Symbolic Knowledge Extraction from Trained
Neural Networks: A New Approach

A. S. d’Avila Garcez? K. Broda! D. M. Gabbay?®

tDepartment of Computing
Imperial College, London, SW7 2BZ
{aag,kb}@doc.ic.ac.uk

$Department of Computer Science
King’s College London, WC2R 2LS
dg@dcs.kcl.ac.uk

Abstract

Although neural networks have shown very good performance in
many application domains, one of their main drawbacks lies in the in-
capacity to provide an explanation for the underlying reasoning mech-
anisms. :

The “explanation capability” of neural networks can be achieved
by the extraction of symbolic knowledge. In this paper, we present a
sound new method of extraction which captures nonmonotonic rules
encoded in the network.

We start by discussing some of the main problems of knowledge
extraction methods. To ameliorate these problems, a partial ordering
on the space of input vectors is defined, as well as a number of pruning
and simplification rules. The pruning rules are then used in our ex-
traction algorithm to reduce the search space of input vectors during
a pedagogical extraction, whereas the simplification rules are used to
reduce the size of the extracted set of rules. We show that, in the case
of regular networks, the extraction algorithm is sound and complete.

We proceed to extend the extraction algorithm to the class of non-
regular networks, the general case. We show that non-regular networks
always contain regularities in their subnetworks. As a result, the un-
derlying extraction method for regular networks can be applied, but
now in a decompositional fashion. In order to combine the sets of rules
extracted from each subnetwork into the final set of rules, we use a
method whereby we are able to keep the soundness of the extraction
algorithm. .

Finally, we present the results of an empirical analysis of the ex-
traction system, using traditional examples and real-world application
problems. The results have shown that a very high fidelity between
the extracted set of rules and the network can be achieved.

1 Introduction

Human cognition successfully integrates the connectionist and symbolic par-
adigms of Artificial Intelligence (AI). Yet, the modelling of cognition devel-
ops these separately in neural computation and symbolic logic/Al areas.
There is now a movement towards a fruitful midway in between these ex-
tremes, in which the study of logic is combined with recent insights from
connectionism. It is essential that these be integrated [24].

The aim of neural-symbolic integration is to explore the advantages that
each paradigm presents. Within the features of artificial neural networks
are massive parallelism, inductive learning and generalisation capabilities
[5, 15]. On the other hand, symbolic systems can explain their inference
process, e.g., through automatic theorem proving, and use powerful declar-
ative languages for knowledge representation [19].

The Connectionist Inductive Learning and Logic Programming (CIL?P)
system [4] is a proposal towards tightly coupled neural-symbolic integration
[16]. CIL?P is a massively parallel computational model based on a feed-
forward artificial neural network that integrates inductive learning from ex-
amples and background knowledge [20] with deductive learning from Logic
Programming [22]. Starting with the background knowledge represented by
a (propositional) general or extended logic program, a translation algorithm
(see Figure 1, (1)) is applied generating a neural network that can be trained
with examples (2). Moreover, the neural network computes the stable model
(answer set) of the general (extended) program inserted in it or learned by
examples, as a parallel system for Logic Programming (3). The final stage
of the system (4) consists of the symbolic knowledge extraction from the
trained neural network, which provides the explanation for the network’s
answers. The knowledge extracted then could feed the system again (5),
closing the learning cycle'.

In this paper, we concentrate on the problem of extraction of symbolic
knowledge from trained neural networks, that is, the problem of finding
“logical representations” for such networks. The extraction allows for the
explanation of the decision making process, thus contributing to solve the
“knowledge acquisition bottleneck problem”. The domain theory extracted,
obtained from inductive learning with examples, can be added to an existing
knowledge base or used in the solution of analogous domains problems.

Briefly, the problem of extraction lies on the complexity of the extraction
algorithm. Holldobler and Kalinke [17] have shown that each logic program
is equivalent to a single hidden layer neural network. In one direction of that
equivalence relation, a translation algorithm (see Figure 1(1)) derives a neat
neural network structure when a logic program is given. The problem arises

! For example, in a fault diagnosis system, a neural network can detect a fault quickly,
triggering safety procedures, while the knowledge extracted from it can justify the fault
later on. If mistaken, that information can be used to fine tune the learning system.

1 1
. | Inference !

- Learning N ! Machine |
,/ “ : 3 : :
‘ L, : ! 4 Explanation
| ' Neural I oo o

| 7z

E | Ly Network 7\\ i
\ \
1
|

Feedback

Figure 1: Neural-Symbolic Integration

in the converse direction, i.e., given a trained neural network, how could we
find out the equivalent logic program? Unfortunately, it is very unlikely that
a neat network will result from the learning process. Furthermore, a typical
real-world application network may contain hundreds of input neurons and
thousands of connections.

The knowledge acquired by a neural network during its training phase is
encoded as: (i) the network’s architecture itself; (i) the activation function
associated to it; and (iii) the value of its weights. As pointed out in [1], the
task of extracting explanations from trained neural networks is the one of
interpreting in a comprehensible form the collective effect of (i), (ii), and (iii).
Also in [1], a classification scheme for extraction algorithms is given, based
on: (a) the expressive power of the extracted rules; (b) the “translucency” of
the network; (c) the quality of the extracted rules; and (d) the algorithmic
complexity. The first classification item refers to the symbolic knowledge
presented to the user from the extraction process. In general, this knowledge
is represented by rules of the form “if then else”. The second classification
item contains two basic categories: decompositional and pedagogical. In
the decompositional, the extraction occurs at the level of individual, hidden
and output, units within the trained neural network. In the pedagogical, the
neural network is viewed as a “black box”, and the extraction is done by
mapping inputs directly into outputs. The next classification item intends
to measure how well the task of extracting the rules has been performed,
considering the accuracy, consistency and comprehensibility of the set of
rules. The last item refers to the requirement for the algorithm to be as
effective as possible. In this sense, a crucial issue in developingan extraction
algorithm is how to constrain the size of the solution space to be searched.

In [37], Thrun defines the following desirable properties of an extraction
algorithm: (i) No architectural requirements: a general extraction mecha-

nism should be able to operate with all types of neural networks; (ii) No
training requirements: the algorithm should not make assumptions about
the way the network has been built and how its weights and biases have been
learned; (iii) Correctness: the extracted rules should describe the underlying
network as correctly as possible; (iv) High expressive power: more powerful
languages and more compact rule sets are highly desirable.

Intuitively, the extraction task is to find the relations between input and
output concepts in a trained network, in the sense that certain inputs cause
a particular output. We argue that neural networks are nonmonotonic sys-
tems, i.e., they jump to conclusions that might be withdrawn when new
information is available [23]. Thus, the set of rules extracted may contain
default negation (~). Each neuron can represent a concept or its “classi-
cal” negation (—). Consequently, we expect to extract a set of rules of the
form: Ly,...,Ln,~ Lpy1,...,~ Ly — Lpy1, where each L; is a literal (a
propositional variable or its “classical” negation), L; (1 < j < m) repre-
sents a neuron in the network’s input layer, L., 1 represents a neuron in the
network’s output layer, ~ stands for default negation, and — means causal
implication? (see [4] for neural network’s nonmonotonic semantics).

In this paper, we present a new approach for knowledge extraction from
trained networks that complies with the above perspective. We start by
discussing some of the main problems found in the literature. To ameliorate
these problems, we identify a partial ordering on the input vectors space,
and define a number of pruning rules and simplification rules that interact
with such an ordering. These rules are used in our extraction algorithm
to reduce the search space of input vectors, as well as the number of rules
extracted. We show that, in the case of regular networks, the extraction
algorithm is sound and complete®. We then extend the extraction algorithm
to the general case. By showing that every non regular network contains
regularities in its subnetworks, we can still apply the underlying extraction
algorithm to the general case network, but now in a decompositional fashion.
The only problem we have to tackle, however, is how to combine the sets
of rules obtained from each subnetwork into the set of rules of the network.
We use a method for assembling the set of rules whereby we are able to
preserve soundness of the extraction algorithm, although we have to forego
completeness.

In section 2 we discuss the main problems of the task of extracting knowl-
edge from trained networks. In section 3 we recall some useful preliminary
concepts and define the extraction problem precisely. In section 4 we present
our solution to the extraction problem, culminating with the outline of the
extraction algorithm for the class of regular networks. In section 5 we extend

2Notice that this is the language of Extended Logic Programming [13].

3Following [12], we say that an extraction algorithm is sound and complete if the set
of rules is equivalent to the network’s generalization set. If, however, the set of rules is a
subset of the generalization set, then the extraction is sound but incomplete.

the extraction algorithm to the class of non regular networks, the general
case. In section 6 we present the experimental results of applying the ex-
traction system to the Monk’s Problems [36], DNA sequence analysis and
Power Systems fault diagnosis. Finally, in section 7 we conclude and discuss
directions for future work.

2 Related Work

Among the existing extraction methods, the one presented in [17], the “Ru-
leneg” [30], the “VIAnalysis” algorithm [37], and the “Rule-Extraction-as-
Learning” method (7] use “pedagogical” approaches, while the “Subset” [12],
the “MofN” [38], the “Rulex” [2] and Setiono’s proposal [34, 35| are “de-
compositional” methods (see [1] for a comprehensive survey).

In the CIL?P system, after learning takes place, the network N encodes
a knowledge P’ that contains the background knowledge P complemented
or even revised by the knowledge learned with training examples. We want
to derive P’ from N. At the moment, only pedagogical approaches can
guarantee that the knowledge extracted is equivalent to the network, i.e.,
that the extraction process is sound and complete. In [17], for instance, all
possible combinations of the input vector i of N are taken into account in the
process of rule generation. In this way, the method must consider 2" different
input vectors, where n is the number of neurons in the input layer of N.
Some pedagogical approaches reduce the input vectors space by extracting
rules for the learning set only, excluding the network’s generalisation.

Obviously, pedagogical approaches are not effective when the size of the
neural network increases, as in real-world problems applications. In order to
overcome this limitation, decompositional methods, in general, apply heuris-
tically guided searches to the process of extraction. The “Subset” method
[12], for instance, attempts to search for subsets of weights of each neuron
in the hidden and output layers of IV, such that the neurons’ input potential
exceeds its threshold. Each subset that satisfies the above condition is writ-
ten as a rule. One of the most interesting decompositional methods is the
“MofN” technique [38]. Based on the Subset method, it reduces the search
space of the neural network by clustering and pruning weights. It also gen-
erates a smaller number of rules, by using the following representation: If
m of (Ai1,...,An) are “true” then A is “true”, where m < n. The work by
Setiono [34,.35] is another proposal of decompositional extraction. Setiono
proposes a penalty function for pruning a feedforward neural network, and
then generates rules from the pruned network by considering a small number
of activation values at the hidden units. =

Decompositional methods, such as [38] and [35], in general use weights
pruning mechanisms prior to extraction (notice the difference between prun-
ing the input vectors search space and pruning the networks weights). How-

ever, there is no guarantee that a pruned network will be equivalent to the
original one. That is the reason why these methods usually require retrain-
ing the network. During retraining, some restrictions must be imposed on
the learning process - for instance, allowing only the thresholds, but not
the weights, to change - in order to the network to keep its “well behaved”
pruned structure. At this point, there is no guarantee that retraining will be
successful under such restrictions. In addition, methods that use a penalty
function are bound to restrict the network’s learning capability?. Even if
we avoid the use of penalty functions and weights’ clustering and pruning,
the simple task of decomposing the network into smaller subnetworks, from
which rules are extracted and then assembled, has to be carried out carefully.
That is because, in general, the collective effect of the network is different
from the effect of the superposition of its parts [1]. As a result, most de-
compositional methods are unsound. The following example illustrates this
fact.

Example 1 Consider the network of Figure 2. Let us assume that the
weights are such that i = (1,1) neither activates ny nor ng, but that the
composition of the activations of n1 and ny activates x. For example, sup-
pose that a = 1 and b = 1 imply nqy = 0.3 and ny = 0.4, and that these
activation values imply x = 0.99. A decompositional method would most
probably derive a unique rule, ni,ne — x, not being able to establish the
correct relation between a, b and x. Consider, now, the case where i = (1,1)

Figure 2: A simple example of unsoundness and incompleteness of some
decompositional extraction algorithms.

activates ny and no, bult ny and ny do not activate x. Moreover, if n1 and ng
are approximated as threshold units, i.e., assumed ejther totally activated or
non activated, then ny =1 and ne = 1 activate x. For example, the weights

4For example, the extraction algorithm can not be applied on a network trained with
an “off the shelf” learning algorithm.

could be such that a =1 and b =1 imply ny = 0.7 and ny = 0.8; ny = 0.7
and ny = 0.8 do not imply = (let’s say x < 0.5), but ny =1 and ng = 1 do
imply = (say, + > 0.5). As a result, a decompositional method, e.g. [38],
would conclude that ab — x when actually ab » x.

The first case is an example of incompleteness. The second one shows
how decompositional methods may turn out to be unsound. Even Fu’s extrac-
tion [12], which is sound w.r.t each hidden and output neuron, may become
unsound w.r.t the whole network.

Clearly, there is a trade-off between the complezity of the extraction
method and the quality of the knowledge extracted from the network. In our
view, an alternative is to prune the input vectors space, instead of the weight
vectors space. Our goal is to reduce complexity by applying the extraction
algorithm on a smaller solution space, yet maintaining the highest possible
quality, in particular to maintain soundness.

Differently from the above approaches, we also want to capture non-
monotonic rules encoded in the network. In order to do so, we add negation
by default (~) to the language. We argue that one cannot derive a sensi-
ble set of rules from a network without having ~ in the language, as the
following example illustrates.

Example 2 Consider a neural network with two input neurons a and b, one
hidden neuron ny, and one output neuron x, such that Wy, =5, Wy, = —5
and Wy, = 1. Assume that input vector iy = (1,0) activates x. One would
derive the rule a — x. As a result, one would be able to conclude that ab — z,
since this rule is subsumed by the rule previously derived. However, as in
the network above, it may be the case that input vector iy = (1,1) does not
activate x. In this case, one would conclude that ab - x, a contradiction.
The correct rule to be extracted in the first place is, therefore, a ~ b — x,
which means that x fires in the presence of a provided that b is nol present,
and in fact, if b turns out to be true then the conclusion of x is overruled.®
As a result, in order to conclude that a — x, first we need to ensure that
both ab — x and a ~ b — x. “Classical” negation (=), stronger than ~ in
the sense that a literal is proved false, should be explicitly represented in the
network by a neuron labelled —x [3], as we will exemplify later in section 6.

Summarizing, the novelties on this paper are: we present an eclectic
approach whereby we can reduce the complexity of the extraction algorithm
in some interesting cases, yet executing a sound extraction; and we capture
nonmonotonicity in the set of rules extracted from the netwark, by adding
default negation to the language.

®The use of zero as input was misleading, and that is one of the reasons why we use
{—1,1} as input (see [4]).

3 Preliminaries

3.1 General

We need to assert some basic assumptions that will be used throughout this
paper (see [9], [14] and [29]). R and R denote the sets of natural and real
numbers, respectively.

Definition 3 A partial order is a reflexive, transitive and antisymmetric
relation on a set.

Definition 4 A binary relation < on a set X is total if for every z,y € X,
eitherx <y ory < z.

As usual, z < y abbreviates x < y and y ﬁ x.

Definition 5 In a partially ordered set [X, <], = is the immediate predeces-
sor of y if ¢ <y and there is no other element z in X for whichz < z <y.
The inverse relation is called the immediate successor.

Definition 6 Let X be a set and < an ordering on X. Let z € X.

= is minimal if there is no element y € X such that y < x.

z is o minimum if for all elements y € X,z < y. If < is also anti-
symmetric and such an x exists, then x is unique and will be denoted by
inf(X).

x is maximal if there is no element y € X such that x < y.

x is o maximum if for all elements y € X,y < z. If < is also anti-
symmetric and such an x exists, then x is unique and will be denoted by

sup(X).

A maximum (minimum) element is also maximal (minimal) but is, in
addition, comparable to every other element. This property and antisym-
metry leads directly to the demonstration of the uniqueness of in f(X) and
sup(X).

Definition 7 Let [X, <| be a partially ordered set. For any z,y € X, the
least upper bound of x and y is the element z such that x < z and y < 2,
and if there is any element z* with x < z* and y < z* then z < z*. The
greatest lower bound of x and y is an element w such that w < x and w <y,
and if there is any element w* with w* <z and w* <y then w* < w.

Definition 8 A lattice is a partially ordered set in which every two elements
z and y have a least upper bound, denoted by x +y, and a greatest lower
bound, denoted by x-y. A lattice L is distributive if z+(y-2) = (z+y)-(z+2)
andz-(y+2)=(z-y)+ (z-2).

Definition 9 Let U be a set and f : U x U — R a function satisfying the
following conditions:

(1) f(=,y) 20,

(1) f(z,y) =0z =y,

(I11) f(=,y) = f(y,z),

(IV) f(=z,y) < f(z,2) + f(z,9)-

f is called a metric on U®. A metric space is a tuple (U, f). A metric f
on U is bounded iff for some constant k € R, f(z,y) <k, for all z,y € U.

3.2 Neural Networks

Hornik, Stinchcombe and White [18] have proved that standard feedforward
neural networks with a single hidden layer are capable of approximating any
(Borel) measurable function from one finite dimensional space to another to
any desired degree of accuracy, provided sufficiently many hidden units are
available. Thus, we concentrate on single hidden layer networks, without
loss of generality.

Given a single hidden layer feedforward network, the following systems
of equations describe it.

ny = h(Wiiy + Wiyia + - + Wiip — 0p,) (1)
ny = h(Wayiy + Wagig + -+ + Wayip — 0

n2)

ne = h(Whis + Wyis + -+ Wiyip — On,.)

o1 = h(Wim +Wihny+--- +Win, —0,,) (2)
09 = h(W221n1 + W222n2 4+ W;an —0,,)

0q = h(Wq21n1 + Wq22n2 —I— e W,;Tn, —0,,)

where i = (i1,79,...,9p) is the network’s input vector (i;i1<;<p) € [—1,1]),
0 = (01,02, ...,04) is the network’s output vector (0j1<;<q) € [=1,1]), n =
(n1,n9, ...,nr) is the hidden layer vector (n;u< <r) € [=1,1]), On;(1<j<r) 18
the j-th hidden neuron threshold (0n; € R), 0,,1<;j<q) is the j-th output
neuron threshold (6,, € R), —0n, (resp. —0,,) is called the bias of the j-th
hidden neuron (resp. output neuron), W%(l <i<r1<j<p) is theﬁxeight of the
connection from the j-th neuron in the input layer to the i-th neuron in the

hidden layer (I/VzlJ € R), W?J.(l <i<gi<j<r) 18 the weight of the connection

6 f is sometimes called a distance function.

from the j-th neuron in the hidden layer to the i-th neuron in the output
layer (W7 €), and finally h(z) = 1+e—2*ﬁz —1 is the standard bipolar (semi-
linear) activation function. Notice that for each output 0;(1 < j <g¢) in o
we have o; = h(3 7, (szh(ZQ:]_(‘/Vzlkzk) —0n;)) — 00]’)‘7

We define the extraction problem as follows: Given a particular set of
weights W;; and biases 0;, resulting from a training process on a neural
network, find for each input vector i, all the outputs o; in the corresponding
output vector o such that 0; > Apmin, where Amin € (0,1) is a predefined
value (we say that output neuron j is “active” for input vector i iff o; >
Amin)'

We assume that for each input ¢; in the input vector i, either i; = 1
or i; = —1. That is done because we associate each input (and output)
neuron with a concept, say a, and 7; = 1 means that a is true while 7; = —1
means that a is false. For example, consider a network with input neurons
a and b. If i = (1,—1) activates the output neuron j then we derive the
rule @ ~ b — j. As a result, if the input vector i has length p there are 2P
possible input vectors to be checked.

4 The Extraction Algorithm for Regular Networks

Having identified the problems of knowledge extraction from trained net-
works, let us now start working towards the outline of their solutions. Given
the above extraction problem definition, firstly we realize that each output
neuron j has a constraint associated. We want to find o; = h(37_, (Win;)—
QOj) such that o; > Amin. We can equivalently define the extraction prob-
lem as follows. Let I be the set of input vectors and O be the set of output
vectors. We define a binary relation £ on I x O such that oéi < o = 6(i),
and the extraction problem reduces to: for each o; in o € O, find the set T’
C T of input vectors i such that o; > Amin.

Considering the monotonically crescent characteristic of the activation
function h(z) and given that 0 < Ap, < 1 and B > 0, we can rewrite
h(z) > Amin as x > h™Y(Amin). As a result, notice that to satisfy the above
constraint 0; > Amip, it is required that z = Z:zl(Wﬁni) —0,; > 0. Hence,
each output o; is determined by the system of equations 1 and equation 3
below, given in terms of the hidden neurons’ activation values.®

j is true iff Whing + Whng+ -+ Wine > b (Amin) + 0., (3)

"Whenever it is not necessary to differentiate between hidden and output layer, we refer
to the weights in the network as Wj; only. Similarly, we refe;;gi?p the network’s thresholds
in general as 6; only.

®Given h(r) = 1+e+ﬁm —1, we obtain b~ (z) = —% In (iﬁ) We use the bipolar semi-
linear activation function for convenience; any monotonically crescent activation function
could have been used here.

10

4.1 Positive Networks

We start by considering a very simple network where all weights are positive
real numbers. In other words, each W;; in the system of equations 1 and
in equation 3 is positive. Obviously, given two input vectors i, and iy, if
‘v’z(1<1<,.)n,(1m) > n;(i,) then V](1<J<q)03(nz(1m)) > 0j(n;(in)). Moreover, if
im = (1,1,...,,1) each nz is maximum and, therefore, each o; is maximum.
Similarly, 1f i, = (-1,—1,...,—1) then each n; is minimum and each o; is
minimum. That results also from the monotonically crescent characteristic
of the activation function h(x), as we will see in detail later. Let us first
present a simple example to help clarify the above ideas.

Example 10 Consider the network and its constraint representation of Fig-
ure 3. We know that ny = h(Wa.a + Wy.b — 0p,). Since Wo, Wy, > 0, it is

Figure 3: A single hidden neuron network (1) and its constraint representa-
tion (2) w.r.t. output z. Wg, Wy, Wy, € R*.

easy to verify that the ordering of Figure 4 on the set of input vectors I holds
w.r.t the output (x). The ordering says, for instance, that the activation of

{L,1}

/N

{-1,1} {1,-1}

{"1 » -1 } e

Figure 4: Ordering on the input vectors set I of the network (1) of figure 6.

11

ny is mazimum if i = (1,1), that n1(1,1) > n1(1,—1), and that ny is mini-
mum if i= (—1,—1). Since Wy, > 0, the activation of o, is also mazimum
ifi=(1,1), 05(1,1) > 04(1, 1), and oy is minimum if i = (—=1,—1). The
output x is therefore governed by the ordering.

Given the ordering, we can draw some conclusions. If the minimum
element is given as the network’s input (representing ~ a A ~ b) and it
satisfies the constraint over xz (that is, ~ a N\ ~ b — x) then any other
element in the ordering will satisfy it as well. In this case, since all possible
input vectors are in the ordering, we can conclude that = is a fact (— z). If,
on the other hand, the mazimum element (a Ab) does not satisfy x then no
other element in the ordering will satisfy it. Notice that if it is the case that
both (1,1) (representing a Ab) and (1,—1) (representing a N ~ b) satisfy
z but no other element in the ordering does, we can conclude that a — x.
Similarly, if (1,1) and (—1,1) are the only elements satisfying x we conclude
that b — x, regardless of a.

We have identified, therefore, that if Vij, W;; € R it is easy to find an
ordering on the set of input vectors I w.r.t the set of output vectors O. Such
information can be very useful to guide a pedagogical extraction procedure
of symbolic knowledge from the network. The ordering can help prune the
search space of input vectors, so that we avoid checking irrelevant input
vectors safely, in the sense that those vectors that are not checked would
not generate new rules. Moreover, each rule obtained is sound because the
extraction is done by querying the actual network.

Notice that in the worst case we still have to check 2" input vectors, and
in the best case we only need to check one input vector (either the minimum
or the maximum element in the ordering). Note also that there is, actually, a
linear order on the set of input vectors, which however may be impossible to
be found without querying each input vector for a particular set of weights.
Thus, we will focus initially on the analysis of a group of networks where
an ordering can be easily found. The following example illustrates what we
mean by “an ordering easily found”.

Example 11 Consider the network of Figure 5. If we know, for instance,
that Wa1 > Wy then we can derive the ordering of Figure 6(1) on the set
of input vectors w.r.t the activation value of neuron ny. In the same way, if
we know that Wag = Why then we can derive the ordering 6(2) w.r.t. ng. If
Wa1 > Wh1 and Wae > Wy then we can derive a linear order on the set of
inpul vectors w.r.t the output x as well.

Howewver, if Wy1 > Wiy (see Figure 7(1)) and Waa < Wi (7(2)) then
we can only derive a partial order 7(8) w.r.t the output xz. Notice that the
ordering 7(3) is equal to the ordering given in example 10.

If a particular set of weights is given, for example if Wy = 10, Wy =
5, Waa = 2 and Wiy = 8, then we can check that (—1,1) > (1,—1). For the

12

{%1}
Wai {1%—1} {T}
T s L WaW s LI 1)
Wh1) t
{-1,-1} {-1,-1}
(1) (2)

Figure 6: Linear ordering on the set of input vectors.

time being, however, we use the partial ordering of Figure 7(3) because it is
“easily found”, regardless of the network’s weights values.

Examples 10 and 11 indicate that the partial ordering on the set of input
vectors is the same for a network with two hidden neurons and for a network
with only one hidden neuron. Actually, we will see later that if W;; € R*
then the partial ordering on the set of input vectors is not affected by the
number of hidden neurons. Although the weights are different, if a given
input occurs in n; then the same input has to occur in ny as well (where
“to occur” means to be responsible for its activation value). That results
from the fact that the network’s recall process is synchronous, that is, at
each time step a unique input vector is presented to the network and is used
to compute the activation values of all hidden and output neurons. Hence,
given W;; € g+, input (1,1), for instance, provides the maximum activation
of both n; and ny at the same time. e

Let us now try and see if we can find an ordering easily in the case
where there are three inputs {a,b,c}, but still with W;; € R*. It seems
reasonable to consider the ordering of Figure 8 since we do not have any

13

{1, 1} {1,1} {11}
y y \
Wal {1-1} W2 {-1,1)
T 0 T A {-1,1} {1,-1}
= (1,1) = {1,-1) \
Wh1 0 Wa2 0
{-1-1} {-1-1} {-1,-1}
1) ©) 3)

Figure 7: Partial ordering on the set of input vectors.

extra information regarding the network’s weights. The ordering is built
starting from element (—1,—1,—1) and then flipping each input at a time
from -1 to 1 until (1,1,1) is obtained.

{1,1,1}

i

{1,1,-1} {1,-1,1} {-1,1,1}

>

{1,-1,-1} {-1,1,-1} {-1,-1,1}

W

{-1,-1,-1}

Figure 8: Partial ordering w.r.t set inclusion on the network’s input vectors
set (p = 3).

It seems that, for an arbitrary number of input and hidden neurons, if
W;; € R", then there exists a unique minimal element (—1,—1,...,—1) and
a unique maximum element (1,1,...,1) in the ordering on the set of input
vectors w.r.t the output neurons’ activations. It seems that W;; € Rt is a
sufficient condition for the existence of an easily found ordering on the input
vectors space. Let us see if we can confirm this.

We assume the following conventions. A literal is a propositional variable
or the negation of a propositional variable. Let P be a finite set of literals.
An interpretation is a function from P to {¢¢, f f}. That is, an interpretation
maps each literal to either ¢rue or false. Given a neural network, we associate
each input and output neuron with a unique literal in P. Let 7 be the set
of input neurons and O the set of output neurons. Then, each input vector

14

i can be seen as an interpretation. Suppose Z = {p,q,r}. We fix a linear
ordering on the symbols of 7 and represent it as a list, say [p, ¢, 7]. This will
allow us to refer to interpretations and input vectors interchangeably in the
following way. We represent i as a string of 1’s and -1’s, where the value 1 in
a particular position in the string means that the literal at the corresponding
position in the list of symbols is assigned ¢t, and the value -1 means that
it is assigned ff. For example, if i = (1,—1,1) then i(p) = i(r) = ¢ and
i(g)=ff

Each input vector i can be seen as an abstract representation of a subset
of the set of input neurons, with 1’s denoting the presence and -1’s denoting
the absence of a neuron in the set. For example, given the set of input
neurons Z as the list [p, ¢, 7], if i = (1, —1,1) it represents the set {p,r}, if
i=(-1,—1,-1) it represents {0}, if i = (1,1, 1) it represents {p, ¢, 7}, and so
on. We conclude that the set of input vectors I is an abstract representation
of the power set of the set of input neurons Z. We write it as I = p(Z).

We are now in position to formalize the above concepts. We start by
defining a distance function between input vectors. The distance between
two input vectors is the number of neurons assigned different inputs by
each vector. In terms of the above analogy between input vectors and in-
terpretations, the same distance function can be defined as the number of
propositional variables with different truth-values.

Definition 12 Let iy, and iy, be two input vectors in1. The distance dist(im, in)
between im and in is the number of inputs i; for which im(i;) # in(%;).
(dist : I x1I— R)

For example, the distance between i; = (—1,—1,1) and iy = (1,1, —1) is
dist(i1,iz) = 3. The distance between i3 = (—1,1,—1) and iy = (1, —-1,-1)
is dist(is,i4) = 2.

Proposition 13 [31] The function dist is a metric on 1.

Clearly, the function dist is also a bounded metric on I. That is,
dist(im,iy) < p for all ip,i, € I, where p is the length of the input vec-
tors i,, and i,.

Another concept that will prove to be important is the sum of the input
elements in a input vector. We define it as follows.

Definition 14 Let iy, be a p-ary input vector in1. The sum (ip,) of iy, is the
sum of all input elements i; in im, that is (im) = Z?:l im(ij). (() : I— 7Z)

For example, the sum of iy = (-1,—1,1) is (i;) = —1. The sum of
ip=(1,1,-1) is (i) = 1. e

Now we define the ordering <y on I = p(Z) w.r.t set inclusion. Recall
that i,, € I is an abstract representation of a subset of Z. We say that
im C iy, if the set represented by in, is a subset of the set represented by 1i,.

15

Definition 15 Let iy, and i, be input vectors in 1. iy, <t ip iff im C in.

Clearly, for a finite set Z, I is a finite partially ordered set w.r.t < having
7 as its maximum element and the empty set () as its minimum element. In
other words, sup(I) = {1,1,...,1} and inf(I) = {-1,—1,...,—1}. Actually,
[I, <1] is not only that.

Proposition 16 [29] The partially ordered set [I, <i] is a distributive lat-
tice.

Note that I is actually the n-cube in the Cartesian n-dimensional space
of coordinates z1, s, ...,z, where the generic z;(1 < j < n) is either -1 or
1. I= {ik I iy = (il, ...,ip), ij(lﬁjﬁp) € {—1, l}}

The following Proposition 17 shows that <j is actually the ordering of
our interest w.r.t the network’s output.

Proposition 17 If W;; € R then i, <g i, implies (om(0j) = 6(im)) <
(on(05) = 6(in)), for all1 < j <gq.

Proof. Let iy <1in and dist(im,in) = 1, then im(i;) = —1 and ip(3;) = 1
for some input i;. Let r be the number of hidden neurons in the network.
Firstly, we have to show that:

(S Eea (Wigim (i) — Ony)+ h(Z 1 (Waiim(ii) — Ony)) +
Wi Wi (i) = On,) < A(ZTy (Wiiin (i) — Ony)+
(38 (Waiin (is) = Ony)) + -+ + h(Z 1 (Weiin (ii) — On,))-

By the definition of <1 and since Wﬂ € Rt we derive immediately that
forall j(1 < § <7) 30 (Wiim(:) — On;) < S0 (W, iin (i) — On;), and by
the monotonically crescent chamctemstzc of h(z) we obtain Vi(l <j <)
h(z 1(1m(zz) —0p;)) < (32 ((jliin(ii) — On;)). This proves that if
im <gip, and dzst(lm,ln) =1 then (nm(n;) = 8(im)) < (nn(nj) = 6(in)) for
all 1 < j <r. In the same way, we obtain that h(Z:zl(Wfinm(ni) —0,;)) <
(> i (W nn(nZ —0,,)) and therefore that (om(0;) = 6(im)) < (on(0;) =

6(i))f0T0111SJSQ(1)- \

Now, let iy, <1 in and dist(in,i,) = k (1 < k < p). There are k — 1
vectors ig,...,i¢c such that iy <1 i¢ <1 ... <y i¢ <y i,. From (1) above and
since < is transitive, it follows that if iy, <y in then (om(0;) = 6(im)) <
(on(05) = 6(in)) forall1 < 7 < q.O

4.2 Regular Networks

Let us see now if we can relax the condition W}, € R+ and still find easily an
ordering in the network’s input vectors set. We start by giving an example.

16

Example 18 Consider the network given at example 11 (Figure 5), but now
assume Wy and Wiy < 0. Although some weights are negative, we can find
a “regularity” in the network. For example, the input neuron b contributes
negatively for both ny and ny, and there are no negative connections from
the hidden to the output layer. Following [12], we can transform the network
of Figure 5 into the network of Figure 9, where all weights are positive and
the input neuron b is negated.

Figure 9: The positive form of a (regular) network.

Given the network of Figure 9, we can find an ordering on the set of
input vectors in the same way as before. The only difference is that now
T = {a,~ b}. We will see later that, if we account for the fact that T may
now have negated literals (default negation), then the networks of Figures 5
and 9 are equivalent.

Let us analyse what we have done in the above example. If the con-
nections from the hidden layer to any one neuron in the output layer of a
network are either all positive or all negative, we do the following for each
input neuron y:

1. if y is linked to the hidden layer through connections with negative
weights W, only:)

(a) change each Wj, to —Wj, and rename y by ~ y.

2. If y is linked to the hidden layer through positive and negative con-
nections:

"

(a) add a neuron named ~ y to the input layer, and
(b) for each negative connection with weight W;y, from y to n;:

1. add a new connection with weight —W;, from ~ y to n;, and

17

ii. delete the connection with weight W}, from y to n;.

3. If y is linked to the hidden layer through connections with positive
weights only:

(a) do nothing.
We call the above procedure the Transformation Algorithm.

Example 19 Consider again the network given at example 11 (Figure 5),
but now assume that only Wag < 0. Applying the transformation algorithm
we obtain the network of Figure 10.

Figure 10: The positive form of a (non regular) network.

Although the network of Figure 10 has positive weights only, it is clearly
not equivalent to the original network (Figure 5). In this case, the combina-
tion of n1 and ng is not straightforward. Note that, i = (1,1) in the original
network provides the mazimum activation of nq, but not the mazimum ac-
tivation of ng that is given by i= (—1,1). We can not affirm anymore that
(1,1) is bigger than (—1,1) w.r.t the output x, without having to check them
by querying the network.

The above examples 18 and 19 indicate that if the transformation algo-
rithm generates a network where complementary literals (say, a and ~ a)
appear in the input layer (see the network of Figure 10) then the ordering
<1 on I is not applicable. On the other hand, if it does not, it seems that <jy
is still valid for networks that have “well-behaved” negative weights. This
motivates the following definition.

Definition 20 A single hidden layer neural network is said to be regular if
its connections from the hidden layer to each output neuron have either all
positive or all negative weights, and if the above transformation algorithm
generates on it a network without complementary literals in the input layer.

18

Back to example 18, we have seen that the positive form N, of a regular
network N may have negated literals in its input set (e.g. 7, = {a,~ b}).
In this case, if we represent 7, as a list, say [a, ~ b], and refer to an input
vector i = (—1,1) w.r.t Z then we consider i as the abstract representation
of the set {~ b}. In the same way, i = (1, —1) represents {a}, and so on. In
this sense, the set of input vectors of Ny can be ordered w.r.t set inclusion
exactly as before, using Definition 15. The following example illustrates
that.

Example 21 Consider the network Ny of Figure 9. Given Iy = |a,~ b] we
obtain the ordering (1) of Figure 11 w.r.t set inclusion. The ordering 11(2)
on the set of input vectors of the original network N is obtained by mapping
each element of (1) into (2) using~b=1=b=—-1and~b=—1=b=1,

{1,1} {1,-1}

A7

{-1,1} {1,-1} {-1,-1} {1,1}

ALY,

{-1,-1} {-1,1}
Tv=1la, ~b] T =la, b]
M @

Figure 11: The ordering w.r.t set inclusion on the positive form of a network
(1) and the ordering on the original network (2).

As a result, querying the network Ny with i = (1,1) is equivalent to
querying the network N with i = (1,—1), querying Ny with i = (—1,1) is
equivalent to querying N with i = (—1,—1), and so on.

More precisely, we define the function ¢ mapping input vectors of the
positive form into input vectors of the subnetwork as follows. Let I be the
set of input vectors of s tuples. Given 7 and an abstract representation I,
of p(Zy), each element z; € 7,1 <1 < s, is mapped to the sef'{—1, 1} such
that oz, 2,01,y 1s) = (4], ...,7%), where i = ¢; if z; is a positive literal
and ¢; = —i; if z; is a negative literal. For example o'q, p,¢, (1,1, —1,~1) =
(1,-1,-1,1).

19

Note that the correspondence between input vectors and interpretations
is still valid. We only need to define i(~ p) = ff iff i(p) = ¢t and ~r~ p = p.
For example, for 7, = [a,~ 1], if i = (=1, —1) then i(a) = ff and i(b) = tt.

Proposition 22 If a network is reqular with input T, then iy, <y i, implies
(0m(05) = 8(0z,1(im)) < (0n(0;) = 8(oyz,)(in)), for all 1 < j < q.

Proof. Straightforward by Proposition 17 and by the above definition of the
mapping function o.[]

Proposition 22 establishes the correlation between regular networks and
their positive counterpart. As a result, the extraction procedure can either
use the set inclusion ordering, and query directly the positive form of the
network, or use the mapping function o to obtain the ordering on the regular,
original network, and query the original network. We will adopt the first
policy. Note that if the network is already positive then ¢ is the identity
function.

We have seen briefly that if we can find an ordering in a network’s input
vectors set easily, as a result there are some properties that can help pruning
the input search space during a pedagogical extraction of rules. Let us now
define precisely these properties.

Proposition 23 (Search Space Pruning Rule 1) Let i, and i, be input
vectors of a regular neural network N, such that dist(im,in) =1 and (i) <
(in) . If i does not satisfy the constraint Co; on the j-th output neuron of
N, then iy, does not satisfy Co; either.

Proof. Directly by Definitions 12, 14 and 15, if dist(im,in) =1 and (i) <
(in) then iy <1in. By Proposition 17, 0j(im) < 0;(in). That completes the
proof. [

Proposition 24 (Search Space Pruning Rule 2) Let ip, and ip be input
vectors of a regular neural network N, such that dist(im,in) = 1 and (i) <
(in) . If im satisfies the constraint Co; on the j-th output neuron of N, then
i,, also satisfies Co;.

Proof. This is the contrapositive of Proposition 23.0]

Propositions 23 and 24 say that for any i € I, starting from sup(I) (resp.
inf(I)), if i does not activate (resp. activates) the j-th output neuron, then
the immediate predecessors (resp. successors) of i does not activate (resp.
activates) it as well.

We have seen very briefly in example 10 that simplifications, like ab — z
and a ~ b — x = a — =z, can be done in the Set of rules extracted.
Moreover, they can be identified in the input vectors ordering, prior to the
actual extraction of rules. We define, therefore, the following “simplification
rules” that will help in the extraction of a smaller and clearer set of rules.

20

Definition 25 (Subsumption) A rule r1 subsumes a rule o iff r1 and ro
have the same conclusion and the set of premises of vy is a subset of the set
of premises of ry.

For example, a — = subsumes ab — x and a ~ b — z.

Definition 26 (Complementary Literals) Let r1 = Ly, ..., Ly, ..., Lj — Lj1
and rg = Ly,...;~ Ly ..., Lj — Lj1 be derived rules, where j < |I|. Then,
rg = Li,..., Li_1,Liy1,..., L; — Ljyq1 is also a derived rule. Note that r3
subsumes r1 and 9.

For example, if 7 = {a,b,c} and we write a ~ b — z, then it simplifies
a ~bc— xand a~ b~ c— z. Note that, considering the ordering on
I, the above property requires that two adjacent (dist = 1) input vectors
im =(1,-1,1) and i, = (1,—1, —1) satisfy z.

Definition 27 (Fact) If a literal Lj11 holds in the presence of any combi-
nation of the truth values of literals Ly, ..., L; in T then we derive a rule of
the form — Lji1 (Ljy1 is a fact).

Definition 27 is a important special case of Definition 26. Considering the
ordering on I, an output neuron z is a fact iff inf(I) satisfies the constraint
on z. Note that, by Proposition 24, if in f(I) satisfies z then any other input
vector in I satisfies as well. Another interesting special case occurs when
sup(I) does not satisfy z. In that case, by Proposition 23, any other input
vector in I does not satisfy x either, and we can stop the search process
deriving no rules with conclusion z.

Definition 28 (M of N) Let m,n € R,7/ C Z,|Z/| = n,m < n. Then, if
any combination of m elements chosen from I/ implies L;y1 we derive a
rule of the form m(Z1) — Lj4q.

The above Definition 28 may be very useful in helping to reduce the
number of rules extracted. It states that, for example, 2(abc) — z represents
ab — z,ac — x,and bc — x. In this way, if for example we write 3(abedef) —
z then this rule is a short representation of at least Cg = 20 rules . There
is a rather intricate relation between each rule of the form M of N and the
ordering on the set of input vectors I, in the sense that each valid M of N
rule represents a subset of I. Here is a flavour of that relation in a example
where it is easy to identify it. Suppose Z = {a, b, c} and assume that Z = T.
Let us say that the output neuron in question is and that constraint C,,

Note that if Z = {a,b,c} and we write 1(ab) — z, then it is a simplification of C = 2
rules: a — = and b — x. However, by definition 26, a — z and b — z are already
simplifications of abc — z, ab~c -z, a ~bc >z, a~b~c— x, ~ abc — z, and
~ab~c— 2z

21

is satisfied by at least one input vector in I. If only sup(I) satisfies C,_,
we derive the rule abc — z. Clearly, this rule is equivalent to 3(abc) — .
If all immediate predecessor of sup(I) also satisfy C,,, it is not difficult
to verify that the four rules obtained (ry = abc — z, 19 = ab ~ ¢ — =z,
r3 = a ~ bc — x, 4y =~ abc — x) can be represented by 2(abc) — =.
That is because, by Definition 26, each rule ry, 73 and r4 can be simplified
together with ry, deriving abc — z, ab — z, ac — = and bc — z. Since, by
Definition 25, abc — x is subsumed by any of the other three rules, we obtain
2(abc) — x. Moreover, 2(abc) — = subsumes 3(abc) — z. This motivates
the definition of yet another simplification rule, as follows.

Definition 29 (M of N Subsumption) Let m,p € 8,7/ C . m(Z/) — Lj11
subsumes p(I1) — Ljy1 iff m < p.

Back to the illustration about the relation between M of N rules and
subsets of I, let us see what happens if the elements at distance 2 from
sup(I) all satisfy C,,. We expect that the set of rules obtained from I could
be represented by 1(abc) — z, and in fact it is. Let 7y = a ~ b ~ ¢ —
x,m9 =rv ab~ c — z, and r3 =~ a ~ bc — x. By Proposition 24, from any
two rules in {ry,r9,r3} we have r4y = ab ~ ¢ — x,75 = a ~ bc — =z, and
r¢ =~ abc — x. Again by Proposition 24, from any rule in {r4, 75,76} we
have 7 = abc — x. By Definition 26, from {r;,r4} we have rg = a ~ ¢ — =,
from {rs,r7} we have rg = ac — z, and from rg and r9 we derive r4 = a — z.
Similarly, from {72, 74, 76,77} We derive 7, = b — =z, and from {rs, r5, 76,77}
we derive r. = ¢ — x. Finally, since 74, r, and r, together subsume any rule
previously obtained, by Definition 28 we may derive the single M of N rule
1(abc) — x. We have identified, therefore, a pattern in the ordering on I
w.r.t a group of M of N rules, the ones where Z/ = 7. More generally, given
|Z| = k, if all the elements in I that are at distance d from sup(I) satisfy
a constraint C,,, then derive the rule (k — d)(Z) — z. Note that there are
C,’;_ 4 €lements at distance d from sup(I) and that, as a result of Proposition
24, if all the elements in I at distance d from sup(I) satisfy C,,, then any
other element at distance d’ from sup(I), 0 < d' < d also satisfies C,,.

Remark 1 We have defined regular networks (see Definition 20) either with
all the weights from the hidden layer to each output neuron positive or with
all of them negative. We have, although, considered in the above examples
and. definitions only the ones where all the weights are positive. However,
it s not difficult to verify that the constraint C,; on the j-th output of a
reqular network with negative weights from hidden to output layer is Wflnl +
Wj22n2 +-- .—]—szrnr < WY Amin) +0,;. As a result, the only difference now
is on the sign (<) of the constraint. In other words, in this case we only
need to invert the signs at Propositions 28 and 24. All remaining definitions
and propositions are still valid.

22

We referred to soundness and completeness of the extraction algorithm
in a somewhat vague manner. Let us define these concepts precisely.

Definition 30 (Extraction Algorithm Soundness) A rules’ extraction al-
gorithm from a neural network N is sound iff for each rule r; extracted,
whenever the premise of r; is presented to N as input vector, in the pres-
ence of any combination of the input values of literals not referenced by rule
r;, the conclusion of r; presents activation greater than Amg, in the output
vector of N.

Definition 31 (Extraction Algorithm Completeness) A rules’ extraction
algorithm from a neural network N is complete iff each rule extracted by
exhaustively verifying all the combinations of the input vector of N either
belongs to or is subsumed by a rule in the set of rules generated by the
extraction algorithm.

We are finally in position to present the extraction algorithm for regular
networks, which will be refined in section 5 for the general case extraction.

e Knowledge Extraction Algorithm for Regular Networks'®

1. Apply the Transformation Algorithm over N, obtaining its positive
form Ny;

2. Find inf(I) and sup(I) w.r.t N using o;
3. For each neuron o; in the output layer of N, do:

(a) Query Ny with input vector inf(I). If 0; > Amin, apply the
Simplification Rule Fact and stop.

(b) Query Ny with input vector sup(I). If 0; < Amin, stop.
/% Search the input vectors space .

(¢) iy =inf(I); i; := sup(l);

(d) While dist(i,inf(I)) < nDIv2 or dist(i;,sup(I)) < nDIV2 +
nMOD2, where n is the number of input neurons of N, and still
generating new.i| or i, do:

/* Generate the successors of i, and query the network

i. set new i, = old i, flipped according to the ordering on I;'!
ii. Query Ny with input vector i ;
ili. If Search Space Pruning Rule 2 is applicable, step generating
new i

1The algorithm is kept simple for clarity, and is not necessarily the most efficient.
U¥from inf (I), we generate new i, from right to left.

23

iv. Apply the Simplification Rule Complementary Literals, and
Add the rules derived accordingly to the rule set.

/* Generate the predecessors of i; and query the network

v. set new i, := old i, flipped according to the ordering on I;'2
vi. Query Ny with input vector ir;
vii. If Search Space Pruning Rule 1 is applicable, stop generating
new ir;
viii. Apply the Simplification Rule M of N, and Add the rules
derived accordingly to the rule set.

(e) Apply the Simplification Rules Subsumption and M of N Sub-
sumption on the rule set regarding o;.

Note that if the weights from the hidden to the output layer of N are
negative, we simply substitute inf(I) by sup(I) and vice-versa. In a given
application, the above extraction algorithm can be halted if a desired degree
of accuracy is achieved in the set of rules. The algorithm is such that the
exact symbolic representation of the network is being approximated at each
cycle.

Example 32 Suppose T = {a,b,c} and let I = p(Z) be ordered w.r.t set
inclusion. We start by checking inf(I) w.r.t an output neuron z. If inf(I)
activates z, i.e., inf(I) satisfies constraint C,_, then by Proposition 24 any
other input vector activates x and by Definition 27 we can extract — x and
stop. If, on the other hand, inf(I) does not activate x, then we may need to
query the network with the immediate successors of inf(I). Let us call these
input vectors I*, where dist(inf(I),I*) = 1.

We proceed to check the element sup(I). If sup(I) does not satisfy C,_,
by Proposition 23 we can stop, extracting no rules with conclusion x. If
sup(I) activates x, we conclude that abc — x, but we still have to check the
input vectors I** at distance 1 from sup(I). We may also later apply some
simplification on abc — x, if at least one of the input vectors in I** activates
x. Hence, we keep abc — x in stand by and proceed.

Let us say that we choose to start by checking iy = (—1,—1,1) inI*. Ifi;
does not satisfy C,, we have to check the remaining inputs in I*. However,
if i1 activates x then, again by Proposition 24, we know that (—1,1,1) and
(1,—1,1) also do. This tells us that not all the inputs in I** need to be
checked. Moreover, if all the elements in I* activate x then we can use
Definition 28 to derive 1(abc) — x and stop the search.

Analogously, when checking I** we can obtain.information about I*.
If, for instance, iy = (1,1,—1) does not activate = then (—1,1,—1) and
(1,—1,-1) in I* do not either, now by Proposition 23. If, on the contrary,

2 From sup(I), we generate new i, from left to right.

24

iy activates x, we can derive ab — x, using Proposition 24 and Definition
26. If not only ig but also the other inputs in I** activate x then we obtain
2(abc) — x, which subsumes abc — z by Definitions 28 and 25. In this case,
we still need to query the network with inputs i at distance 1 from iy such
that (i) < (iz), but those inputs are already the ones in I** and therefore
we can stop. Note that the stopping criteria are the following: either all
elements in the ordering are visited or, if not, for each element not visited,
Propositions 23 and 24 guarantee that it is safe not to consider it, in the
sense that it is either already represented in the set of rules or irrelevant and
will not give rise to any new rule.

Theorem 33 (Soundness) The extraction algorithm for reqular networks is
sound (satisfies Definition 30).

Proof. We have to show that, whether a rule r is extracted by querying the
network (Case 1) or by a simplification of rules (Case 2), any rule v’ that is
subsumed by r, including r itself, can be obtained by querying the network.
We prove this by contradiction. Consider a set I of p-ary input vectors.
Assume that there exist rules v and r' such that v’ is subsumed by r, and
r’ is not obtainable by querying the network. Assume also that r contains
the largest number of premisses of such a rule. Let X; denote L; or ~ L,
(1<i<p).

Case 1: If r is itself obtained by querying the network, then the only
possible subsumed rule is v, and obviously this yields a contradiction.

Case 2: r is either a simplification by Complementary Literals, or a Fact,
or a M of N rule. It is shown that each assumption yields a contradiction.

Let r = Ly,...,Lqg — Lj (1 < g < p) be a simplification by Complemen-
tary Literals. Then, v is derived from two rules vy = L1, ..., Ls, ..., Ly — L;
and ry = Ly,...,~ Lg,...;.Lg — Lj, (1 < s < q). Each of these has more
premisses than r. So, by assumption, all rules subsumed by v} and T4 are
obtainable by querying the network. By Proposition 24, r is also obtained by
querying the network. Since, by Definition 25, any other rule subsumed by
r is also subsumed by either v} or by r), this leads to a contradiction.

Let v = — L; be a simplification by Fact. Then, r must have been
obtained by querying the network with inf(I). By Proposition 24, any rule
of the form Xy,..,X, — L; is also obtainable by querying the network,
contradicting the assumption about .

Finally, if a further simplification is made, to obtainr = m(Ly, ..., Ly,) —
L; (1 <m <n<p) by M of N simplification, then r is obtained from a set
of rules of the form Ly, ..., Ly, — Lj, where Ly, ..., Ly, are m elements chosen
from {Lx,...,Lp}. By the previous cases, all subsumed rules are obtainable
by querying the network.

Theorem 34 (Completeness) The extraction algorithm for regular networks
is complete (satisfies Definition $1).

25

Proof. We have to show that the extraction algorithm terminates either
when all possible combinations of the input vector have been queried in the
network (Case 1) or the set of rules extracted subsumes any rule derived
Jrom elements not queried (Case 2). Case 1 is trivial. In Case 2, we have
to show that any element not queried either would not generate a rule (Case
2(1)) or would generate a rule that is subsumed by some rule extracted (Case

Consider a set 1 of p-ary input vectors.

Case 2(i): Let im,in € I, dist(im,in) = q¢ (1 < ¢ < p) and (in) < (in) .
Assume that iy, is queried in the network and that i, does not generate a
rule. By Proposition 23 q times, iy, would not generate a rule either.

Case 2(ii): Let ig,i, € I, dist(ix, i) = ¢ (1 < ¢ < p) and (i) < (io).
Assume that iy is queried in the network and that iy derives a rule ry.
Let S = {Lx,...,Ls} be the set of positive literals in the body of T, where
s € [1,p]. By Definition 26, the rule r = Ly, ...,Ly — L; can be obtained
from . Clearly, r subsumes 1. Now, by Proposition 24 t times, i, would
also derive a rule ro. Let U = {L,..., Ly, } be the set of positive literals in the
body of ro, where u € [1,p]. Since (ix) < (i,) then S C U and, by Definition
25, v also subsumes r,.

That completes the proof since all the stopping criteria of the extraction
algorithm have been covered. [J

5 The Extraction Algorithm for Non-Regular Net-
works (The General Case)

So far, we have seen that for the case of regular networks it is possible to
apply an ordering on the set of input vectors, and use a sound and complete
pedagogical extraction algorithm that searches for relevant input vectors in
this ordering. Furthermore, the neural network and its set of rules can be
shown equivalent (that results directly from the proofs of soundness and
completeness of the extraction algorithm).

Despite the above results being highly desirable, it is much more likely
that a non-regular network will- result from an unbiased training process.
In order to overcome this limitation, in the sequel we present the exten-
sion of our extraction algorithm to the general case, the case of non-regular
networks. The idea is to investigate fragments of the non-regular network
in order to find regularities over which the above described extraction al-
gorithm could be applied. We would then split a non-regular network into
regular subnetworks, extract the symbolic knowledge from each subnetwork,
and finally assemble the rule set of the original non-regular network. That,
however, is a decompositional approach, and we need to bear in mind that
the collective behavior of a network is not equivalent to the behavior of its
parts grouped together. We will need, therefore, to be specially careful when

26

assembling the network’s final set of rules.

The problem with non-regular networks is that it is difficult to find the
ordering on the set of input vectors without having to actually check each
input. In this case, the gain obtained in terms of complexity could be lost.
By considering its regular subnetworks, the main problem we have to tackle
is how to combine the information obtained into the network’s rule set.
That problem is due mainly to the non discrete nature of the network’s
hidden neurons. As we have seen in Example 1, that is the reason why
a decompositional approach may be unsound (see section 2). In order to
solve this problem, we will assume that hidden neurons present four possible
activations (—1, Amaz, Amin,1). Performing a kind of worst case analysis,
we will be able to show that the general case extraction is sound, although
we will have to exchange completeness for efficiency.

5.1 Regular Subnetworks

We start by defining precisely the above intuitive concept of a subnetwork.

Definition 35 (subnetworks) Let N be a neural network with p input neu-
Tons {i1, ..., ip}, v hidden neurons {ny, ...,n,} and q output neurons {o1, ..., 04}
Let N1 be a neural network with p’ input neurons {i}, ..., i;,}, r' hidden neu-
rons {n},...,n,} and ¢ output neurons {d, ..., oy} N1 is a subnetwork of
Niff 0 <p <p,0<+ <7, 0<¢ <gq, and for all i}, nl, oy in N',
Wn;z; - anii, WOL”} = Woknj; Qn; = an and 90;6 - on.

Our first task is to find the regular subnetworks of a non-regular network.
Indeed, any single hidden layer network can be split into exactly r regular
subnetworks, where r is the number of hidden neurons. It is not difficult
to check that any network containing a single hidden neuron is regular.
As a result, we could be tempted to split a non-regular network into r
subnetworks, each containing the same input and output neurons as the
original network plus only one of its hidden neurons.

However, let us briefly analyse what could happen if we were to extract
rules from each of the above subnetworks. Suppose that, for a given out-
put neuron z, from the subnetwork containing the hidden neuron n;, the
extraction algorithm obtains the rules ab —,;, = and c¢d —,, ; from the
subnetwork containing the hidden neuron ng, it obtains the rule ed —,, z;
and so on. The problem is that the information that ab implies = through
np is not very useful. It may be the case that the same input ab has no effect
on the activation of x through ng, or that it actually blocks the activation
of x through ny. It may also be the case that, for instance, ‘4d — = as a
result of the combination of the activations of n; and ng together, but not
through each one of them individually. If, therefore, we take the intersection
of the rules derived from each subnetwork, we would be extracting only the

27

rules that are encoded in every hidden neuron individually, but not the rules
derived from each hidden neuron or from the collective effect of the hidden
neurons’ activations. If, on the other hand, we take the union of the rules
derived from each subnetwork, then the extraction could clearly be unsound.

It seems that we need to analyse a non-regular network first from the
input layer to each of the hidden neurons, and then from the hidden layer
to each of the output neurons. That motivates the following definition of
“Basic Neural Structures”.

Definition 36 (Basic Neural Structures) Let N be a neural network with p
input neurons {i1, ...,ip}, v hidden neurons {nq, ...,n,} and q output neurons
{o1,...,04}. A subnetwork N' of N is a Basic Neural Structure (BNS) iff
either N' contains exactly p input neurons, 1 hidden neuron and 0 output
neurons of N, or N’ contains exactly 0 input neurons, r hidden neurons and
1 output neuron of N.

Note that a BNS is a neural network with no hidden neurons and a single
neuron in its output layer. Note also that a network N with r hidden neurons
and g output neurons contains r + ¢ BNSs. We call a BNS containing no
output neurons of N, an Input to Hidden BNS; and a BNS containing no
input neurons of N, a Hidden to Output BNS.

Proposition 37 Any BNS is (vacuously) regular.

Proof. Directly by Definition 36, by applying the Transformation Algorithm
on a BNS, a network without complementary literals in the input layer is
obtained. By Definition 20, since a BNS does not contain hidden neurons,
it is (vacuously) regular. O

Proposition 37 shows that the Transformation Algorithm applied over a
BNS will derive a positive network (W;; € R"), the BNS’s positive form,
which will not contain pairs of neurons labelled as complementary literals
in its input layer. The above result indicates that BNSs, which can be
easily obtained from a network NN, are suitable subnetworks for applying
the extraction algorithm when N is a non-regular network.

5.2 Knowledge Extraction from BNSs

We have seen that, if we split a non-regular network into BNSs, there is
always an ordering easily found in each subnetwork. The problem, now, is
that Hidden to Output BNSs do not present discrete activations {—1,1} in
their input layer. Instead, each input neuron may present activations in the
ranges (—1, Amaz) OF (Amin, 1), where Apqq € (—1,0) is a predefined value,
and we will need to consider this during the extraction from Hidden to Out-
put BNSs. For the time being, let us simply assume that each neuron in the
input layer of a Hidden to Output BNS is labeled n;, and if n; is connected to

28

the neuron in the output layer of the BNS through a negative weight, then
we rename it ~ n; when applying the Transformation Algorithm, as done
for regular networks. Moreover, let us assume that neurons in the input
layer of the positive form of Hidden to Output BNSs present activations in
{—1, Amin} only. This results from the above mentioned worst case analysis,
as we will see later in this section.

We need to rewrite Search Space Pruning Rules 1 and 2 for BNSs. Now,
given a BNS with 7 input neurons {1, ...,%;} and the output neuron o;, the
constraint C,; on the output neuron’s activation is simply given by: j is
true iff Wojilil + Woji2i2 + ...+ Wo]-i,-ii > h_l(Amin) -+ on.

Proposition 38 Let iy, and i, be input vectors of the positive form of a
BNS with output neuron o;. If iy <y in then 0;(im) < 0;(in).

Proof. Case 1 (Input to Hidden BNSs): Directly, by Proposition 37 and
Proposition 17 we obtain 0;(im) < 0;(in). Case 2 (Hidden to Output BNSs):
Assume im(ix) = —1 and ip(ix) = Amin. Since Wj; € R and Apmin > 0,
we have (W4, (—1) — 00;) < (Woyi, (Amin) — 0o,;). Since iy <1 in, we have
(Zle(Wojiiim(ii) —00j)) < (Zle(Wojiiin(ii) —0o,)), and by the monotoni-
cally crescent characteristic of h(zx) we obtain (37 (W,ji,im(is) —0,;)) <

R(3 01 (Woys,in(is) — 00;)), i.e., 0j(im) < 0;(in). That completes the proof.
O

Corollary 39 (BNS Pruning Rule 1) Let iy, <y in. If in, does not satisfy
the constraint Co; on the BNSs output neuron, then ip, does not satisfy Co,
either.

Proof. Directly from Proposition 38.

Corollary 40 (BNS Pruning Rule 2) Let iy, <1 in. If i, satisfies the con-
straint Co; on the BNSs output neuron, then i, also satisfies Co;.
Proof. Directly from Proposition 38.

The particular characteristic of BNSs, specifically because they have no
hidden neurons, allows us to define a new ordering that can be very useful
in helping to reduce the BNS’s input vectors search space. Briefly, if now,
in addition, we consider the BNS weights’ values, we may be able to assess,
given two input vectors i, and iy, such that (i,) = (i), whether 0;(iy,) <
0;(in) or not'3. Assume, for instance, that i,, and i, differ only on inputs
?; and ¢, where ¢; = 1 in i, and 7 = 1 in i,,. Thus, if lWOjiil < |Wojik|, it
is not difficult to see that 0;(in) < 0;(im). Let us formalize this idea.

Proposition 41 (BNS Pruning Rule 3) Let im, i, and i, be three different
input vectors in I such that dist(im,1,) = 1, dist(in,i,) = 1 and (in,), (in) <

13Recall that, previously, two input vectors i, and im such that {in) = (im) were
incomparable.

29

(i,), that is, both ip, and i, are immediate predecessors of i,. Let i, be
obtained from i, by flipping the i-th input from 1 (resp. Amsn for Hidden to
Output BNSs) to -1, while iy, is obtained from i, by flipping the k-th input
Jrom 1 (resp. Amin for Hidden to Output BNSs) to -1. If [Wos,| < |Woyi,
then 0j(im) < 0;(in). In this case, we write i, <y in-

Proof. We know that both i, and i, are obtained from i, by flipping,
respectively, inputs i,(2) and io(k) from 1 (resp. Amin) to -1. We also know
that o;(i,) = h(Woyi,i0(1) + Wosinio(k) + A& + 0o;), where Wj; € Rt and
Amin > 0. For Input to Hidden BNSs, 0,(im) = h(—=Woyi; +Wo,i, +A+0,,)
and oj(in) = h(Wosi, — Woss, + A + 0,;). For Hidden to Output BNSs,
Oj(im) = h(_WoJ-ii -+ AminWoJ-ik + A -+ Ooj) and Oj(in) = h(AminWOjii -
Wosi + A+ QOj). Since |Wojik| < |Woj,~i , and from the monotonically
crescent characteristic of h(z), we obtain 0;(im) < 0;(in) in both cases. O

As before, a direct result of Proposition 41 is that: if i,, satisfies the
constraint C,; on the BNS output neuron, then i, also satisfies C,;. By
contraposition, if i does not satisfy C,, then i,, does not satisfy C,, either.

Proposition 42 (BNS Pruning Rule 4) Let ip, i, and i, be three different
input vectors in 1 such that dist(im,i,) = 1, dist(in,i,) = 1 and (i,) <
(im), (in), that is, both i, and i, are immediate successors of i,. Let im
be obtained from i, by flipping the i-th input from -1 to 1 (resp. Amin for
Hidden to Output BNSs), while i, is obtained from i, by flipping the k-th
input from -1 to 1 (resp. Amin for Hidden to Output BNSs). If [Woﬂ-k| <
|Wojii , then 0;(in) < 0j(im). In this case, we write iy, <y im.

Proof. This is the contrapositive of Proposition 41. [1

Example 43 Consider the network of Figure 12(1) and its positive form at
Figure 12(2). The network contains three BNSs; two Input to Hidden BNSs,
having inputs {a,b,c} and {a,b,~ c}, and outputs n1 and ng, respectively,
and one Hidden to Output BNS, having input {ni,~ ny} and output z.

Applying the Transformation Algorithm on each BNS and considering
the ordering on set inclusion, we verify that (abc) is the mazimum element
of the BNS with output ny, (ab~ c) is the mazimum element of the BNS
with output na, and (n1 ~ ng) is the mazimum element of the BNS with
output x.

If now we add information about the weights, we can apply Pruning
Rules 3 and 4 as well. Take, for example, the positive form of the BNS
with output ny, where Wy p < Wy e < Wy,o. Using Pruning Rules 8 and
4, we can obtain a new ordering on input vectors im and i, when (im) =
(in) 1* We obtain (—1,1,1) <y (1,1,-1) <y (1,-1,1) and (-1,1,-1) <
(-1,-1,1) <y (1,-1,-1). Similarly, given Wy ny, < Wan,, we obtain (~

14Recall that such input vectors are incomparable under the set inclusion ordering.

30

6] @

Figure 12: A non-regular network (1) and its positive form (2) obtained by
applying the Transformation Algorithm on its BNSs.

ny,~ ng) < (n1,ng) for the Hidden to Output BNSY. Figure 18 contains
two diagrams in which this new ordering is superimposed on the previous set
inclusion ordering for the BNSs with outputs ny (1) and x(2).

e

1,-1,1) <— (L1-1) <— (-]

(-1,-1,-1) ~}'l1}’l2
1) @)

npny D ~nj~ny

Figure 13: Adding information about the weights of the BNSs with output
ny (1) and z (2).

The above example illustrates the ordering < on the set of input vectors
I of BNSs. The ordering results from the superimposition of the ordering
<(), obtained from Pruning Rules 3 and 4, on the set inclusion ordering <j,
obtained from Pruning Rules 1 and 2. Let us define < more precisely.

Definition 44 Let < be a partial order on a BNS’s input vectors set 1. For

Back to Example 43 above, it is not difficult to see that the ordering <
on the BNS with output n; is given by the diagram in Figure 14 below (see

'"Here, we have deliberately used {n;,~ n;}, instead of {1, —1}, to stress the fact that
hidden neurons do not present discrete activations.

31

also Figure 13(1)). Incomparable elements in =, as i; = (1,—1,—1) and
ig = (—1,1,1) at Figure 14, indicate that it is not easy to establish whether
iy =iy without actually querying the BNS with both inputs. Note also that
= is a chain for the BNS with output x, i.e., (~ n1,n9) < (~ ny,~ ng) <
(n1,n2) < (n1, ~ ng).

(1,1,1)

(1,-1,1)

/1,1,-1)
\

(1,-1,-1) (-LL1)

(-1,-1,1)
T
(-1,1,-1)
T

(-1,-1,-1)

Figure 14: The ordering < on the input vectors set of the BNS with output
ni.

Figure 15 displays < on I = p(Z) for T = {a, b, ¢, d}, given (1,1,1,1) =
la,b,c,d] and |Wy| < |W,| < |[W,| < |W,|. Note that < follows the ordering
on [We| + |[Wy| + [We| + |Wy|.

= provides a systematic way of searching the input vectors space. Let us
illustrate this with the following example, which also gives a glance about
the implementation of the extraction search process.

Example 45 Consider the Input to Hidden BNS of Figure 16(1), and
its positive form 16(2). The ordering’s mazimum element is input vector
it =(1,1,1,1) = (a,b,~ ¢,~ d). Taking the BNS of Figure 16(2), if it
does not activate n; then we proceed to generate the elements i,, such that
dist(im,iT) = 1. However, Pruning Rule 8 says that there is an ordering
amony elements ip,. For example, it says that (1,1,1,—1) = (a,b,~ c,d)
provides a smaller activation value to n; than (1,1,—1,1) = (a,b, ¢, ~ d).
Therefore, given Wy, < Whio < Whooq < Wiy, we start from it by
flipping from 1 to -1 the input ~ c with the smallest weight Wy, and
obtain the input vector iy = (1,1,—1,1). By Pruning Rule 3, the activation
of n; given iy is greater than the activation of n; given any other element i,
such that (im) = (i1). Thus, if ni(i1) < Amaz then n;(im) < Amaz. In this
case, we could stop the search. Otherwise, we derive the rule abc ~ d — n;,

32

{a,b,c.d
a/l\c }
,b,
{aq\ c}
ab,d}

{
/,\
{a,b} {a,c.d}

\/\

{a,c} {b,c,d}

/\/

{byc}

{9}

Figure 15: < on p(Z), given Z = {a,b,¢,d} and (1,1,1,1) = [a, b, c, d].

but we still need to generate and test the next element i,,, which is obtained
from it by flipping the input a with the next smallest weight.

Similarly, let i, = (—1,-1,-1,—-1) = (~ a,~ b,c,d). If i; does not
activate n; then we flip from -1 to 1 the input ~ c with the smallest weight
Wi,~ey and obtain the input vector ip = (—1,—1,1,—1). By Pruning Rule 4,
if ni(i2) > Amin then n;(in) > Amin for all i, such that (i,) = (is). In this
case, we could derive the rule 1(a,b,~ c,~ d) — n;, and stop the search.
Otherwise, we need to generate and test the next element i, obtained from
i) by flipping the input a with the next smallest weight.

A systematic way of searching the input vectors space is obtained as
follows. Given the maximum element, we order it from left to right w.r.t the
weights associated with each input, such that inputs with greater weights
are on the left of inputs with smaller weights. In Example 45, we rearrange
(a,b,~ ¢,~ d) and obtain (1,1,1,1) = [b,~ d, a,~ c]. The search proceeds
by flipping the right most input, then the second right most input and so
on. At distance 2 from sup(I) and beyond, we only flip the inputs on the
left of the left most -1 input. In this way, we avoid repeating input vectors.
Figure 17 illustrates this process for the BNS of Example 45.

Similarly, starting from the minimum element, we rearrdnge (~ a,~
b,c,d) and obtain (—1,—-1,—1,-1) = [~ b,d,~ a,c|. Figure 18 illustrates
the process for the BNS of Example 45. Now, at distance 2 from inf(I) and
beyond, we only flip the inputs on the left of the left most 1 input.

33

Figure 16: An Input to Hidden BNS (1), and its positive form (2).

(1,1,1,1)
(b,~d,a,~c)

7N\

(LLL-1) 2 (1,1,-1,1) 42 (1,-1,1 D> CLLLD
~d ,a,c) (b,~d,~a,~c) (b,d, a~c) (~b,~d,a,~c)

(1111)>>(1111)<2(1111) (1111)
(b,~d,~a,c) (b,d,ac) (~b,~d,a,c) (~b,d,a,~c)

(1,-1,-1,1) o> (-L,1,-1,1)
(b,d,~a,~c (~b,~d,~a,~c

Figure 17: Systematically deriving input vectors from i; without repetitions.

Note the symmetry between Figures 17 and 18, reflecting, respectively,
the use of Pruning Rules 3 and 4. Starting from sup(I), flipping the input
with the smallest weight results in the next greatest input, while from in f(I),
flipping the input with the smallest weight results in the next smallest input.

Let us now focus on the problem of knowledge extraction from Hidden
to Output BNSs. The problem lies on the fact that hidden neurons do not
present discrete activations {—1,1}. Instead, they are said to be active if
their activation values lie on the interval (Amsn, 1), or non-active if their ac-
tivation values lie on the interval (—1, Amqz). We need to provide, therefore,
a special treatment for the knowledge extraction procedure from Hidden to
Output BNSs.

We have seen that if we simply assume that hidden neurons are either
fully active or non-active, then the extraction algorithm looses soundness.
We are left with the option of trying to find an ordering on the hidden
neurons ranges of activations (—1, Amqz) and (Amin,1). But we realize that

34

(L-L1,-D)pyz (-1,1,1,-1)
(b.d,ac) (~b,~dac)

(1,1,-1,-1) (1,-1-1,D)g2 -LL-L1) > (-1,-1,1,1)
(b,~d,~a,c) (b,d,~a,~c) (~b,~d,~a,~c) (~b,d,a,~c)

(L1102 CLLALD) 2 (1-1,1,-1) > (-1,-1,-1,1)
(bd,~ac) (~b,~d,~ac) (~bdac) (~b,d,~a,~c)

W

(-1,-1,-1,-1)
(~b.d,~a,c)

Figure 18: Systematically deriving input vectors from i, without repetitions.

we can not define such an ordering easily. For example, we can not say
that (n1 < Amaz) and (N < Amaz) = (M1 < Amasz) and (ng > Amin).

As a counter-example, simply take Az = —Amin = —0.2 and note that
ny = —0.3 and ny = —0.3 may provide a greater activation to an output
neuron than n; = —0.95 and ny = 0.25.

At this stage, we need to compromise in order to keep soundness. Roughly,
we have to analyse the activation values of the hidden neurons in the “worst
cases”. Those activations are given by —1 and A, in the case of a hidden
neuron connected through a positive weight to the output, and by A4, and
1 in the case of a hidden neuron connected through a negative weight to the
output.

Example 46 Consider the Hidden to Output BNS of Figure 19. The in-
tuition behind its corresponding ordering is as follows: either both ni and
ng present activations greater than Ay, or one of them presents activation
greater than Apmsn while the other presents activation smaller than Amaz, or
both of them present activations smaller than Amag.

Considering the worst cases activations, since the weights from nq and
ng to x are both positive, if the activation of n; is smaller than Amqez, then
we assume that it is —1. On the other hand, if the activation of n; is greater
than Amin, then we analyse the case where it is equal to Amin. In this way,
we can derive the ordering of Figure 19 safely, as we show in the sequel.
Similarly, if the weight from n; to = is negative, then we take activation
values Apmaz and 1.

Given Wy, < Wap,, we also obtain (—1, Amin) = (Amin, —1). As before,
in this case < is a chain. -

The recipe for performing a sound extraction from non-regular networks,
concerning Hidden to Output BNSs, is: If the weight from n; to o is positive

35

Q (Amin, Amin

7 5 (Amjn, '1> ('1 ’ Anll’b

\/
ORO o

Figure 19: A Hidden to Output BNS and the corresponding set inclusion
ordering on the hidden neurons activations in the worst case.

then assume n; = Amin and ~ n; = —1. If the weight from n; to 0j 18
negative then assume n; = 1 and ~ n; = Apmaez. These are the worst cases
analyses, what means that we consider the minimal contribution of each
hidden neuron to the activation of an output neuron.

Remark 2 Note that when we consider that the activation values of hid-
den neurons are either positive in the interval (Amin, 1) or negative in the
interval (—1, Amaz), we assume, without loss of generality, that the net-
work’s learning algorithm is such that no hidden neuron presents activa-
tion in the range [Amaz, Amin] (see [4]). Note that one can always assume
Amaz = Amin =~ 0.

In the sequel, we exemplify how to obtain the ordering on a Hidden to
Output BNS with two input neurons n; and ng, connected to an output
neuron z with positive and negative weights.

We start by applying the Transformation Algorithm. We obtain the
BNS’s positive form and check the labels of its input neurons (the network’s
hidden neurons). If they are labeled n; and ng (sup(I) = (ny,n)) then
the weights from both of them to x are positive. Thus, we assume that
~n; = —1 and n; = App for i = {1,2}. As a result, we derive the ordering
of Figure 20(Case 1). If, however, the Transformation Algorithm tells us
that sup(I) = (ni,~ ng) then we consider ~ n; = —1 and n; = Amin
for the activation values of nj, and ~ ny = Apee and ny = 1 for the
activation values of ny. Figure 20(Case 2) shows the ordering obtained if
sup(I) = (n1,~ ny). Finally, if sup(I) = (~ nj,~ ny), we assume that
~ n; = Amaz and n; = 1 for i = {1,2}, as shown in Figure 20(Case 3).

’Wojnl ‘, we also obtain (Amn, —1) <y
(=1, Amin) in Figure 20(Case 1), (Amin,1) <y (=I5 Amae) in 20(Case 2),
and (Amaa, 1) <y (1, Amaz) in 20(Case 3). Thus, the resulting orders <
are chains, as expected. Note that the orders of Figure 20 are valid for the

original BNSs, and not for their positive forms.

If, in addition, we have lWaan\ <

36

{ng, m} {ng, ~m) {~m , ~m}

(Amins Amin (Amin: Amax (Amax> Amax
{~n, {n, ~m} ~n, {n,m {n, ~m) {~n, m)
(-1, Anm) (Amin, -1) (I, Amax) (Amin, 1) (1, Amax (Amax, 1)
{~ng, ~m) {~m, m) {m, m)
(-1,-1) -1,1) (1,1
Case 1 Case 2 Case 3

Figure 20: Orderings on Hidden to Output BNSs with two input neurons nq
and ng, using worst case analyses on (—1, Amqz) and (Amin, 1).

Let us now see if we can define a mapping for Hidden to Output BNSs,
analogous to the mapping o for Regular Networks and Input to Hidden
BNSs. In fact, if we assume, without loss of generality, that Amaes = —Amin
then the same function o mapping input vectors of the positive form into
input vectors of the BNS can be used here. Let i; € {—1, Amin}, i, €
{—1, = Amin, Amm, 1}, z; € Ty,1 < i < p. Recall that a[wl wp](zl, vip) =
(74, ...,i;) where #; = 4; if x; is a positive literal and i, = —; otherw1se
For example, o a’Nb’c’Nd](Amm,Amm, —1,-1) = (Amin, —Amin, —1,1). The
following example illustrates the use of o for Hidden to Output BNSs.

Example 47 Given U[nl,Nng,ng](Amina Amin7 Amzn) = (Am'my Amam, Am'm);
we obtain the ordering of Figure 21(b). From ni = Amin, ~ no = Amas
and ng = Apmin, we obtain ~ ny = —1, ng = 1 and ~ nzg = —1 at Figure
21(a). As before, the extraction process can be carried out by querying the
BNS’s positive form with values {—1, Amn}, following 21(b). In this way,
the only difference from Input to Hidden BNSs s that input values 1 should
be replaced by Amin (see Figures 17 and 18).

We are finally in position to present the extraction algorithm extended
for non regular networks.

o Knowledge Extraction Algorithm - General Case

1. Split the neural network N into BNSs;

2. For each BNS B; (1 <i<r+q) do:

(a) Apply the Transformation Algorithm and find its positive form
Bf;

37

m,~m,m) T~ (n, ~m,m)

(Amin Amax Amlr) (Amin Amin Amxr)
r
(ny, ~1p, ~mB) (ny, ~1p, ~1)
(Amin Amax '1) (Amin Amin '1)
0 A
(g, m,) (ny, m, m)
(Amin 1, Anip) (Amin -1, Anin
ST S
(01, m, ~m) (~ny, ~mp, m) (ny, m, ~1m) (~ny, ~1p, m)
Bmin 1,-1) -1, Anax Amin (Amin -1,-1) (-1, Anin Amin
AN 7 AN 7
(an’ ~In, "'113) /-\ ('"'n]v ~Ip, NIB)
('lvAnax '1) (-1, Anin'l)
0 0
(-npmm) T~ (-, m,)
-1, 1, Anin) -1, -1, Awin)
t
(anv m, NIB) ("'nl’ m, ~Il_>,)
-1,1,-1) (-1,-1,-1)
@) (®)

Figure 21: (a) < on a Hidden to Output BNS with three input neurons
(n1,m2,n3) and the associated activations in the worst case; (b) = on the
BNS’s positive form and the mapping ¢ from (b) and (a).

(b) Order I according to the weights associated with each input of
Bt

(¢) If B is an Input to Hidden BNS, take i; € {—1,1};

(d) It B;' is a Hidden to Output BNS, take i; € {—1, Amin};

(e) Find Inf(I) and Sup(I) w.r.t B;, using o;

(f) Call the Knowledge Extraction Algorithm for Regular Networks,
step 3, where IV, := B,;L;
/* Recall that, now, -we have to replace Search Space Pruming
Rules 1 and 2, respectively, by BNS Pruning Rules 1 and 2.
/* We also need to add the following lines to the extraction algo-
rithm for regular networks (step 3d):

e If BNS Pruning Rule 4 is applicable, stop generating the
successors of i ;

e If BNS Pruning Rule 3 is applicablé, stop generating the
predecessors of ir;

3. Assemble the final Rule Set of N.

38

In what follows, we describe in detail step 3 of the above algorithm, and
discuss the problems resulting from the worst case analysis of Hidden to
Output BNSs.

5.3 Assembling the Final Rule Set

Steps 1 and 2 of the general case extraction algorithm generate local infor-
mation about each hidden and output neuron. In step 3, such information
needs to be carefully combined, in order to derive the final set of rules of
N. We use n; and ~ n; to indicate, respectively, that the activation of hid-
den neuron n; is greater than Apm;, or smaller than Apmq,. Bear in mind,
however, that hidden neurons n; do not have concepts directly associated
to them. Thus, the task of assembling the final rule set is that of relating
the concepts in the network’s input layer directly to the ones in its output
layer, removing n; from the rule set. The following Lemma 48 will serve as
basis for this task.

Lemma 48 The extraction of rules from Input to Hidden BNSs is sound
and complete.

Proof. From Proposition 37 and Theorem 33, we obtain soundness of the
rule set. From Proposition 87 and from Theorem 3/ we obtain completeness
of the rule set. [

Lemma 48 allows us to use the completion of rules extracted from In-
put to Hidden BNSs to assemble the network’s rule set, i.e., it allows an
extracted rule of the form X1, ..., X;, — L; to be substituted by the stronger
X1,...,Xp < L;. For example, assume that the extraction algorithm derives
a — ny from BNS By and b ~ ¢ — ng from BNS B;. By Lemma 48, we
have a < n1 and b ~ ¢ < ny. By contraposition, we have ~ a <~ n
from By, and ~ bV ¢ <>~ ng from By. Now that we have the necessary
information regarding the activation values of n; and ng, assume that we
have derived the rule n; ~ ny — z from- Hidden to Output BNS Bs. We
know that a — nq and ~ bV ¢ —~ ng. As a result, we may assemble the
final rule set w.r.t output z: {a ~ b — z, ac — z}.

The following example illustrates how to assemble the final rule set in
a sound mode. It also illustrates the incompleteness of the general case
extraction.

Example 49 Consider a neural network N with two input néurons a and
b, two hidden neurons ny and ng and one output neuron x. Assume that the
set of weights is such that the activations on the table below are obtained for
each input vector.

39

lalb] m [m [= |
1] -1« Amam < Ama:l: < Amaw
-1 1 > Amin > Amin < Amaw
1] -1 <Ana | <Amaz | < Amaa
1 1 > Amin < Amam > Amin

An exhaustive pedagogical extraction algorithm, although inefficiently,
would derie the unique rule ab — x from N. That is because (1,1) is the
only input vector that activates x. A decompositional approach, on the other
hand, would split the network into its BNSs. Since (-1,1) and (1,1) activate
ny, the rules ~ ab — n1 and ab — ny would be derived, and hence b — ny.
Similarly, the rule ~ ab — ny would be derived, since (-1,1) also activates
Nnog.

Taking Amin = 0.5, assume that given (ab) = (—1,1), the activation
values of ny and ny are, respectively, 0.6 and 0.95. By assuming that nq
and ng are either fully active or non active, we could wrongly derive the
rule ning — x (unsoundness). To solve this problem, we take the worst case
activations of hidden neurons ny = Amin and no = Amin.

Howewver, given (ab) = (1,1), assume that the activation values of ny
and ny are, respectively, 0.9 and -0.6. Now, if we consider the worst case
activations, ny = Amin and ny = —1, it may be the case that we do not
derive the rule ny ~ ng — x (incompleteness) as expected.

Finally, assume that we have managed to derive the rule ny ~ ng — x
from the Hidden to Output BNS of N.'® The final rule set can be assembled
as follows: by Lemma 48, we derive b <> ny and ~ ab < ng, and together
with ny ~ ng — x we obtain b A (aV ~ b) — z. As a result, the final rule set
is ab — x, in accordance with the exhaustive pedagogical extraction process.
A neural network that presents the activations used in this example is given
below.

Lemma 50 The extraction of rules from Hidden to Output BNSs is sound.

16 Possibly by fine-tuning the value of Ap,in in the extraction algorithm.

40

Proof. If we are able to derive a rule v taking n; € {—1, Amin} then,
from the monononically crescent characteristic of h(x), r will still be valid

anz € {[_13 _Amin], [Amina 1]}a Amm > 0. O

Theorem 51 The extraction algorithm for non-regular networks is sound.
Proof. Directly from Lemmas 48 and 50.

Theorem 52 The extraction algorithm for non-reqular networks is incom-
plete.

Proof. We give a counter-example. Let B be a Hidden to Output BNS with
input ny and output . Let B =1, Wy, =1, 0 = 0.1. Assume Apsn = 0.4.
Given 11 = 1, we obtain oy = 0.42, i.e., n; — x. Taking i1 = Amin, we have
0y = 0.15 and thus we have lost nqy — x. O

As far as efficiency is concerned, one can apply the extraction algorithm
until a predefined number of input vectors is queried, and then test the
accuracy of the set of rules derived against the accuracy of the network. If,
for instance, in a particular application, the set of rules obtained classifies
correctly, say, 95% of the training and testing examples correctly classified
by the network, then one could stop the extraction process.

6 Experimental Results

We have used three application domains in order to test the extraction
algorithm: the MONK’s problems [36], DNA sequences analysis [4, 12, 35, 39|,
and Power Systems FAULT DIAGNOSIS [3]. In this section, we briefly describe
each problem and present the results of the extraction algorithm. We also
compare the results obtained in DNA sequences analysis with those obtained
in [12, 35, 39].

The extraction system consists of three modules: the main one takes a
trained neural network (its set of weights and activation function), searches
the input vectors space and generates the network’s rule set accordingly, an-
other one simplifies the rule set, and yet another checks the rule set accuracy
against that of the network, given a test set, and its fidelity to the network.
The system was implemented in ANSI C (5K lines of code) and is available
upon request. Implementation details will be discussed in another paper.
We start by presenting two very simple examples which will help the reader
to recall the-sequence of operations contained in the extraction process.

Example 53 (The XOR Problem) A network with p input neurons, q hid-
den neurons and r oulput neurons contains q Input-to-Hiddéh BNSs, each
with p inputs and a single output, and r Hidden-to-Output BNSs, each with g
inputs and a single output. To each BNS we apply a transformation whereby
we rename input neurons xy linked through negative weights to the output,

41

by ~ zy and replace each weight Wi, € R by its modulus. We call the result
the positive form of the BNS. For example, in Figure 22, N1 and Ny are the
positive forms of the Input-to-Hidden BNSs of N, while N3 is the positive
form of the Hidden-to-Output BNS of N. We then define the function o
mapping input vectors of the positive form into input vectors of the BNS.
For example, for Ny o 4)(1,1) = (1, -1).

Figure 22: The network N, having tanh as activation function, computes
XOR. We will extract rules for hg, h; and o by querying Nj, Ny and N3,
respectively, and then assemble the rule set for N.

Given a 2—ary input vector, =< is a linear ordering. For Ny, (—1,—1) <
(17 —1) = (_1a 1) = (lal) and fOT Ny (_1’""1) = (—17 1) = (1a _1) = (17 1):
where (1,1) = [a,~ b] in both. Querying N1, ho is active for (1,1) only.
Thus, by applying o we derive a ~ b — hy. Querying Na, hy is not active for
(=1, -1) only. Similarly, we derive ab— hy, ~ar~b— b anda ~b— hy.
The last two rules can be simplified to obtain ~ b — hy, since ~ b implies
h1 given either a or ~ a. From ab — hy and a ~ b — hy we obtain a — hy.

Considering now Hidden to Output BNSs, it is usually assumed that the
network’s hidden neurons present discrete values activations such as {—1,1}.
We know however that this is not the case, and therefore problems may arise
from such assumption (see [1]).. At this point we need to compromise. Either
we assume that the hidden neurons activations are in {—1, Amin}, and then
are able to show that the extraction is sound but incomplete, or we assume
that it is in {—Amin, 1}, obtaining an unsound but complete extraction. We
have chosen the first approach!”. For N3 we have (—1,—1) < (=1, Amin) <
(Ami'n,y '—1) = (Aminy Amzn), where (Amin7 Amzn) = [Nhﬂyhl] and Apin = 0.5.
Only (Amin, Amin) activates o, and we derive the rule ~hohy — o.

17Here, we perform a kind of worst case analysis. By choosing activations in {-1, Amin},
misclassifications occur because of the absence of a rule (incompleteness). Analogously,
by choosing {—Amin, 1}, misclassifications are due to the inappropriate presence of rules
in the rule set (unsoundness). In this context, the choice of {—1, 1} yields unsound and
incomplete rule sets.

42

Finally, to assemble the rule set of N, we take the completion of each
rule extracted from Input to Hidden BNSs. We have a ~ b — hg, a — hy,
~b— hy and ~hghy — o. And from a ~ b < hy and aV ~ b < hy we obtain
(~aVb)A(aV ~b) — o; the XOR function.

Example 54 (EXACTLY 1 oUT OF 5) We train a network with five input
neurons {a,b,c,d,e}, two hidden neurons {ho,h1} and one output neuron
{0}, on all the 32 possible input vectors. The network’s output neuron fires
iff exactly one of its inputs fires. Although this is a very simple network, it
is not straightforward to verify, by inspecting its weights, that it computes
exactly 1 out of {a,b,c,d,e}.

Assume the following order on the weights linking the input layer to each
hidden neuron ho and hi: |Whoa| < [Whoel < [Whoel < [Wheal < [Whep| and
Wndl < [Wanel < Whyal < [Wayel < [Whyol. We split the network into its
BNSs and apply the extraction algorithm. Toking T = [a,b,c,d, €] for the
BNS with output hg, we find out that input (—1,—1,—1,1, —1) activates hg,
by querying the BNS. Since |Whq| is the smallest weight, from the ordering
= onI and by applying Definitions 26 and 28, we derive the rule 1(abcde) —
ho. Note that, by Definition 25, this rule subsumes m(abede) — hg, for
m > 1. Taking again T = [a,b,c,d,e] but now for the BNS with output hy,
we find out that input (—1,—1,—1,1,1) activates hy. Similarly, from the
ordering < on I and by applying Definitions 26 and 28, we derive the rule
2(abcde) — hy. Finally, for the Hidden to Output BNS, Z = [hg,~ hq].
Taking Amin = 0.5, 0 is only activated by (Amin, Amin) and we derive the
rule hg ~ h1 — o.

In order to obtain the rule mapping inputs {a,b,c,d,e} directly into the
output {o}, we take the completion of the rules extracted from Input to
Hidden BNSs: 1(abcde) <> hy and 2(abcde) <> hy. Therefore, exactly 1 out
of {a,b,c,d, e} is obtained by computing 1(abede) N ~ 2(abede) — o, i.e., at
least 1 out of {a,b,c,d,e} AND at most 1 out of {a,b,c,d, e} implies 0. As
a result, a network with a single hidden neuron would not be able to learn
such a rule.

For each application below we investigate three parameters: the accuracy
of the rule set against that of the network w.r.t a test set, the fidelity of the
rule set to the network, i.e., its ability to mimic the network’s behavior, and
the readability of the rule set in terms of its size.

6.1 The MONK’s Problems

As a point of departure for testing, we applied the extractionalgorithm to
the Monk’s problems [36]: three examples which have been used as bench-
mark for performance comparison between a range of symbolic and connec-
tionist machine learning systems. Briefly, in the Monk’s problems, robots

43

in an artificial domain are described by six attributes with the following
possible values:

head-shape{round, square, octagon}, body shape{round, square,
octagon}, is_smiling{yes, no}, holding{sword, balloon, flag},
jacket_color{red, yellow, green, blue} and has_ tie{yes, no}.

Problem 1 trains a network with 124 examples, selected from 432, where
head_shape = body_shapeV jacket_color = red. Problem 2 trains a network
with 169 examples, selected from 432, where exactly two of the six attributes
have their first value. Problem 3 trains a network with 122 examples with 5%
noise, selected from 432, where (jacket_color = green A holding = sword)
V (jacket_color # blue N body_shape # octagon). The remaining examples
are used in the respective test sets.

We use the same architectures as Thrun [36], i.e., single hidden layer
networks with three, two and four hidden neurons, for Problems 1, 2 and
3, respectively; 17 input neurons, one for each attribute value, and a single
output neuron, for the binary classification task. We use the standard back-
propagation learning algorithm [6, 32]. All networks have been trained for
5,000 epochs, with an epoch being defined as one pass through the whole
training set. Differently from Thrun, we use bipolar activation function,
inputs in the set {—1,1}, and Amin = 0 (See [4] for the motivation behind
this).

For Problems 1, 2 and 3, respectively, the networks’ performance w.r.t
their test sets was 100%, 100% and 93.2%, while the accuracy of the rule
sets for the same test sets was 100%, 99.2% and 93.5%. The fidelity of the
rule sets to the networks was 100%, 99.2% and 91%. Figure 23 displays the
accuracy of the network, the accuracy of the rule set and the fidelity of the
rule set to the network grouped for each problem.

Q

% Network]
g — |BRule Set
B . | O Fidelity
[aW

IS8

MONKS 1 MONKS 2 MONKS 3

LN

Figure 23: The accuracy of the network, the accuracy of the extracted rule
set and the fidelity of the rule set to the network w.r.t the test sets of the
Monk’s Problems 1, 2 and 3, respectively.

44

The accuracy of the rule sets is very similar to that of the networks.
In Problem 1, the rule set matches exactly the behavior of the network.
In Problem 2, the rule set fails to classify correctly two examples, and in
Problem 3 the rule set classifies correctly one example wrongly classified by
the network. Such diferences are due to the incompleteness of the extraction
algorithm.

The tables below present, for Problems 1, 2, and 3, the number of input
vectors queried during extraction and the number of rules obtained before
and after simplifications Complementary Literals and Subsumption are ap-
plied. For example, for hidden neuron hg in Monk’s Problem 1, 18,724
input vectors are queried generating 9,455 rules that after simplification are
reduced to 2,633 rules. In general, less than 30% of the set of input vectors
is queried and, among these, less than 50% generate rules.

MONKS 1 | Input Vectors | Queried | Extracted | Simplified
hg 131072 18724 9455 2633
hy 131072 18598 9385 536
hg 131072 42776 21526 1793
0 8 8 2 1

MONKS 1: The number of input vectors queried, rules extracted, and

rules remaining after simplification.

MONKS 2 | Input Vectors | Queried | Extracted | Simplified
hg 131072 131070 58317 18521
hy 131072 43246 21769 5171
0 4 4 1 1

MONKS 2: The number of input vectors queried, rules extracted, and

rules remaining after simplification.

MONKS 3 | Input Vectors | Queried | Extracted | Simplified
ho 131072 18780 9240 3311
hy 131072 18618 9498 794
hg 131072 43278 21282 3989
hs 131072 18466 9544 1026
0 16 14~ 8 2

MONKS 3: The number of input vectors queried, rules extracted, and
rules remaining after simplification.

In general, Complementary Literal and Subsumption reduce the rule set
by 80%. M of N and M of N Subsumption further enhance the rule set
readability. In particular, the rule set for Problem 1 is presentéd below. For
short, we name each attribute value with a letter from a to g in the sequence
presented above, such that a = (head_shape = round),b = (head_shape =
square), and so on. We also use the Integrity Constraints of the Monk’s

45

Problems in order to present a clearer rule set. For example, we do not
present derived rules where has_tie = yes and has_tie = no simultaneously.

! Nh1 Nh2 — 0

~ abed ~ e — hy ar~brdek ~ 1 — hy

bd~er~ 1 —hy ac ~ dem ~ q — ho

brirvlmn—h ar~berdef vl — hy

bed(~ IV ~ef) — hy ae ~ gjm(nV o) — hg

b~ ef(mnVmo) — hy ~berv g~ in(aV ~ d) — hg

~ abdf(~ 1V mVn)— hy ar~besdersl(cV ~ h)— hy

mno(~ Vb eVdr eV ~bevde s g l(mVo) — hy

bcVedV ~ abV bf) —h; arvbesde~~1(jVpVi)— hy

1(mno) A (bd ~ eV bd ~ 1V bedfV | a~be s g(~dVm)— hy

broef ra IV ~vabedV ~vabr~ e IV | arsbers gl dVmVo) — hy

becrserslVedr e 1) —hy aem(~ gn ~ pV ~ go ~ pV ~ hknV
~ hko) —hs

1(mno) A (a ~ de ~ hV ar~ de~ gV

ar~vde~IVar~berdeVac~ defVv

Qb df oIV b def oIV

arbef v lVarbrode gelV

ar~ber~rheolNVarbrodes h oIV

~brode~heo IV a e bee ~ IV

arsbersders IV o be s de s 1) —hy

Rules extracted for the Monk’s Problem 1.

By looking at the rule set extracted and the much simpler description of
Monk’s Problem 1, it is clear that neural networks do not learn rules in a
simple and structured way. Instead, they use a complex and redundant way
of implementing rules. Not surprisingly, such a redundant representation is
responsible for the network’s robustness.

It is interesting that because the rule obtained for the Hidden-to-OQutput
BNS of Monk’s Problem 1 was ~h; ~hs — 0, and since the rule set presents
100% of accuracy, hidden neuron hg is not necessary at all, i.e., the problem
could have been solved by a network with two hidden neurons only, obtaining
the same results. Another interesting exercise is to try and see what the
network has generalised, given the rule set and the classification task learned.

6.2 DNA Sequence Analysis

Molecular Biology is an area of increasing interest fof*computational learning
systems analysis and application. Specifically, DNA sequence analysis prob-
lems have recently become a benchmark for learning systems’ performance
comparison. We apply the extraction algorithm on eukaryotes promoter

46

recognition and prokaryotes splice junction determination, which are very
large real world problems. Differently from the Monk’s Problems, now an
exhaustive pedagogical extraction (sound and complete) turns out to be im-
possible due to the large number of input neurons: the networks trained in
both problems contain more than 200 input neurons.

In what follows we briefly introduce the problems in question from a
computational application perspective (see [40] for a proper treatment on
the subject). A DNA molecule contains two strands that are linear sequences
of nucleotides. The DNA is composed from four different nucleotides - ade-
nine, guanine, thymine, and cytosine - which are abbreviated by a,g,%,c,
respectively. Some sequences of the DNA strand, called genes, serve as a
blueprint for the synthesis of proteins. Interspersed among the genes are
segments, called non-coding regions, that do not encode proteins.

Following [39], we use a special notation to identify the location of nu-
cleotides in a DNA sequence. Each nucleotide is numbered with respect to
a fixed, biologically meaningful, reference point. For example, “@3 atcg”
states the location relative to the reference point in the DNA, followed by
the sequence of symbols that must occur, i.e., an a must appear three nu-
cleotides to the right of the reference point, followed by a ¢ four nucleotides
to the right of the reference point and so on. By convention, location zero
is not used, and ‘x’ indicates that any nucleotide will suffice in a particular
location. Each location is encoded in the network by four input neurons,
representing nucleotides a, g, £ and ¢, in this order. Figure 24 shows part
of the network for promoter recognition. Suppose that input vectors with
@—1g=1,@1 c=1 and @5t = 1 activate the output Promoter. We want
to extract a rule of the form @ — 1 gc* xx t — Promoter.

Promoter

OO0 OEOO - OODOE

@ -1 @ @5

Figure 24: Part of the network for Promoter Recognition.

i

The first application is the prokaryotic!® promoter recognition. Promot-
ers are short DNA sequences that precede the beginning of genes. The aim

18P rokaryotes are single-celled organisms that do not have a nucleus, e.g. E. Coli.

47

of “promoter recognition” is to identify the starting location of genes in long
sequences of DNA. The network’s input layer for this task contains 228 neu-
rons (57 consecutive DNA nucleotides), its single hidden layer contains 16
neurons, and its output neuron is responsible for classifying the DNA se-
quence as promoter or nonpromoter. The training examples consist of 48
promoter and 48 nonpromoter DNA sequences, while the test set contains
only 10 examples.

The second application is eukaryotic'® splice-junction determination.
Splice-junctions are points on a DNA sequence at which the non-coding
regions are removed during the process of protein synthesis. The aim of
“splice-junction determination” is to recognize the boundaries between the
part of the DNA retained after splice - called exons - and the part that
is spliced out - the introns. The task consists therefore of recognizing
exon/intron (E/I) boundaries and intron/exon (I/E) boundaries. Each ex-
ample is a DNA sequence with 60 nucleotides (240 input neurons), where the
center is the reference point. The network contains 26 neurons in its single
hidden layer, while two output neurons are responsible for classifying the
DNA sequences into E/I or I/E. The third category (neither E/I nor I/E)
is considered true when neither output neurons are active. The training set
for this task contains 1000 examples, in which approximately 25% are of I/E
boundaries, 25% are of E/I boundaries and the remaining 50% are neither.
We use a test set with 100 examples.

Figure 25 displays the accuracy of the network, the accuracy of the rule
set and the fidelity of the rule set to the network for the promoter recognition
and splice junction determination problems. Note that for the splice junction
problem we should not evaluate each output neuron individually. Instead,
the combined activations {1,-1} indicate E/I, {-1,1} indicate I/E, {-1,-1}
indicate neither, and {1,1} are inconsistent.

In both applications, due to the intractability of the set of input vectors
(2228 and 2240 elements each), we limit the maximum number of rules gen-
erated to 50,000 per hidden neuron. We also speed up the search process by
doing the following: we jump, in a kind of binary search, from the ordering’s
minimum element to a new minimal element in the frontier at which input
vectors start to generate rules?’.

The results obtained for the Promoter problem do not have statistical
significance due to the reduced number of examples available for testing.
However, the accuracy of the set of rules w.r.t the network’s training set was

19Unlike prokaryotic cells, eukaryotic cells contain a nucleus, and so are higher up the
evolutionary scale.

20Tnstead of searching from the ordering’s maximum and*minimum elements, we pick
an input vector at distance n/2 from them, where n is the number of input neurons, and
query it. If it activates the output then it becomes a new maximal element; otherwise,
it becomes a new minimal element. We carry on with this process until maximal and
minimal elements are at distance 1 from each other.

48

100

o B
§ 90 C1 Network
g 85 B Rule Set
E 80 O Fidelity
e 75

70

Promoter Splice Junction

Figure 25: The accuracy of the network, the accuracy of the rule set and
the fidelity of the rule set to the network for the promoter recognition and
splice junction determination problems.

90.6%, therefore similar to that obtained for the test set. Unfortunately, it is
not easy to compare the results here obtained with the ones in [12], [35], and
[38]; differences in training and testing methodology are sufficient to preclude
comparisons. For example, in [35] Setiono trains a network with three output
neurons for the splice junction determination problem, while in [38] Towell
uses cross-validation to test the network and the accuracy of the set of rules.
Nevertheless, the results reported are similar (see Figure 26). The fidelity
achieved by these extraction algorithms in the Splice Junction problem is
shown in Figure 27. In [35], 100% of fidelity (which we report here) seems
to be assumed from the observation that the accuracies of network and rule
set are identical. However, that may not be the case when less than 100%
of accuracy is achieved. The figures reported for the MofN and Subset
methods refer to the network’s training set. In [38], it is reported though
that the figures w.r.t the network’s test set are similar. Comparison with
these extraction methods indicates that a drawback of our algorithm lies in
the much larger size of the rule set, at least before simplification, while an
advantage is the fact that the extraction is provably sound. We will come
back to this in the discussion at the end of this section.

6.3 Power Systems Fault Diagnosis

Finally, we apply the extraction algorithm to power systems fault diagno-
sis. Figure 28 shows a simplified version of a real power plant alarms’ set.
This is an example of a safety-critical domain, so that the explanation pro-
vided by the set of rules is very important. In this application, we can
also illustrate the extraction of rules with classical negation (—), together
with default negation (~), because some neurons are labelled -z in the net-

49

100

95
g 90 Rule Set
S %5 B MofN
é:) %0 3 Subset
IS [Setiono

75

70

Promoter Splice Junction

Figure 26: Comparison with the accuracies obtained by other extraction
methods in the Promoter recognition and Splice Junction determination
problems.

100
95
I 90 Rule Set
3 s B MofN
- 3 Subset
& 80 O Seti
Setiono
75
70

Splice Junction

Figure 27: Comparison with the fidelity achieved by other extraction meth-
ods in the Splice Junction determination problem.

work’s input and output layers (see [13] for the motivation behind adding
classical negation to logic programs and the answer sets semantics®!; see [3]
about encoding background knowledge with classical negation into neural
networks).

The system has two generators, two transformers with their respective
circuit breakers, two buses (main and auxiliary) and two transmission lines
also with their respective circuit breakers. Each transmission line has six
associated alarms: breaker status (indicates whether it is open or not),
phase over-current (shows that there was an over-current in the phase line),
ground over-current (shows that there was an over=current in the ground

21Tn this case, the network’s answer set contains three possible values: true, false and
unknown. In our application, either there is definitely a fault (z), or definitely there is
not a fault (—x), or yet there is no evidence of a fault (~ x).

50

line), timer (shows that there was a distant fault from the power plant
generator), instantaneous (shows that there was a close-up fault from the
power plant generator), and auxiliary (indicates that the transmission line
is connected to the auxiliary bus). In addition, each transformer has three
associated alarms: breaker status (indicates whether it is open or not),
overloading (shows that there was a transformer overload) and auxiliary
(indicates that the transformer is connected to the auxiliary bus). Finally,
there are five alarms associated with the by-pass circuit breaker: breaker
status, phase over-current, ground over-current, timer and instantaneous.

Generator N / \1—/
01
Transformer 01 Breaker
13,8Kv/230Kv Transformer 01 - \r_/ —] Transmission
t——————=Line 01

Breaker
Transmission Line 01

Sl ol

Transformer 02 Breaker
13,8Kv/230Kv Transformer 02

— \r—/ — Transmission
—t———=Line 02

Breaker
Transmission Line 02

Breaker
By-pass

Main Bus Auxiliary Bus

Figure 28: Configuration of a simplified power system generation plant.

Certain combinations of the set of alarms indicate either close-up or
distant faults at Transmission Line 01 (11 faults), Transmission Line 02 (11
faults), or both (1 fault). In addition, each transformer may present three
different faults. Finally, some alarms indicate the inexistence of a fault in
the main bus or in each of the transformers.

We train a network with 23 input neurons (alarms) and 32 output neu-
rons (faults), with 35 neurons in its single hidden layer, using standard
backpropagation. Each training example associates a set of alarms with
possible faults. For example, if the instantaneous alarm of Transmission
Line 01 is activated then there is a Transmission Line 01 close-up fault. The
set of 278 training examples contains noisy (absence of one of the character-
istic alarmsm) single and multiple faults. We use two test setss one with 92
examples of single faults, and another with 70 examples of multiple faults.

221n the event of a system’s fault, an alarm may fail to activate due to some equipment
failure.

51

Figures 29, 30 and 31 display the accuracy of the network, the accuracy
of the rule set and the fidelity of the rule set to the network w.r.t the test
set with single faults, for each output neuron. For example, taking output
neuron Fault 1 at Figure 29, the network’s accuracy was 95.7% (4 misclassi-
fications in 92 examples), the accuracy of the set of rules extracted was also
95.7%, and the fidelity of the set of rules to the network was 100%, i.e., the
network and the set of rules misclassify the same 4 examples. Figures 32, 33
and 34 show the same parameters for the test set with multiple faults. A typ-
ical rule extracted from the network for this problem is of the form: Alarm
(Auziliary _Bus, Transmission_Line_01), ~Alarm (Main_ Bus, Transmis-
sion_Line_01)— —Foult (Main_Bus, Transmission_Line_01).

100
(5]
c% 95 Network
E 90 BB Rule Set
€ O Fideli
d'_-)‘ 85 1d€e. lt.y
& g0

=

Figure 29: Network, Rule Set and Fidelity percent w.r.t the single faults
test set (outputs 1-10).

100

Network
B Rule Set
O] Fidelity

% Performance

Figure 30: Network, Rule Set and Fidelity percent w.r.t the single faults
test set (outputs 11-21).

The results above show the percentage of successful diagnosis achieved
for each failure independently. Apart from faults 24 and 30 in the multiple

52

100

[
% 95 E Network
E 90 B Rule Set
L: . .
L85 O Fidelity
o
S 80

'&q:\' Y \ Y \Y \ X Y \(\) \0) \6)

> » > M & > > >

R D D I R - - S L

Figure 31: Network, Rule Set and Fidelity percent w.r.t the single faults
test set (outputs 22-32).

100
L
% 95 Network
E 90 B Rule Set
Lg N
S 85 O Fidelity
IS

80

Figure 32: Network, Rule Set and Fidelity percent w.r.t the multiple faults
test set (outputs 1-10).

faults case, the accuracy of the rule set is very good. Similarly, the fidelity
of the rule set to the network is excellent in most cases, and in general
better than the accuracy of the rule set. This suggests that the extraction
algorithm prioritizes fidelity over accuracy, i.e., it tries to mimic the net-
work’s behavior, which results from the fact that the extraction is made by
querying the actual network. "

However, fault diagnosis systems performance is typically evaluated not
only by determining the percentage of successful diagnosis but also the aver-
age size of the ambiguity set (when the system isolates failures from several
possible fault modes, but fails to correctly identify the set of faults)?3. For
the network, the average size of the ambiguity set was 0.5% and 0% of the
size of the set of activated faults, respectively, for the single.and multiple
faults test sets. For the rule set extracted, the size of the ambiguity set was

2For each example, size of ambiguity set = (number of wrongly activated outputs /
number of activated outputs) x 100.

53

Q

% Network
g & Rule Set
B O Fidelity
[sW

R

Figure 33: Network, Rule Set and Fidelity percent w.r.t the single faults
test set (outputs 11-21).

Q

5 Network
£ B Rule Set
i)

5 O Fidelity
faw

R

Figure 34: Network, Rule Set and Fidelity percent w.r.t the single faults
test set (outputs 22-32).

2.2% and the same 0% of the size of the set of activated faults, again for the
single and multiple faults test sets.

6.4 Discussion

The above experimental results corroborate two important properties of the
extraction algorithm: it captures nonmonotonicity and it is sound. Sound-
ness is also reflected in the high fidelity achieved in the applications, because
it guarantees that any rule extracted is actually encoded in the network, even
if such a rule does not comply with the network’s test set. In other words,
our extraction algorithm is bound to produce a rule set that tries to mimic
the network, regardless of the network’s performafice in the training and
test sets.

The above experiments also indicate that the drawback of the extraction
algorithm lies in the size of the rule set. In comparison with [35] and [38],

54

in the DNA sequence analysis domain, the number of rules extracted be-
fore any simplification is done is considerably bigger than, for example, the
number of rules extracted by the MofN algorithm (despite the differences
in sintax). Nevertheless, there are many possible improvements to be made
in the simplification process. Firstly, MofN simplification metarules (not
implemented) can be very powerful here, as in [38], in helping reduce the
size of the rule set. Fven better, simplifications could be made on the fly,
at the same time that rules are generated®*. Since every simplification rule
relates to the ordering on the set of input vectors in a rather nice way, such
an approach seems promising. However, we believe that a larger rule set, if
not intractable, is a good price to pay for soundness.

A possible extension to the extraction algorithm concerns the extraction
of meta-level priorities [26, 28] directly from the network’s Hidden to Out-
put BNSs. Negative weights from hidden to output neurons implement a
preference relation. We could use this information to extract directly from
the network, together with object level rules, a set of meta-level priorities
between rules. Alternatively, this could be done after the extraction, when
the rules are assembled to derive the final rule set. The result would be the
enhancement of the rule set readability and compactness.

Improvements could also be made in the search process, exploring the
ordering on the set of input vectors, and adding some new heuristics to the
extraction algorithm. An example is what we did in the DNA sequence
analysis case, when we jump to new minimal elements in the ordering, thus
enhancing efficiency.

7 Conclusion

We have seen that most decompositional methods of extraction are unsound.
On the other hand, sound and complete pedagogical extraction methods
have exponential complexity. We call this problem the complexity X quality
trade-off. In order to ameliorate it, we started by analyzing the cases where
regularities can be found in the set of weights of a neural networks. If such
regularities are present, a number of pmmng rules can be used to safely
reduce the network’s input vectors search space during extraction. These
pruning rules reduce the extraction algorithm’s complexity in some inter-
esting cases. Notwithstanding, we have shown that the extraction method
is sound and.complete w.r.t an exhaustive pedagogical extraction. A num-
ber of simplification rules, that fit very well into the extraction method due
to a counterpart graphical representation on the network’s input vectors

i

24The idea here is to implement a buffer of rules extracted and, whenever a new rule is
generated, try to simplify it together with the rules in the buffer. Potentially good rules
for simplification, the ones with many don’t cares, would remain in the buffer for longer
periods.

55

ordering, also help reducing the length of the extracted set of rules.

We then extended the extraction algorithm to the cases where regular-
ities are not present in the network as a whole. That is the general case,
since we do not fix any constraints on the network’s learning algorithm. We
identify subnetworks that always contain regularities, by showing that the
network’s building block, here called Basic Neural Structure (BNS), is regu-
lar. As a result, using the same underlying ideas, we are able to derive rules
from each BNS. Now, however, we are applying a decompositional approach,
and our problem is how to assemble the final rule set of the network. We
need to provide a special treatment for Hidden to Output BNSs, since hidden
neurons’ activations are not discrete values, but real numbers in the interval
(-1,1). In order to deal with that, we assume, without loss of generality,
two possible intervals of activations (—1, Amez) and (Amin, 1), and perform
a worst case analysis. Finally, we use the completeness of the extraction
from Input to Hidden BNSs to assemble the network’s rule set, and show
that the general case extraction method is still sound.

In this paper, we have investigated the problem of extracting the sym-
bolic knowledge encoded in trained neural networks. Although neural net-
works have shown very good performance in many application domains,
one of their main drawbacks lies on the incapacity to explain the reasoning
mechanisms that justify a given answer. As a result, their use has become
limited. This motivated the first attempts towards finding the justification
for neural networks’ reasoning, dating back to the end of the 1980’s. Nowa-
days, it seems to be a consensus that the way to try and solve this problem is
to extract the symbolic knowledge from the trained network. The problem
of knowledge extraction turned out to be one of the most interesting open
problems in the field. So far, some extraction algorithms were proposed
[2, 7, 12, 30, 35, 38] and had their effectiveness empirically confirmed using
certain applications as benchmark. Some theoretical results have also been
obtained [4, 12, 17, 37]. However, we are not aware of any extraction method
that fulfills the following list of desirable properties suggested by Thrun in
[37]: 1) no architectural requirements; 2) no training requirements; 3) cor-
rectness; and 4) high expressive power. The extraction algorithm presented
here satisfies the above requirements 2 and 3. It does impose, however, some
restriction on the network’s architecture. For instance, it assumes that the
network contains a single hidden layer. This, according to the results of
Hornik et al.[18], is not a drawback though. Concerning the rule set expres-
sive power, our extraction algorithm enriches the ldfiguage commonly used
by adding default negation. This is done because neural networks encode
nonmonotonicity. In spite of that, we believe that item 4 is the subject,
among the above, that needs most attention and further development.

56

References

1]

[4]

[9]

[10]

[11]

[12]

[13]

R. Andrews, J. Diederich and A. B. Tickle, “A Survey and Critique
of Techniques for Extracting Rules from Trained Artificial Neural Net-
works”, Knowledge-based Systems, Vol. 8 n°® 6, 1995.

R. Andrews and S. Geva, “Inserting and Fxtracting Knowledge from
Constrained Error Backpropagation Networks”, 6th Australian Confer-
ence on Neural Networks, 1995.

A. S. d’Avila Garcez, G. Zaverucha, V. N. L. da Silva, “Applying the
Connectionist Inductive Learning and Logic Programming System to
Power System Diagnosis”, IEEE International Joint Conference on
Neural Networks, ICNN97, Houston, USA, 1997.

A. S. d’Avila Garcez and G. Zaverucha, “The Connectionist Inductive
Learning and Logic Programming System”, In F. Kurfess (ed.) Applied

Intelligence Journal, Special Issue on Neural Networks and Structured
Knowledge, 11(1):59-77, 1999.

N. K. Bose and P. Liang, “Neural Networks Fundamentals with Graphs,
Algorithms, and Applications”, McGraw-Hill, 1996.

Y. Chauvin and D. Rumelhart (eds.), “Backpropagation: Theory, Ar-
chitectures and Applications”, Lawrence Erlbaum, 1995.

M. W. Craven and J. W. Shavlik, “Using Sampling and Queries to
Eztract Rules from Trained Neural Networks”, Eleventh International
Conference on Machine Learning, 1994,

B. DasGupta and G. Schinitger, “Analog Versus Discrete Neural Net-
works”, Neural Computation 8, pp.805-818, 1996.

B. A. Davey and H. A. Priestley, “Introduction to Lattices and Order”,
Cambridge University Press, 1990.

M. Fitting, “Metric Methods - Three “Examples and a Theorem”, Jour-
nal of Logic Programming 21, pp.113-127, 1994.

L. M. Fu; “Integration of Neural Heuristics into Knowledge-based In-
ference”; Connection Science, Vol. 1, pp. 325-340; 1989.

L. Fu, “Neural Networks in Computer Intelligence”, McGrz}LW Hill, 1994.

M. Gelfond and V. Lifschitz, “Classical Negation in Logic Programs and
Disjunctive Databases”, New Generation Computing, Vol. 9, Springer-
Verlag, 1991.

57

[14]

[15]

[19]

[20]

[21]

[22]

[23]

[24]

J.L. Gersting, “Mathematical Structures for Computer Science”, Com-
puter Science Press, 37 edition, 1993.

J. Hertz, A. Krogh and R. G. Palmer, “Introduction to the Theory
of Neural Computation”, Santa Fe Institute, Studies in the Science of
Complexity, Addison-Wesley, 1991.

M. Hilario, “An Overview of Strategies for Neurosymbolic Integra-
tion” , Connectionist-Symbolic Integration: from Unified to Hybrid Ap-
proaches - IJCAI 95, 1995.

S. Holldobler and Y. Kalinke, “Toward a New Massively Parallel Com-
putational Model for Logic Programming”, Workshop on Combining
Symbolic and Connectionist Processing, ECAI 94, 1994.

K. Hornik, M. Stinchcombe and H. White, “Multilayer Feedforward
Networks are Universal Approximators”, Neural Networks, 2, pp.359-
366, 1989.

H. Kautz, M. Kearns and B. Selman, “Horn Approximations of Empir-
ical Data”, Artificial Intelligence, 74.129-145, 1995.

N. Lavrac and S. Dzeroski, “Inductive Logic Programming: Techniques
and Applications”, Ellis Horwood Series in Artificial Intelligence, 1994.

N. Lavrac, S. Dzeroski and M. Grobelnik, “Fxperiments in Learning
Nonrecursive Definitions of Relations with LINUS”, Technical Report,
Josef Stefan Institute, Yugoslavia, 1990.

J. W. Lloyd, “Foundations of Logic Programming”, Springer - Verlag,
1987.

W. Marek and M. Truszczynski, “Nonmonotonic Logic: Context De-
pendent Reasoning”, Springer-Verlag, 1993.

M. Minsky, “Logical versus Analogical, Symbolic versus Connectionist,
Neat versus Scruffy”, Al Magazine, Vol. 12, n® 2, 1991.

S. Muggleton and L. Raedt, “Inductive Logic Programming: Theory
and Methods”, The Journal of Logic Programming, 1994.

D. Nute, “Defeasible Logic”, In D. Gabbay, C.J. Hogger and J. A.
Robinson, Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Vol.3, pp.353-396, Oxford Science Publications, 1994.

D. Ourston and R. J. Mooney, “Theory Refinement Combining Analyti-
cal and Empirical Methods”, Artificial Intelligence, Vol. 66, pp. 273-310,
1994.

58

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

40

H. Prakken and G. Sartor, “Argument-based Fxtended Logic Program-
ming with Defeasible Priorities”, Journal of Applied Non-Classical
Logic, 7.1/2, pp.25-75, 1997.

F. P. Preparata and R. T. Yeh, “Introduction to Discrete Structures”,
Addison-Wesley, 1973.

E. Pop, R. Hayward and J. Diederich, “RULENEG: Extracting Rules
from a Trained ANN by Stepwise Negation”, QUT NRC, 1994.

O. T. Rodrigues, “A Methodology for Iterated Information Change”
PhD Thesis, Dept. of Computing, Imperial College, 1997.

D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Internal
Representations by Error Propagation”, Parallel Distributed Process-
ing, Vol. 1, D. E. Rumelhart, J. L. McClelland and the PDP Research
Group, MIT Press, 1986.

A. Schrijver, “Theory of Linear and Integer Programming”, John Wiley
and Sons, 1986.

R. Setiono, “A Penalty-function for Pruning Feedforward Neural Net-
works”, Neural Computation 9, pp.185-204, 1997.

R. Setiono, “Fztracting Rules from Neural Networks by Pruning and
Hidden-unit Splitting”, Neural Computation 9, pp.205-225, 1997.

S. B. Thrun et al., “The MONK’s Problem: A Performance Comparison
of Different Learning Algorithms”, Technical Report, Carnegie Mellon
University, CMU-CS-91-197, 1991.

S. B. Thrun, “Fatracting Provably Correct Rules from Artificial Neural
Networks”, Technical Report, Institut fur Informatik, Universitat
Bonn, 1994.

G. G. Towell and J. W. Shavlik, “The Extraction of Refined Rules From
Knowledge Based Neural Networks”, Machine Learning, Vol. 131, 1993.

G. G. Towell and J. W. Shavlik, “Knowledge-Based Artificial Neural
Networks”, Artificial Intelligence, Vol. 70, 1994.

J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz and A. M.
Weiner, Molecular Biology of the Gene, Volume 1, Benjamin Cum-
mings, Menlo Park, 1987.

®w

59

