results, it may detect redundant rows and

�xes variables on their bound.

26

8 : Cheap dual test. This procedure performs tests based on the signs of the nonzero

values of the columns.

16 : Dual feasibility check. The same as the primal but on the dual problem.

Bounds on the dual variables are tightened if possible.

32 : Primal bound check and relaxation. This procedure detects hidden free vari-

ables in the problem.

64 : Searching identical variables. This procedure detects splitted variables in the

problem and replaces them with an appropriate one.

128 : Doubleton row check. This procedure generates free variables in doubleton

rows.

256 : Aggregator. This procedure eliminates free variables.

512 : Sparser. This procedure makes the constraint matrix sparser.

1024 : Extended dual test. This procedure performs additional dual tests which

may change the optimal solution. The optimal objective value is not change

however, therefore this procedure can be turned on if the optimal objective

function value is the only important.

parameter : BNDLOOP default: 5 values : NONNEGATIVE

INTEGER

Maximum number of iterations in the primal bound check procedure.

parameter : DULOOP default: 10 values : NONNEGATIVE INTEGER

Maximum number of iterations in the dual feasibility check procedure.

parameter : PRIMALBND default: 1000.0 values : NONNEGATIVE

REAL

Maximum allowable generated bound during primal bound investigations.

parameter : DUALBND default: 10000.0 values : NONNEGATIVE

REAL

Maximum allowable generated bound during dual feasibility tests.

27

parameter : PREFEAS default: 10
�8

values : NONNEGATIVE REAL

Relative primal feasibility tolerance during presolve.

parameter : PIVRTOL default: 10
�2

values : NONNEGATIVE REAL

Relative pivot tolerance in the aggregator process.

parameter : PIVATOL default: 10
�4

values : NONNEGATIVE REAL

Absolute pivot tolerance in the aggregator process.

parameter : FILLTOL default: 4.0 values : NONNEGATIVE REAL

Fill{in bound on individual pivots in aggregator. Aggregator stops if

(ci � 1)(rj � 1) > FILLTOL � (ci + rj)

for all possible pivot positions, where (i; j) are the column/row indices of the pivot

candidates and ci, rj are the column and row counter of column i and row j, respec-

tively.

5.14 Regularization parameters

The purpose of these parameters is to prevent numerical instability. Unfortunately,

increasing numerical behavior (e.g. doing stronger regularization) may decrease the

e�ciency of the computed steps and possibly increases the number of necessary

iterations. In extreme cases regularization can prevent convergence. The theory of

regularization is discussed in [9].

parameter : SOFTREG default: 10
�12

values : NONNEGATIVE REAL

Soft regularization of the diagonal scaling matrix. This parameter slowes down

the decrease of small values in the diagonal scaling matrix. The increase of this

parameter will increase the regularization.

parameter : HARDREG default: 10
�16

values : NONNEGATIVE

REAL

The parameter introduces "hard" regularization, namely "freeses" small values in

the diagonal scaling matrix. The increase of this parameter will increase the regu-

larization.

parameter : SCFREE default: 10
�8

values : NONNEGATIVE REAL

28

Base value for scaling free variables. See [9] for the details.

parameter : TFIXVAR default: 10
�20

values : NONNEGATIVE REAL

BPMPD �xes variables whose value fall under this limit.

parameter : TFIXSLACK default: 10
�20

values : NONNEGATIVE

REAL

BPMPD �xes slacks whose value fall under this limit.

parameter : DSLACKLIM default: 10
�20

values : NONNEGATIVE

REAL

Dual slack limit. BPMPD does not decrease dual slacks bellow this value.

parameter : COMPLIMIT default: 1.0 values : NONNEGATIVE

REAL

Complementarity balancing technique turns on if the average complementarity falls

bellow this value.

parameter : COMPPAR default: 10
�5
values : NONNEGATIVE REAL

The complementarity balancing technique will improve those complementarity com-

ponents which are less then the average complementarity gap multiplied by COMP-

PAR.

6 Bug reports and further inquires

If there are any problems or questions about the BPMPD package please contact:

Csaba M�esz�aros,

Computer and Automation Research Institute,

Laboratory of Operations Research and Decision Systems,

H-1518 Budapest,

P.O. BOX 63, Hungary .

FAX: +(361) 269-8268

PHONE: +(361) 269-8267

E-MAIL: mcsaba@oplab.sztaki.hu, meszaros@sztaki.hu

29

References

[1] T.J. Carpenter, I.J. Lustig, J.M. Mulvey, and D.F. Shanno. Higher order

predictor-corrector interior point methods with application to quadratic ob-

jectives. SIAM Journal on Optim., 3:696{725, 1993.

[2] A.V. Fiacco and G.P. McCormick. Nonlinear Programming: Sequential Uncon-

strained Minimization Techniques. John Wiley and Sons, New York, 1968.

[3] J. Gondzio. Multiple centrality corrections in a primal-dual method for linear

programming. Computational Optimization and Applications, 6:137{156, 1996.

[4] I. Maros and Cs. M�esz�aros. The role of the augmented system in interior

point methods. Technical Report TR/06/95, Brunel University, Department of

Mathematics and Statistics, London, 1995. to appear in European Journal of

Operations Research.

[5] S. Mehrotra. On the implementation of a primal-dual interior point method.

SIAM Journal on Optim., 2(4):575{601, 1992.

[6] Cs. M�esz�aros. The \inexact" minimumlocal �ll{in ordering algorithm. Working

paper WP 95{7, Computer and Automation Institute, Hungarian Academy of

Sciences, Budapest, 1995.

[7] Cs. M�esz�aros. The augmented system variant of IPMs in two{stage stochastic

linear programming computation. Working paper WP 95{1, Computer and

Automation Institute, Hungarian Academy of Sciences, Budapest, 1995. to

appear in European Journal of Operations Research.

[8] Cs. M�esz�aros. Fast Cholesky factorization for interior point methods of linear

programming. Computers & Mathematics with Applications, 31(4/5):49{54,

1996.

[9] Cs. M�esz�aros. On free variables in interior point methods. Technical Report

DOC 97/4, Imperial College, Department of Computing, London, 1997.

[10] R. D. C. Monteiro and I. Adler. Interior path following primal-dual algorithms.

Part II: Convex quadratic programming. Math. Programming, 44:43{66, 1989.

[11] J.L. Nazareth. Computer Solution of Linear Programs. Oxford UniversityPress,

New York, 1987.

30

