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ABSTRACT

The FEAST/1 project is investigating a hypothesis that
the software process is a multi level feedback system.
Using a number of complementary approaches to model,
analyse and interpret metric and other data records of
the evolution of systems from various application ar-
cas, the project has made significant advances in de-
tecting the effect of feedback and related dynamics in
the their evolution. Results obtained to date, supported
by theoretical reasoning, support the view that software
process improvement must focus on the global process
including its feedback mechanisms. In addition to tech-
nical aspects of the process, organisation, management,
marketing, user support and other factors must also be
considered. This paper discusses the conceptual frame-
work within which this question is raised, presents pre-
liminary evidence to support tentative conclusions and
indicates how the issue might be further investigated.
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1 The Global Software Process

In referring to the software process, numerous publica-
tions reporting the work of the FEAST/1 project [6]
apply the adjective global. The term is used to include
in that process more than just the people, technical
analysis, decision taking and implementation activity
required to develop a system ab initio or to make a
change to an already existing system. It also involves
those who influence the process, in one way or another,
by their decisions and actions at many levels of manage-
ment, marketing and application. They fuel the pro-
cess, determine, set and adjust objectives, define new
needs, change goals, fit the development into other or-
ganisational activities, control progress in the context
of changing organisational circumstances and evolving

application domains, explore and serve the marketplace
and so on. Formal and informal communication and
control paths between these numerous groups and in-
dividuals, with their technical, managerial, marketing
or user orientation, provide information flow and con-
trol paths. The flow may be in forward activity paths,
transmitting, for example, specifications to designers,
designs to implementors, implementations to testers,
validated elements to integrators, shippable subsystems
or systems to user organisations. Equally, information
may flow from corporate management defining chang-
ing targets or budgets to line managers for allocation to
individual activities. Marketeers may communicate de-
tails about future products or changes in policy to users.
As the project progresses, information and control from
many sources will be fed back to management who, in
turn, pass directives or other information to technical
management for implementation, so influencing process
activities. Changing organisational directions based on
management observation of project progress and out-
put, recognition of market opportunities and needs, in-
formation on competitive challenges, conveyance of user
requests for change, development of new needs, report-
ing user attitudes, delivery of performance and fault re-
ports, other quality issues, lead to changes in, for exam-
ple, specifications, process activities, code, timings and
so on. There is no end to the different types of informa-
tion and control flow that inevitably appear, intermit-
tently, or periodically. And each type has its own char-
acteristic spectrum of attributes in terms of frequency,
volume, authority, reliability and so on. These drivers
of the process show why study of the software process
and its improvement dare not concentrate on technical
activity alone. They indicate the need for a wider per-
spective on the software process that takes into account
the drivers, creative contributions and control activities
by managers, marketeers, users and others as exempli-
fied by the examples above. They lead to the adoption
of the global process view as contrasted with the more
prevalent technical process view.

2 Feedback
The eighth law of software evolution [14], previously
known as the FEAST hypothesis, states that the global



software process is a multi level, multi loop, multi
agent feedback system. This assertion was first made
[1] following a study of the programming process [7],
though not then presented as either a hypothesis or
law. As recorded in numerous publications [10, 6],
the phenomenon that led to this assertion was a rip-
ple appearing on the otherwise smooth growth trend
of OS/360 (figure 1). Strikingly similar behaviour has
now been observed on a total of seven other systems de-
veloped and evolved by industrial organisations, three
studied at the end of the seventies, four more in the
FEAST/1 project over the past two years. The new
evidence emerging from that study greatly strengthens
the case for feedback influence on software evolutionary
growth [12, 13, 18]. In section 1 some of the information
agents driving this behaviour were mentioned.

The dynamic behaviour of systems with feedback mech-
anisms is determined by the properties of both forward
and feedback paths as well as by exogenous factors.
Provided that the properties of the feedback mecha-
nisms are adequate, the behaviour of the system will be
less sensitive than open loop systems to, for example,
changes in the characteristics of internal mechanisms or
to noise. Feedback may be positive or negative. The
former causes growth in some attribute of the process,
its products or or other process objects and can, if ex-
cessive, cause instability. The latter maintains system
stability and performance. It constrains the effect of
changes on the outputs in sources other than system
inputs. Feedback concepts, the system behaviour it in-
duces and the metrics by which these may be observed
are generally understood and well defined in the context
of physical systems. They are formalised, for example,
in control theory.

After an initial start up period, the system and be-
havioural attributes will reflect not only the state of
the implementation domain during some interval sur-
rounding that time but also the previous history and
states. The precise relationships will be a complicated
function of the properties of the properties of the vari-
ous loops, particularly those containing the object being
observed, the gains and delays in the forward and feed-
back paths, for example. The dynamic behaviour of the
process and its constituents will be determined by all of
the above. Analytic treatment as developed for example
in control theory, is possible, subject only to limitations
arising from system size and complexity. Should either
of the latter prove an obstacle to such analysis, com-
puter based numerical solutions provide an alternative.

To the best of our knowledge no equivalent work has
been reported in the context of the software process.
There is every reason to believe that the FEAST/1
project and the earlier work that underlies it is the first
extensive study of the phenomenology of feedback in

the software process. Such a study is an essential pre-
liminary to the definition of feedback in the context of
the software process and to the development of a corre-
sponding theory. The present paper will focus on one as-
pect of the phenomenology, the evolutionary behaviour
of the global process as reflected in the growth of several
industry developed systems' spanning a wide spectrum
of application areas.

Representation and analysis of software processes, tech-
nical or global, as feedback systems is likely to prove
difficult if not impossible. While the feedback concept
of delay applies directly, that of gain must be rein-
terpreted. Broadly speaking it has to do with of the
manner in which information is conveyed, the extent
to which it is stressed, suppressed and/or embellished,
how it is understood and interpreted by the receiver and
so on. More general sources of the difficulty include
the size and complexity of a continually changing feed-
back structure, the transient, possibly informal, nature
of many of the paths, their transfer mechanisms and the
sources of feedback feeding them and the major, possi-
bly dominant, role and influence of people, individually
and collectively. People observe, interpret observations,
react, communicate, receive communication, interpret
messages, inject or suppress message components on the
basis of their own viewpoints, experience and interests,
act or refrain from acting and so on. Information and
control paths, whether forward or feedback, are noisy
and not immediate candidates for formal analysis except
when uncertainty can be explicitly considered, perhaps
in a statistical sense or with a fuzzy set perspective [5].
Yet plots of software process metrics first produced and
studied in the seventies displayed a regularity of short
term patterns and long term trends that suggested dis-
ciplining forces at work. It was, in fact, these regulari-
ties that led to the formulation of the first five laws of
software evolution [8, 9, 10].

Some years ago, one of the current authors asked himself
why, despite the major investment in research effort the
world over and despite major improvement in the tech-
nical methods, techniques and tools available for soft-
ware development and maintenance it was so difficult
to obtain major improvements in the global software
process. Once asked, the answer was immediately self
evident. As for any other multi loop feedback system
externally visible improvement to that process requires,
in general, that changes or addition to the forward path
mechanisms are accompanied by adjustment and control
of the feedback loop structure and mechanisms. The

IThe project collaborators were British Aerospace (a defence
system), ICL (VME Kernel operating system), Logica (FW Fi-
nancial transaction system) and MoD - DERA. Data was also
obtained on a Lucent Technologies real time system, though
they were not formally collaborators, through the good offices
of Dr D E Perry, a Senior Visiting Fellow to the project



overwhelming majority of research and development in
software engineering has concentrated on the technical
process, its component steps, languages, methods, tech-
niques and tools. It has not addressed feedback aspects
of the process or its consequences. It was this observa-
tion that led to formulation of the FEAST hypothesis,
to the FEAST/1 project and, following conclusion of
that project, to the renaming by us of the hypothesis as
the eighth law of software evolution [14].

3 FEAST/1

The objectives of the FEAST/1 project [11] included
identification of feedback effects in the evolution pro-
cesses of several systems being evolved by the industrial
collaborators, determination of their impact and the
presence of system dynamics effects. The approaches
employed included black box analysis of system evolu-
tion over a series of releases based on metric data ob-
tained from historical data bases of those systems to-
gether with data on new releases as these became avail-
able. The dynamics of evolution were to be investigated
through the development of system dynamics (SD) mod-
els [4, 3] of the global processes by which these systems
were being evolved using the VENSIM tool [17]. Data
for model construction, calibration and validation was
to be, and was, obtained by discussion with the staff
of the respective industrial collaborators and from the
black box studies. The present paper concentrates on
presenting that subset of the results of the study that
address the specific issue of the presence and impact of
the global process dynamics. Other results will be found
in the references below, publications after 1996 in [6].

4 System Growth
The parameters of software system evolution and corre-
sponding metrics are many. From the point of user, for
example, measures of functionality, system capability
or system power are of major interest. Other, inter-
related, attributes of interest include reliability, com-
plexity, ease of use, quality and cost. And there are
many more. All are difficult to define. This paper con-
centrates on only one, the size of the system counted
in modules, a metric that has proven useful over many
years as a measure of system evolution. Modules, and
related terms such as files and holons (ICL), have the
advantage that they posses a degree of functional in-
tegrity, while their count is generally large enough to
offer an adequate level of granularity and to permit sta-
tistical treatment. The lower level metric, lines of code
(locs or equivalently, klocs), much beloved by industry,
does not have semantic integrity in the context of sys-
tem functionality. Moreover counts base on it are very
much a matter of individual programmer taste and style.
Jounts of objects as in OO programming, possess se-
mantic integrity but they and functional complexity are
believed to be a poorer measures of system size or func-

tionality than modules. At the other extreme counts
of sub systems, are much smaller than counts of the el-
ements of which they are composed. In general, they
are too coarse a metric to establish system size, func-
tionality or power as the highest level representation of
system evolution. It must be admitted that the choice
of modules to measure system evolution deserves fur-
ther debate. But consistent results obtained from its
use over a period of almost thirty years, in the study
of some nine systems, stemming from almost the same
number of industrial sources suggests that the onus to
identify a better measure lies with others.

The report that follows concentrates on four systems
0S/360, A BAe defence system, the ICL VME operat-
ing system kernel and the Logica FW financial trans-
action system. The selection of these to illustrate the
present paper is purely pragmatic since the remaining
systems studied display essentially the same behaviour,
though in some cases less clearly, because of less data
available. Figure 1 shows the growth of these systems,
expressed in the units used by the respective develop-
ment organisation over the period of time for which data
could be obtained.
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Figure 1: Software System growth.

Note that time metric use, release sequence numbers
(RSN), measures pseudo-time rather than real time [2].
The underlying reason for its use is that the moment of
release providesa well defined reference point to a sys-
tem fully defined by its code and documentation, as re-
leased. At all other times the system is continually being
changed. The use of actual release numbers is, however,
not possible since each is, in effect, an arbitrary name.
It may be noted that since it was first used in the 1970s



study of OS/360, the use of RSN has provided consistent
and meaningful results that were smoother and more
clearly interpretable than the equivalent based on real
time. Its use leads, however, to one major problem that
must be carefully and conscientiously solved. For a va-
riety of reasons most full releases in industrial develop-
ment are interspersed with smaller ”decimal” releases.
Some of these may be dedicated to fixing faults, others
for making minor or additional enhancements or to re-
lease a change that was not ready to be included in the
main release. Which decimal or minor releases are to be
included in the evolutionary sequence whose growth rate
or other characteristic is being investigated is a matter
of judgment subject to many considerations. Exclusion
of any implies that the integer sequence of RSN will rep-
resent a subset of actual releases. Their selection calls
for great care with careful and precise definition of the
criteria on which filtering is based. When such a subset
has been plotted and analysed the existence of outliers
or of gaps in the behavioural patter requires investi-
gation of the circumstances surrounding the anomaly.
Whether that anomaly must be regarded as just that or
whether it is explained by circumstances lying outside
the scope of the specific investigation, so indicating a
need to drop a release from the selected set or to add
one previously excluded, also demands conscientious in-
vestigation.

The figure reproduces the original OS/360 growth data
and that of three of the five systems studied in the
FEAST/1 project. These and the plots that follow, ex-
emplify the FEAST/1 black box modelling outputs that
are the sources of our interpretations. The plots suggest
that the evolutionary behaviour of all nine systems dis-
play common long term features. They also all share a
common ripple feature but differ in the detailed struc-
ture of the ripple. The present paper will concentrate on
the long term trend and discussone of its implications.
Note that that the VME plot suggests two distinct re-
gions of evolution with a trend change in the interval
between RSN 14 and RSN 15. Following discussion with
and clarification by ICL personnel who were active in
the process at that time, it is believed that the change
is due to changes in release policy and other marketing
factors. This will be further investigated if and when
the FEAST/2 [13] project gets underway.

5 System Growth Models

In a paper published shortly before the start of
FEAST/1 [16] Turski discussed the evolution of the Log-
ica FW system. Inter alia, he suggested that its growth
could be closely represented by an inverse square model.
Such a model is conceptually satisfactory because it is
consistent with the complexity constrained growth im-
plied by the second law of software evolution [8, 9, 14].
The model together with details of its estimation are

provided an appendix to this paper. Figure 2 illustrates
the closeness of fit of inverse square models to three of
the four systems being discussed in the present paper.
Reappearance of the same form when calibrating the
first FEAST/1 white box systems dynamics model [18]
provide further support for the view that complexity
growth is a limiting constraint on system evolution. As
indicated below OS/360 growth appears to be more ap-
propriately modelled by linear growth, a deviation from
the common pattern that must be further investigated.
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Figure 2: Models of Growth

Visual inspection provides a coarse indicator of good-
ness of fit of a numeric model. Mean absolute percent-
age error (MAPE) (appendix) and the standard devia-
tion of percentage residuals are better, statistically de-
rived, indicators. Notice that both indicators refer to
percentages rather than absolute values, necessary be-
cause the concern here is with a growing system. Table
1 shows each of the indicators for all the systems dis-
cussed in the present paper. Note that for OS/360 the
fit for both linear and inverse square models is provided
and clearly show that the former is to be preferred. For
reasons which are well understood [10] and as visible in
figure 1, the transition in that system, from RSN 19 to
RSN 20 and beyond was the start of a period of rapid
change and oscillation. The table includes, therefore,
separate fit indicators up to RSN 19 and over the full
range up to RSN 26. For VME Kernel the indicators
have been computed separately for each of the two seg-
ments briefly introduced above.

6 The Models as Predictors of Future Growth
The models as illustrated above and as described in the
appendix are clearly good models of the growth of each



System Model | MAPE | St.Dev. of
% Residuals
0S/360 - RSN 1 - 19 Linear 4.7 5.9
0S/360 - RSN 1 - 26 Linear 9.6 14.0
0S/360 - RSN 1 - 19 Inv.Sq. 20.1 25.0
0S/360 - RSN 1 - 26 Inv.Sq. 30.9 36.7
VME Kernel Inv.Sq. 8.0 11.4
(Seg.1) - RSN 1 - 13
VME Kernel Inv.Sq. 3.7 5.1
(Seg. 2) - RSN 14 - 26
FW Linear 3.6 4.8
Lucent Sys 1 Inv.Sq. 6.0 7.2

Table 1: Goodness of Fit of Growth Models over the
Entire Release Set

of the systems, despite the fact that such evolution is
planned by humans, generally on a release by release
basis. One must then ask, how good is the model as a
predictor. Turski already asked this question in respect
of the Logica FW system [16] and his approached has
been broadened and applied to all the systems under
investigation in FEAST/1.

The models shown in figure 2 have been estimated as
outlined in the appendix by using the full data set avail-
able. One may ask, "how many data points are required
to obtain an acceptable fit and to yield a satisfactory
predictor for future growth”? The answer to this ques-
tion may be obtained by using less than the full set to
estimate the model and computing the mean percentage
prediction error over the remainder, varying the number
of points used from a minimum of two to a maximum
which leaves releases whose size may be ”predicted”.
One may then plot the MAPE as a function of the num-
ber of points used to estimate the model. The results for
for all the systems studied are illustrated by the plots
of figure 3. The significance of these plots in illustrat-
ing the predictive power of the models is summarised in
Table 2.

System Stabilisation Avg. St.Dev.
Point MAPE | of MAPE
085/360 4 9.7 1.6
VME Kernel 6 4.1 0.4
FW 6 3.6 0.1
Lucent Sys 1 3 6.2 0.4

Table 2: Average and Standard Deviation of Mean Ab-
solute Percentage Error MAPE after its Stabilisation

The plots and the derived statistical indicators give a
clear answer. A handful of data points, 3 to 6 in this case

80 { 0S/360 40 4 ICL VME Kernel
Linear Growth Model Inverse Square Growth Model

60 - 30 A Second Segment RSN 14-29
w .
o401 o 20 A
<
= .
520 1 10 A
M| T eeenena sasteacte e eiae-eceeens
o 0 A 0 A
£ o 5 10 15 20 25 0 5 10 15
)
g 20 4 Logica FW 12 { Lucent Sys 1
o Inverse Square Growth Model Inverse Square Growth Model
o)
§ 15 10
[+}
8
< 10 1 ! 8
c .

o
L
N
L

0 5 10 15 20 0 5 10 15
#i of points used to estimate the model

Figure 3: Evidence for Dynamics Determined Software
System Growth Trend.

suffice to give a model that is an astonishingly good pre-
dictor of future average growth. A model derived from
that small number of releases has more than adequate
precision to predict system growth over many years?,
far greater than what one would expect from system
evolution and a growth process planned and executed
by people. Six releases appear to suffice to establish
the growth trend. No significant additional precision in
predictive power is gained by computing the model from
more data points.

7 System Dynamics

When this result was first obtained [16] it was inter-
preted as a reflection of the dynamics of the feedback
based evolution process. Thus it was seen as the first di-
rect evidence in support of the FEAST hypothesis and
of a remark made by one of the present authors to a Se-
nior Vice President of his then employers, ” The problem
is that you managers think that you are in control of
the system but actually the system is controlling you”.
The plots appeared to indicate that it took several re-
leases for the process dynamics to establish itself; but
once established it determined the basic long term (in
this example) growth trend though management deci-
sions and plans could could, and in practice did, cause
local variations. Feedback determined self stabilisation
ensured maintenance of some trend, determined by the
dynamic properties of the process as a feedback system.
The result was also seen as providing strong support
for the laws of software evolution all of which had long

2The evolution periods spanned by the systems discussed here
all exceed 15 years.



been scen as reflecting the feedback system nature of
the software process [14].

After some time two problems were recognised in this
interpretation. One related to the remarkable similarity
between the behaviour of the systems. The second sur-
faced when it was realised that the history of FW did
not begin with RSN 1. The release given that identity
was, in fact, the fourth of a sequence of main releases.
There was a prior history to the history being studied.
Similar the so called Lucent System 1 was in fact the
successor to several earlier systems each of which had
evolved over many years. Thus the simple interpretation
of a process dynamics establishing itself and reflected in
the plots of figure 3 could not be maintained. Instead, it
was realsied that the initial knee visible in all the plots
was an artifact of the process estimation process, reflect-
ing the convergence of the parameter(s) of the models,
by whatever means estimated, to establish themselves.
This interpretation was particularly attractive since it
explained why, despite major differences between the
various systems and the processes by which they were
being evolved, the plots were so strikingly similar at the
highest level. After all, the same procedures and algo-
rithms were being used to estimate them.

This interpretation explained the initial knee. The
stronglong term growth trend as reflected in the predic-
tive power of the models must still be explained. The
answer to this was immediately self evident and reflected
a previously held conviction as implied by the discussion
in section 1 above. From its conception, the FEAST
hypothesis, the view of the software process as a feed-
back system, has asserted that the externally visible at-
tributes of software processes are much influenced, even
determined, by factors other than the methods, tools
and techniques used in any specific technical process of
software development. They even extend to influences
outside the immediate organisation directly responsible
for product evolution. Equally there will be influences
that precede that process in time. Process, manage-
ment, implementation procedures and controls for ex-
ample will have been inherited from past projects and
practice. For any other than a totally new organisation,
general corporate practice will have been long estab-
lished, informally or formally. Equally most organisa-
tions will have a traditional software process, may even
dictate a generic or prototype process. Finally, all or-
ganisations operate in a, forever changing, domain, are
subjec t to strong external forces, client needs, market
forces, economic and political circumstances and so on.
All represent global forces that will directly impact a
new process initially, thereafter through feedback con-
trols, checks and balances, pressure points of various
forms for various purposes. That such forces are present
cannot be denied. It appears likely that for any process

a major, possibly dominant, component of the project
dynamics will have been inherited.

It is this analysis taken to its logical conclusion that
underlies the phenomenology described in section 1. It
supports the FEAST hypothesis that in modelling and
seeking to improve the software process one must con-
sider the global process, its attributes and its struc-
tures. The interpretation of the plots of figure 3 and of
the long term evolutionary behaviour of all the systems
is now clear. They reflect the dynamics of the global
project, the dynamics of the developing, marketing and
user organisations in their entirety, that is in extent and
in history. There may even be influences of external eco-
nomic and societal factors though the last two are likely
to be occasional rather than continuous and will not be
further considered here.

8 The Presence and Influence of Global Dy-
namics

To confirm this interpretation the model parameters
were recomputed for a varying number of data points as
for the plots of figure 3 but shifting the starting point to
RSN m, that is ignoring m — 1 earlier releases. The data
points for releases preceding RSN m were discarded,
thereby creating an additional, albeit more recent, in-
herited ”history”. Many alternative derivations can be
made. Such an experiment has at least four parameters,
the algorithm used for estimating the model parame-
ter(s), the starting point, the interval between starting
points, and the number of data points or size of window
over which the forecasting accuracy of the model is eval-
uated (using MAPE, for example) This analysis and in-
terpretation of the results is still underway (at the time
of writing - August 1998) but what is important is that
the many results to date all point to the same conclu-
sion, that subject to perturbations introduced by local
deviation from the model value at the starting point, a
knee plot is obtained that has the same general char-
acteristics as the plots of figure 3. For the purposes of
this paper, eight plots typical of all the results so far
obtained, are reproduced (figures 4 to 7). The MAPE
of each model is calculated over the releases following
those used for parameter estimation. For each system
two plots are presented. One plots the MAPE for pa-
rameters computed for models estimated with RSN 1
as starting point, RSN 2, RSN 3, RSN 4 and RSN 5,
respectively. Each of the five curves is identified by a
starting point number. The starting point is shown on
the plot as a star. The second plots the MAPE for mod-
els starting at other RSNs, as shown. The RSN 1 curve
appears in both plots to facilitate comparison.

The fact that, apart from an increase in deviation over
the last two or three point for the late starting sequences
(m = 13) these plots confirm both the initial knee be-
lieved to reflect the model start and the essentially con-
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Figure 4: Model Build Up and the Initial Case for In-
herited Dynamics. System: OS/360. Growth Model:
Linear.

stant error thereafter, is interpreted as an indicator of
the influence of the inherited dynamics. Further work
is clearly necessary but the accumulated results to date
are believed to constitute a prima facie case for the
strong influence of what has been termed global factors
on system evolution.

9 System Dynamic Models

To this point the paper has focused on the support de-
rived for the FEAST hypothesis in general, presenting
some results of a metric based black box analysis indi-
cating, inter alia, the presence, influence and power of
global dynamics. The FEAST/1 investigation also in-
cluded a white box modelling effort to study process dy-
namics. The paradigm and tool used [17] stress the im-
portance of feedback structures and flows in simulating
the dynamic behaviours of systems. Five related prin-
ciples were applied in developing the models; that the
modelling effort should proceed top down, that model
detail should be added only as required to reflect ob-
served behaviour, that such model refinement should
reflect likely sources of that behaviour, that the amount
of detail added should be kept to the minimum required
to reproduce the behaviour being modelled and that
model validation and calibration should involve the de-
velopment organisation and team.

Two models based on these principles have recently been
described [12, 18]. The results of calibrating and run-
ning them demonstrate that they are able to replicate
actual evolutionary trends such as system growth and
effort expended. In the context of this paper, they
provide further support for the thesis that process be-
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Figure 5: Model Build Up and the Initial Case for In-
herited Dynamics(cont). System: ICL VME Kernel.
Growth Model: Inverse Square.

haviour is, at least, strongly influenced by factors ex-
ternal to the technical development process. Figures 8
and 9 reproduce the models and figures 10 and 11 show,
respectively, an output from each.

The simplicity of the models is self evident, indicating
that models reflecting high level concepts and global
factors can capture long term system behaviour. Their
outputs as in figure 7 provide further support for the hy-
pothesis that feedback-driven dynamic forces inherited
from outside the technical process can have a dominat-
ing influence on long-term product evolution. The faith-
ful reproduction of long term process behaviour that
the models show supports the conclusion reached from
the phenomenological analysis and the black box anal-
ysis outlined in the previous section. It remains to be
demonstrated that reproduction of the behaviour is due
to the model reflecting the properties of the real world
process behaviour and is not just a reflection of the cal-
ibration process. However, the organisations evolving
the systems and we are confident that the models and
their calibration parameters reflect actual mechanisms,
influences and behavioural values. The models have al-
ready proved their value to the industrial collaborators,
helping them understand and, potentially, improve their
system development activities.

10 Conclusidns

Much remains to be done, continuing the work started in
the FEAST/1 project, to derive practical implications
that can be put to good use by our industrial collabo-
rators and by industry at large and to create , at least,
a base and framework for a theory of software evolution
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Figure 6: Model Build Up and the Initial Case for In-
herited Dynamics(cont). System: Logica FW. Growth
Model: Inverse Square.

and the software process. It is hoped to continue that
work in FEAST/2 [13].

In the context of this paper several challenges may be
mentioned. A fuller listing is provided in the FEAST /2
proposal [13]. Much of the work briefly described here
needs to be extended and its practical consequences de-
rived. To explore the degree of influence of global factors
on system evolution different sources and their signifi-
cance should be identified, explored and assessed. This
may be achieved via the black box approach by obtain-
ing further data from different systems from the organi-
sations who have already contributed data. In this way
it may be possible to eliminate organisational influences.
If the new data comes from a system addressing a differ-
ent application and/or user domain, their influence may
be identifiable or eliminated. The hope is to identify the
nature and extent of any actual project influence. The
refinement of the system dynamics models, their exten-
sion and the development of new models will also help
in this respect.
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Appendix

Inverse Square Model [16]: S;, the size predicted by the
inverse square system growth model at release i, is S; =
S;_1+FE/S% | (2 <i< N)where N is the total number
of releases. S; is assigned the actual size of release 1. E
may be defined as the average E;, where E; = y2_; (y; —
yi—1) (2 < <), y; is the actual size of release ¢ and
j is the number of releases used to estimate the model.

Lucent Sys 1
T T

30 T T T T
+2
%3
20 g L B
E *5 .t
ok
*4
10+ *1 E
+ i Nl + F & L+
+ EERRL TR YRRN: FERIEE: TIPTTIT .
z FLR e E
o
= 0 L L L L
3 0 2 4 6 8 10 12 14
» RSN k - Last release used for parameter estimation
z
2
5 30 " . T ; T T
3 +
g g F
o i
< 20} R
B .
+7 4
1ot *1 : AR
SRRTEES TR SEER R PP RTTRE. JIEEEs SITTOUMRION K
Bkt
+
0 L ' | L L |
0 2 4 6 8 10 12 14

RSN k - Last release used for parameter estimation

Figure 7: Model Build Up and the Initial Case for Inher-
ited Dynamics (cont). System: Lucent Sys 1. Growth
Model: Inverse Square.

More generally E can be obtained numerically based on
the minimisation of some function, such as the sum of
squares of the residuals, that is, of the errors of fit.

Mean Absolute Percentage Error MAPE as plotted in
figure 3: For a growth model based on the first j re-

leases only, MAPE(j), is calculated as MAPE(j) =

100 s~V 1865 —will s i i
N et a— where \S; ; is the predicted size at re-

lease 7 using a model based on the first j releases only, y;
is the actual size at release 7 and N is the total number
of releases.

Mean Absolute Percentage Error MAPE as plotted in
figures 4, 5, 6 and 7: A growth model estimated
based on releases m to k (defined as (m,k) model)
ignores m — 1 earlier releases. MAPE for a model
(m, k), MAPE(m, k) is obtained from MAPE(m, k) =
(N%—T) Zf;kﬂ Myﬂi”, where S;(m, k) is the pre-
dicted size at release i using the (m, k) model, y; is the
actual size at release ¢ and N is the total number of
releases.

E and MAPE estimations shown in all the plots were ob-
tained using MATLAB [15] scripts. A MATLAB script
for the calculation of E is available via the FEAST/1
web site [6].
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