
Java Binary Compatibility is Almost Correct

Version 2�

David Wragg and Sophia Drossopoulou and Susan Eisenbach

Department of Computing

Imperial College of Science, Technology and Medicine

email: dpw, sd and se @doc.ic.ac.uk

February 6, 1998

Abstract

The Java language description is unusual in that it de�nes the e�ect

of interleaving separate compilation and source code modi�cations. In

Java, certain source code modi�cations, such as adding a method to a

class, are de�ned as binary compatible. The Java language description

does not require the re-compilation of programs importing classes or in-

terfaces which were modi�ed in binary compatible ways, and it claims that

successful linking and execution of the altered program is guaranteed. In

this paper we show that Java binary compatibility does not actually guar-

antee successful linking and execution. We then suggest a framework in

which we formalize the requirement of safe linking and execution without

re-compilation and we propose a more modest de�nition of binary com-

patibility. We prove for a substantial subset of Java, that our de�nition

guarantees safe linking and execution.

1 Introduction

Separate compilation, already introduced in the seventies [13, 2], enables pro-
grammers to develop and compile separately, parts of a larger program. Pro-
vided that they respect the interfaces to the rest of the program, one expects to
be able to link and run without type errors. Separate compilation is supported
by most language implementations, although it is under-speci�ed in many lan-
guage descriptions. Recently, Cardelli [1] proposed a framework to describe
separate compilation and safe linking of modules.

Java [8] is unusual in that it de�nes the e�ect of interleaving of separate
compilation and source code modi�cations, and imposes weaker requirements
on re-compilation. Typically, source code modi�cations require re-compilation
of any programs importing the modi�ed classes or interfaces. In Java however,
certain source code modi�cations, such as adding a method to a class, are de-
�ned as binary compatible, based on ideas suggested in [7]. The Java language

1

description does not require the re-compilation of programs importing classes
or interfaces which were modi�ed in binary compatible ways. It claims that
successful linking and execution of the altered program is guaranteed.

Not only do binary compatible changes not require re-compilation of other
classes, but in fact such re-compilations may not be possible: a binary compat-
ible change to the source code for one class may cause the source code for other
classes to no longer be type correct. Yet the guarantee of successful linking and
execution still holds since only the binaries are consulted during these steps.

It has already been demonstrated in [4, 5, 3] that loopholes in the de�nition
and implementation of binary compatibility provide opportunities for breaking
the Java security mechanism. In this paper we are concerned with a more
mundane, and more direct problem, namely that Java binary compatibility does
not guarantee successful linking and execution. It is not di�cult to put together
a sequence of program modi�cations, each of which is binary compatible in the
sense of Java, which results in link errors.

In this paper we suggest a framework for formalizing the requirement of safe
linking and execution without re-compilation, propose a more modest de�nition
of binary compatibility, and prove for a substantial subset of Java, that our
de�nition guarantees safe linking and execution.

The Java language speci�cation de�nes the term binary compatibility both
in an �extensional� manner, expressing the requirements for binary compatible
changes

A change to a type is binary compatible with ... pre-existing binaries
if pre-existing binaries that previously linked without error ... will
continue to link without error ... with the binary of the modi�ed ...

and in an �intensional� manner, namely stating which changes are binary com-
patible

...adding a class, adding an instance variable to a class, ...

and it seems to claim that the intensional de�nition implies the extensional.
In order to be able to prove such a claim, we need to clarify and distinguish

the two meanings, and we therefore introduce two new terms: We consider
source code modi�cations to be link compatible, if the types (i.e. classes and in-
terfaces) that successfully linked with the original program will also successfully
link with the modi�ed program. We call our more restricted list of allowable
changes (e.g. we do not allow the addition of methods to interfaces), safe bi-
nary compatible. Finally, we prove that safe binary compatibility implies link
compatibility.

The terminology we use is based on our previous work formalizing the seman-
tics of Java [6], and makes use of the soundness theorem proven there. However,
it could be based on another formalization of Java, as long as it gave a sensible
meaning to type checking, and distinguished source code from compiled code
[12].

The remainder of this paper is organized as follows: In section 2 we summa-
rize the meaning of binary compatibility from Java, demonstrate why it works

2

in most cases, and show an example where it does not. In section 3 we sum-
marize the formalization concepts from [6] needed for the current discussion.
In section 4 we give the de�nitions of link compatibility and safe binary com-
patibility and demonstrate that the latter implies the former. In section 5 we
discuss other possible de�nitions for link compatibility. Finally in section 6 we
draw conclusions and outline further work.

2 Binary Compatibility in Java

The following example demonstrates some of the issues around binary compat-
ibility, and will serve as running example throughout the paper. We start with
the classes Student and CStudent, and the commented code is ignored. For sim-
plicity we ignore the issue of access restrictions (e.g. private, public, import).
The class CStudent inherits the instance variable grade of type int. In the
class C100, DonKnuth, of class CStudent, is assigned the grade 1. This code frag-
ment is well formed, and can be compiled, producing the �les Student.class,
CStudent.class and C100.class.

class Student

f int grade; g
class CStudent extends Student

f /* char grade; */ g

CStudent DonKnuth;

class C100

f void f() f DonKnuth.grade=1; g g
/* class Marker

f void g() f DonKnuth.grade='A'; g g */

The comment is then removed from class CStudent, i.e. we add the in-
stance variable grade of type char to class CStudent. The class CStudent

is re-compiled, producing, say CStudent0.class. The addition of an instance
variable is a binary compatible change [8], and therefore does not require fur-
ther re-compilation. Then, we remove the comments around class Marker, thus
de�ning a new class, Marker. In the body of its method g(), we assign the
grade 'A' to DonKnuth.

The class Marker is type correct in the new, augmented environment, and
thus it can be compiled producing the �le, say, Marker.class. The two changes,
i.e. the addition of the instance variable grade in class CStudent, and the cre-
ation of the class Marker, are binary compatible changes, so the old classes do
not need to be re-compiled. The binaries (i.e. Student.class, CStudent0.class,
C100.class and Marker.class), can safely be linked together.

It is worth noting that the old sources are not type correct any more. If, for
example, we re-compiled the class C100, we would obtain a type error for the

3

assignment DonKnuth.grade=1. Also, it is worth noticing that in the binary
C100.class the expression DonKnuth.grade refers to an integer, whereas in
the binary Marker.class it refers to a character. The two occurrences of the
expression refer to di�erent parts of DonKnuth; this is re�ected in the code
produced, and is also shown in section 3.

2.1 A problem with binary compatibility

The next example demonstrates that the de�nition of binary compatibility in [8]
needs to be less permissive. In particular, it considers the addition of methods to
interfaces to be a binary compatible change, and as a result it does not prevent
values of a particular interface type referring to objects of classes which do not
fully implement that interface. This problem is known to JavaSoft [11].

interface I

{ void meth1(); /* void meth2(); */}

class C implements I

{ void meth1()

{System.out.println("C::meth1() called");}}

class D

{ void meth3() {I anI = new C; /*anI.meth2();*/}}

Consider compiling interface I with meth2() commented out, then class
C, and then class D with the comments around the expression anI.meth2();.
Compilation will be successful.

Next the interface I is compiled again, this time after having removed the
comments, so the method meth2() is added. This is a binary compatible change
in Java, and does not require further re-compilation. So far, the application
cannot actually invoke the methods added to I. But by making another bi-
nary compatible change, such as removing the comments from meth3 in class
D, code is incorporated which invokes the method added to I. The language
speci�cation [8] lists this as a binary compatible change, and does not require
re-compilation. However, some kind of error should occur, yet what this error
should be and when it should be detected is not speci�ed.

The behaviour of Java implementations di�ers: After the �rst change and
re-compilation, running the code from an application or an applet viewer, using
the Linux port of the JDK version 1.1.3, gives:

java.lang.IllegalAccessError: Unimplemented interface method

After the �rst change and re-compilation, the code runs successfully as an
applet with Netscape Communicator version 4.03. However, after the second
change and re-compilation, the following error occurs:

java.lang.IncompatibleClassChangeError: interface method

meth2()V not implemented in C.

4

The best solution seems to be to consider adding methods (directly or by
adding super-interfaces) to interfaces as a binary incompatible change.

3 Formalization of the Java Semantics

In this paper we shall use some of the formalization of type checking, compiling
and executing of Java programs found in [6].

Java � Javas �!
C

Javase ;p Javase

#
Type = Type �wdn Type

We have de�ned Javas, a subset of Java, describing primitive types, classes
and inheritance, instance variables and instance methods, interfaces, shadowing
of instance variables, dynamic method binding, the null value, arrays, excep-
tions and exception handling. We do not include object and array creation yet,
because their current description in [6] is not abstract enough for use in this
work.

The syntax of Javas can be found in the appendix. For convenience, we split
the typing information and the evaluation information into an environment, usu-
ally denoted by a �, and a program, usually denoted by a p. An environment is a
sequence of class declarations, interface declarations, and variable declarations.
A program is a sequence of class bodies. A class body names the super-class of
the class, and contains the method bodies for the class.

For the computer science students example, the original fragment would be
represented in Javas by the environment �, and the program ps. � consists of
�st �cst �c100, where

�st = Student ext Objectfgrade : intg; DonKnuth : CStudent
�cst = CStudent ext Studentfg
�c100 = C100 ext Objectff :! voidg

The program ps consists of the three class bodies pst, pcst, pc100, where
pst = Student ext Objectfg
pcst = CStudent ext Studentfg
pc100 = C100 ext Objectff isfDonKnuth:grade= 1gg
Classes(�), Interfaces(�), and Vars(�) are the sets of names of classes, in-

terfaces and variables declared in an environment � respectively. Similarly,
Classes(p) are all the classes that appear in program p. Also:

� �(C) is the class declaration for a class C in �, or Undef if C =2 Classes(�).

� �(I) is the interface declaration for an interface I in �, or Undef if I =2
Interfaces(�).

� �(C) is the type of a variable x declared in �, or Undef in x =2 Vars(�)

5

We use the terms program fragments and environment fragments to refer
to entities which, while syntactically correct programs or environments respec-
tively, are not intended to be self contained. We denote concatenation of pro-
gram fragments or environment fragments by juxtaposition, e.g. ��0 is the
environment composed of � and �0.

The assertions to describe the inheritance relationships for classes and inter-
faces, and the widening relationship, in an environment � are:

� � ` C v C0 indicates that C is a direct or indirect sub-class of C0.

� ` C v C is equivalent to C 2 Classes(�)

� � ` I � I0 indicates that I is a direct or indirect sub-interface of I0

� ` I � I is equivalent to I 2 Interfaces(�)

� � ` T �wdn T0 indicates that the type T widens to T0, i.e. a value of type
T can be assigned to a variable of type T0 without any kind of run-time
check.

We indicate by � ` 3, that the declarations in environment � are well-
formed, e.g. that every identi�er has a unique declaration, that instance vari-
ables are unique in a class, etc. Provided that � ` 3, Javas programs can be
type checked in terms of a type inference system, parts of which appear in the
appendix. The assertion � ` t : T signi�es that the term t has type T for
the environment �, and the assertion � ` p 3 signi�es that the program p is
well-typed in the environment �, i.e. that the class bodies contain type cor-
rect function bodies which return values of the expected types. The assertion
� ` p 33 signi�es that p is complete, i.e. that it is well-typed and contains a
class body for each class in �. Note that the notation � ` p 33 corresponds
to � ` p 3 in [6]. That paper did not discuss program fragments, and so only
needed to express the requirement that a program be well-typed and complete.

When Javas programs are type checked, they are enriched with type infor-
mation. This is necessary for function calls and instance variable selection. The
enriched language is Javase, and enriching is performed by a type preserving
mapping C, which can also be understood as an abstraction of the compila-
tion from Java to binary code. The syntax of Javase is an extension of the
Javas syntax and is given in the appendix.

The Javase version of the original computer science students program con-
sists of the compilation of each of the class bodies,

pse = Cf(ps ;�)g = psest p
se

cst p
se

c100; where
psest = Cf(pst;�)g = Student ext Objectfg;
psecst = Cf(pcst;�)g = CStudent ext Studentfg; and
psec100 = Cf(pc100;�)g = C100 ext Object

ff isfDonKnuth[Student]:grade= 1gg

Notice, that in psec100 the instance variable access for grade has been enriched
by the class from which grade is inherited.

6

Javase terms also have types. For a Javase term t, the assertion � `se t : T
signi�es that t has the type T. For a Javase program p, the assertion � `se p 3
signi�es that p is well-typed, whereas � `se p 33 signi�es that p is well-typed
and complete.

In [6] we do not distinguish between assertions in Javas, and those in Javase;
they all have the form ::: ` :: : :: or ::: ` ::: 3. In this paper, we distinguish
them through the su�x se, for additional clarity.

The type system for Javase is an extension of that for Javas, and some of
it appears in the appendix. For type checking Javase instance variable access,
the class from which the instance variable was inherited is taken into account.
Similarly, for a Javase method call, the statically determined argument types are
taken into account. These properties are crucial for the proof of the soundness
theorem, and for the proofs of the lemmas in section 4.

The following lemma says that the enriching step preserves the type of the
expression.

Lemma 1 For types T, T0 any state �, and Javas term t:

If � ` t : T then � `se Cf(t; �)g : T

A term rewrite system ;p describes the Javase operational semantics for a
particular program. The subject reduction theorem proves that one evaluation
step preserves the types up to sub-classes/sub-interfaces. Finally, in [6] we prove
a soundness theorem, which we shall need in the next section in order to prove
the properties of the suggested safe binary compatibility:

Theorem 1 Soundness For any Javas term t, well-formed environment �,
any type T with � ` t : T, any Javase program p with � `se p 33, any state �
conforming to �, there exists a unique Javase term t0, and a state �0, such that:

� T 6= void, hCf(t; �)g; �i;p0
�ht0; �0i, t0 is ground, 9T0 : �; �0 `se t0 : T0,

� ` T0 �wdn T and �0 conforms to � or

� T = void, and hCf(t; �)g; �i;p0
�h�0i and �0 conforms to � or

� hCf(t; �)g; �i;p0
� does not terminate or raises an exception

Similar soundness theorems are proven in [12, 9] as well. Note that the excep-
tions here may be divide-by-zero, null access, etc, or user-de�ned exceptions, but
they may not be linker exceptions. Thus, the Soundness Theorem suggests that
the requirement � `se p 33 indicates that p is a complete successfully-linked
Javase program, and the requirement � `se p 3 indicates that p is a �linkable�
Javase program fragment.

Note, that in [6] we state the soundness theorem slightly di�erently. Namely
we say that for any Javas program p with � ` p 3, for the Javase program pse,
pse = Cf(p;�)g, the execution of pse leads to a well-typed, ground term. However,
this is so because the theorem in the [6] form is more interesting for language
soundness. The soundness theorem in the above form is needed for the proof
of theorem 2, and it can easily be proven, following the same technique as the
original theorem.

7

4 Making Binary Compatibility Safe

4.1 Link Compatibility

The term link compatibility aims to capture the intuition underlying binary
compatibility. It places some requirements on source code modi�cations.

Java source code modi�cations are re�ected as environment modi�cations
(modi�cations of the class hierarchy, the types of instance variables, methods
etc) and as program code modi�cations (modi�cations of method bodies etc).
We shall consider a pair (�; p) describing the original environment and Javase
program, and modify it with (�01; p

0
1), the environment fragment and Javas

program fragment to be incorporated, to give a new environment and program:
the new environment consists of �01 and the part of � which is not superseded
by �01 (denoted by �0), and the new program consists of the compilation of p01 in
the new environment and the part of p which is not superseded by p01 (denoted
by p0), as shown in Figure 1.

De�nition 1 Given an environment �, a Javase program p, an environment
fragment �01, and a Javas program fragment p01, such that Classes(�) = Classes(p)
and Classes(�01) = Classes(p01), (�; p) C (�01; p

0
1) is the result of compiling �01,

p01 into �, p.

(�; p) C (�01; p
0

1) = (�0 �
0

1; p0 Cf(p
0

1; �0 �
0

1)g)

where �0 and p0 are unambiguously de�ned by:

� � = �0 �1

� p = p0 p1

� Classes(�0) = Classes(p0)

� Classes(�0) \ Classes(�01) = ; = Interfaces(�0) \ Interfaces(�01)

� Classes(p1) = Classes(�1) � Classes(�01), Interfaces(�1) � Interfaces(�01)

In the above de�nition the split of � into �0 and �1 is unambiguously de�ned
through �01. Speci�cally, any class from � that is also de�ned in �01 may not
appear in �0, and therefore it must appear in �1. Any class from � that is not
de�ned in �01 may not appear in �1, and therefore must appear in �0. Similarly
for interfaces in �0 and �1, and for the split of p into p0 and p1.

In terms of the computing students example, the addition of the instance
variable grade in the class CStudent corresponds to a new environment frag-
ment, �0cst = CStudent ext Student{ grade : char }, without a�ecting
the corresponding Javas program fragment pcst. Compiling (�0cst; pcst) into
(�st �cst �c100; p

se

st p
se

cst p
se

c100) gives

(�st �cst �c100; p
se

st p
se

cst p
se

c100) C (�0cst; pcst)
= (�st �

0
cst �c100; p

se

st p
se

cst p
se

c100)

8

�0 �01

New environment

p0

New Javase program

Cf(p01;�0 �
0
1)g

p0 p1

�0 �1

Original environment

Original Javase program

Javas program fragment

p01

�01

from programmer
Environment fragment

from programmer

C

Figure 1: The separate compilation of �01, p
0
1 into �, p

9

The next change, the addition of the class Marker, corresponds to a new
environment fragment, �0m, and a new program fragment, pm

0, where �0m =
Marker ext Object {g: ! void }, and pm

0 = Marker ext Object {g is

{DonKnuth.grade='A' }}. These fragments are compiled into the result of
the last change, (�st �

0
cst �c100; p

se

st p
se

cst p
se

c100), giving:

(�st �
0
cst �c100; p

se

st p
se

cst p
se

c100) C (�0m; pm
0)

= (�st �
0
cst �c100 �

0
m; p

se

st p
se

cst p
se

c100 Cf(pm
0; �st �

0
cst �c100 �

0
m)g):

For such modi�cations to be link compatible, we require the following: The
old and the new environments should be well-formed. Any Javase expression
with type T in the old environment should also have type T in the new envi-
ronment. The original program p should be well-formed and complete in the
original environment �. The modi�ed part of the program, p01, should be well-
formed in the new environment �00.

De�nition 2 An environment �0 is environment compatible with environment
� i�

� � ` 3

� �0 ` 3

� For all Javase expressions e, types T : � `se e : T =) �0 `se e : T

For an environment �, and Javase program p, an environment fragment �01,
and a Javas program fragment p01, (�

0
1; p

0
1) is link compatible with (�; p) i�:

� � `se p 33

� �00 is environment compatible with �

� �00 ` p01 3

where (�00; p00) = (�; p) C (�01; p
0
1).

In terms of the computing students example, one can see that (�0cst; pcst) is
link compatible with (�st �cst �c100; p

se

st p
se

cst p
se

c100). Also

�st �
0

cst �c100 �
0

m `se DonKnuth[Student]:grade= 1 : void;

and therefore it is the case that

�st �
0

cst �c100 �
0

m `se p
se

st p
se

cst p
se

c100 3;

so the unmodi�ed part of the program, as compiled originally with the old
environment �st �cst �c100, is type correct in the new environment . On the
other hand, DonKnuth.grade=1 is type incorrect in the new environment, and
so it is not the case that �st �

0
cst �c100 �

0
m ` pc100 3.

10

It is straightforward to show that environment compatibility is transitive
and re�exive. Despite its name, environment compatibility it is not a sym-
metric relationship (we chose the term �compatibility� for consistency with the
terminology in the Java language speci�cation).

On the other hand, the concepts of transitivity and re�exivity are not ap-
plicable to the link compatibility relationship, because the domain and range
of that relation do not match. Instead, one might consider the following �naïve
transitivity property�: For non-overlapping �01, �02 if (�01; p

0
1) is link compati-

ble with (�; p), and (�02; p
0
2) is link compatible with (�; p) C (�01; p

0
1), then

(�01 �
0
2; p

0
1 p

0
2) is link compatible with (�; p). But p01 may not be well-typed in

the environment component of (�; p) C (�01 �
0
2; p

0
1 p

0
2), and therefore property

does not hold.
For example, consider an original Javase program and environment given

by compiling the classes Student and CStudent. As the �rst change, the class
Marker is compiled into the program. As the second change, the modi�ed class
CStudent0 (where the instance variable grade of type char has been added
to CStudent) is compiled into the result of the �rst change. It is the case
that both of the changes are link compatible. However, the change formed by
naïvely composing the two steps, i.e. compiling Marker and CStudent0 into the
original program, is not a link compatible change, since the Javas class de�nition
of Marker is not well-typed in an environment featuring the class declaration
from CStudent0.

The lack of a �naïve transitivity property� for link compatibility does not
diminish the applicability of that concept. Although a sequence of link compat-
ible changes cannot be folded into a single large link compatible change, such
sequences do preserve an important property, namely that the resulting Javase
programs remain well-typed and complete, as shown in Theorem 2.

For the proof of that theorem we use the following lemma which says that
if a new environment is environment compatible with an old environment, then
any Javase class body that is well-formed in the old environment will be well-
formed in the new environment, as long as the corresponding class declaration
is the same in both environments.

Lemma 2 For environments � and �0, if

� �0 is environment compatible with �

then

� 8cBody = C ext :::f:::g
[�(C) = �0(C) and � `se cBody 3] =) �0 `se cBody 3

The proof of lemma 2 proceeds as follows: The class de�nition cBody con-
sists of methods m1; :::mn, and the body of each method is a Javase term. If
� `se cBody 3, then the method body for mi in cBody must be type correct and
have the return type according to the declaration of mi in �(C). But because of
environment compatibility the method body for mi will also be type correct in

11

�0 and have the same return type as in �. And if �0(C) = �(C), the signature
for mi in �0(C) will be identical to its signature in �0(C). Thus each method
body is type correct in �0 and conforms to its signature in �0(C), and therefore
�0 `se cBody 3.

The following theorem demonstrates that if we apply a sequence of link
compatible changes to (�; p) obtaining (�00; p00), then we can evaluate terms
in the context of p00 and execution will then produce a value of the expected
type, or loop forever, or produce a run-time exception. None of these outcomes
corresponds to a link error.

Theorem 2 Given an environment �, Javase program p, a sequence of environ-
ment fragments �01; :::�

0
n, and a sequence of Javas program fragments p01; :::p

0
n,

if

� for all i, 1 � i � n,
(�0i; p

0
i) is link compatible with ((�; p) C (�01; p

0
1))::: C (�0i�1; p

0
i�1)

then

� �new `se p
new

33 where
(�new; pnew) = ((�; p) C (�01; p

0
1))::: C (�0n; p

0
n)

Furthermore, by the Soundness theorem, the evaluation of a term in the
context of p00 will produce a value of the expected type, or loop forever, or produce
a run-time exception.

Proof 4.1 We �rst show that for any Javase program p, environment �, Javas
program fragment p0 and environment fragment �0, if (�0; p0) is link compatible
with (�; p) then for (�00; p00) = (�; p) C (�0; p0) it holds that �00 `se p

00
33:

By de�nition 2, �00 is environment compatible with �, and so �00 ` 3.
For p00 = p0 Cf(p0;�0)g, where p0 has the same meaning as in de�nition 1

(i.e. the unmodi�ed part of the program), by de�nition 2 we obtain � `se p 33,
which implies � `se p0 3, and so by lemma 2 gives �00 `se p0 3. Link compat-
ibility also gives �00 ` p0 3, which by lemma 1 implies that �00 `se Cf(p0; �00)g 3.
Therefore, �00 `se p00 3.

Furthermore, from de�nition 1 we have Classes(p00) = Classes(�00) and thus
�00 ` p00 33.

By application of this result n times, we obtain that �new `se pnew 33.

Note that pnew is constructed by compilation of n program fragments with
n versions of the environment, i.e. for �1; :::;�n non-overlapping:

pnew = p0 Cf(p01;�0 �
0
1 �2:::�n)g

Cf(p02;�0 �
0
1 �

0
2:::�n)g

...
Cf(p0

n
;�0 �

0
1 �

0
2:::�

0
n)g

The environments in which these compilations take place are crucial; note
that Cf(p01;�0 �

0
1 �2:::�n)g is not necessarily equal to Cf(p01;�0 �

0
1 �

0
2:::�

0
n)g. In-

deed, the former may be de�ned but the latter unde�ned.

12

4.2 Weak Environment Compatibility

We have thus established that link compatibility is a desirable property. From
de�nition 2 we see that link compatibility requires the new environment to be
environment compatible with the old, and the new Javas program fragment to
be type correct in the new environment. The latter requirement is very easy
to establish, and corresponds to a successful local compilation step. Neverthe-
less, the �rst requirement, namely environment compatibility, is not obviously
straightforward to establish, since it requires the two environments to give the
same types to all Javase expressions.

In some cases, environment compatibility can be established easily. If only
method bodies are changed in a Javas class de�nition, then the corresponding
class declaration in the environment is una�ected, and as environment compat-
ibility is re�exive, the relevant requirement for link compatibility holds. This
con�rms the fact that modi�cations of method bodies without modi�cation of
their signatures are binary compatible changes [8].

In this chapter we consider less trivial cases, and describe properties of
changes to environments which can be established in a practical way, yet which
imply environment compatibility.

De�nition 3 Given two well-formed environments, � and �0, �0 is weakly en-
vironment compatible with � i� all the following hold:

� 8C : � ` C v C =) �0 ` C v C

� 8I : � ` I � I =) �0 ` I � I

� 8T; T0 : � ` T �wdn T0 =) �0 ` T �wdn T0

� 8C; f : FDec(�; C; f) = (C; T) =) FDec(�0; C; f) = (C; T)

� 8T1; m; AT : (T; MT) 2 MDecs(�; T1; m) =) (T0; MT) 2 MDecs(�0; T1; m)

� Vars(�) � Vars(�0); and 8x 2 Vars(�) : � ` x : T =) �0 ` x : T

Weak environment compatibility is a re�exive, transitive and antisymmetric
relation. The following lemma says that, as desired, weak environment compat-
ibility implies environment compatibility.

Lemma 3 For environments � and �0, if �0 is weakly environment compatible
with �, then �0 is environment compatible with �.

This is proved by structural induction over the typing of Javase expressions.

4.3 Safe Binary Compatibility

The safe binary compatible changes are those changes described in [8], which
apply to the language Javas, and can be demonstrated to be safe.

The safe binary compatible changes are:

13

� adding a new class C or interface I to a program, as long as the name of
the new type is not the same as that of any existing type;

� changing which is the direct super-class of a class C, as long as all direct
or indirect super-classes continue to be direct or indirect super-classes;

� changing which are the direct super-interfaces of a class C, as long as all
direct or indirect super-interfaces continue to be direct or indirect super-
interfaces;

� adding a �eld to a class C;

� adding a method to a class C;

� changing a method body in class C, or changing the names (but not the
types) of the formal parameters of a method.

These are formally described by the corresponding e�ect on an environment:

De�nition 4 An environment �0 is the result of the application of a safe binary
compatible change to another environment �, i� one of the following holds:

� �0 = �; C ext C0 impl I1; :::In f fDecls; mDecls g
C =2 Classes(�)

� �0 = �; I ext I1; :::In f mDecls g
I =2 Interfaces(�)

� �(C) = C ext C0 impl I1; :::In f fDecls; mDecls g
�0(C) = C ext C00 impl I1; :::In f fDecls; mDecls g
�0 ` C00 �wdn C0

8X 6= C : �0(X) = �(X)

� �(C) = C ext C0 impl I1; :::In f fDecls; mDecls g
�0(C) = C ext C0 impl I01; :::I

0
k f fDecls; mDecls g

8i2f1:::ng : 9j2f1:::kg : �0 ` I0j �wdn Ii
8X 6= C : �0(X) = �(X)

� �(C) = C ext C0 impl I1; :::Im fv1 : T1; :::vn : Tn; mDeclsg
�0(C) = C ext C0 impl I1; :::Im fv1 : T1; :::vn : Tn; vn+1 : Tn+1; mDeclsg
8X 6= C : �0(X) = �(X)

� �(C) = C ext C0 impl I1; :::Im ffDecls; m1 : MT1; ::: mn : MTng
�0(C) = C ext C0 impl I1; :::Im ffDecls; m1 : MT1; ::: mn : MTn; mn+1 : MTn+1g
8X 6= C : �0(X) = �(X)

� � = �0

The following lemma says that safe binary compatible changes on an en-
vironment and local changes to method bodies, that type check in the new
environment are binary compatible with the old environment program pair.

14

Lemma 4 Given environments �, �0, if �0 is the result of the application of a
sequence of safe binary compatible changes to �, then �0 is weakly environment
compatible with �.

It can be shown that each kind of safe binary compatible change preserves
weak environment compatibility. Since weak environment compatibility is re-
�exive and transitive, a sequence of safe binary compatible changes will preserve
weak environment compatibility.

Thus these safe binary compatible changes can be used as a conservative
approximation to link compatibility, and by de�nition 2 can be used by pro-
grammers to determine whether source code they produce is link compatible
with the existing program, and so determine if recompilation of the entire pro-
gram can be avoided.

5 The Concept of Link Compatibility

Central to our paper is the concept of link compatibility, a term which does
not appear as such in the language description, but which aims to re�ect the
purpose of binary compatibility. In our de�nition, a new environment fragment,
Javas program fragment pair is link compatible with an original environment
and Javase program. Therefore, the context of the modi�cation (i.e. features
of the entire original environment) may be relevant.

This contrasts with the approach in [7], which considers a relationship be-
tween the fragment of the program that is replaced and its replacement, without
reference to the context of the change (i.e. features of the whole program); it
requires that any programs that linked with the original fragment should link
with the modi�ed fragment. This could be expressed by the following de�nition:

De�nition 5 Consider environment fragments �0 and �00, and Javas program
fragments p0 and p00, such that Classes(�0) = Classes(p0) and Classes(�00) =
Classes(p00).
The pair (�00; p00) is strongly link compatible with (�0; p0), i� for all environ-
ments � and Javase programs p:

(�0; p0) link compatible with (�; p) =) (�00; p00) link compatible with (�; p)

It is trivial to show that strong link compatibility is a partial order.
An interesting research direction would follow the route of strong link com-

patibility. In particular, some of the Java binary compatible changes pre-
serve strong link compatibility (e.g. addition of instance variables into classes),
whereas others don't because they make explicit mention of the remaining pro-
gram (e.g. changing the direct super-class of a class, provided that all direct or
indirect super-classes continue to be direct or indirect super-classes).

15

6 Conclusions and Further Work

The contribution of this paper is, we believe, twofold

� We suggest a terminology and formal framework with which to describe
the e�ects and properties of binary compatibility.

� We de�ne safe binary compatibility, a restricted form of that de�ned by
the language speci�cation, and prove for a substantial subset of Java,
that safe binary compatible changes do not require re-compilation and
guarantee successful linking.

We expect that better formalizations will be found, but feel that our approach
is adequate, as it allows us to argue that successful linking can be guaranteed
without the re-compilation of whole programs.

Our work makes use of the formal description and the soundness results in [6].
However, this is purely a matter of convenience. It could be based on any other
formal description of the Java semantics which addresses the following features:
type checking, compilation into a rich enough form to describe execution of
method calls, instance variable access, array and object creation, type checking
the intermediate form, operational semantics and a type soundness theorem.
Alternatively, it might be possible to recast some of the work in terms of a
formal description of the Java bytecode and bytecode veri�er (such as [10]).

We intend to extend Javas to encompass a larger subset of Java, and then
extend safe binary compatibility to include access restrictions, static variables
and methods etc. A more direct requirement is the description of constructors
in a way that re�ects the language semantics and would allow the preservation
of link compatibility.

Other further work includes re�ning the description of separate compilation
to consider compilation in partial environments, rather than in the environment
for the whole program. For example, in the computing students example the
classes do not have to be compiled in the complete environment:

psest = Cf(pst;�)g = Cf(pst;�st)g
psecst = Cf(pcst;�)g = Cf(pcst;�st �cst)g
psec100 = Cf(pc100;�)g = Cf(pc100;�st �cst �c100)g

It is necessary to consider compilation in partial environments in order to
realistically describe libraries distributed in binary form, since the library author
does not have access to the environments for the programs in which the library
may be used. Also, we have so far only considered a linear sequence of changes
to a program, but in cases with libraries, changes may occur to the library in
parallel with changes to the program using the library, culminating in a merge
of the most recent binaries for the library and the most recent binaries for the
main program [11].

Another interesting line of investigation would be the application of our
formalism to the approach described in [7], with its stronger requirement for

16

binary compatible changes, as already outlined by the strong link compatibility
de�nition in section 5.

Finally, a more distant and ambitious task remains the formalization of the
dynamic linker/loader, and an approach to the associated security issues.

7 Acknowledgements

We are grateful to to Guy Steele for feedback on the concept of binary compat-
ibility, and to Gabrielle Sinnadurai and David von Oheimb for suggestions on
the presentation.

References

[1] L. Cardelli. Program Fragments, Linking, and Modularization. In POPL'97
Proceedings, January 1997.

[2] M. Dausmann, S. Drossopoulou, G. Persch, and G. Winterstein. A Sep-
arate Compilation System for Ada. In Proc. GI Tagung: Werkzeuge der
Programmiertechnik. Springer Verlag Lecture Notes in Computer Science,
1981.

[3] Drew Dean. The Security of Static Typing with Dynamic Linking. In
Fourth ACM Conference on Computer and Communication Security, 1997.
Revised version Tech Report number SRI CSL 9704.

[4] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From
Hotjava to Netscape and beyond. In Security and Privacy'96 Proceedings,
May 1996.

[5] Drew Dean, Edward W. Felten, and Dan S. Wallach. Java Security: From
HotJava to Netscape and Beyond. In Proceedings of the 1996 IEEE Sym-
posium on Security and Privacy, pages 190�200, May 1996.

[6] Sophia Drossopoulou, Susan Eisenbach, and Sarfraz Khurshid. Is Java
Sound? Theory and Practice of Object Systems, 1998. to appear, available
at http://www-dse.doc.ic.ac.uk/projects/slurp/.

[7] Ira Forman, Michael Conner, Scott Danforth, and Larry Raper. Release-to-
Release Binary Compatibility in SOM. In OOPSLA'95 Proceedings, 1995.

[8] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci�cation.
Addison-Wesley, August 1996.

[9] Tobias Nipkow and David von Oheimb. Java`ight is type-safe � de�nitely.
In POPL'98 Proceedings, January 1998.

[10] Raymie Stata and Martin Abadi. A Type System For Java Bytecode Sub-
routines. In POPL'98 Proceedings, January 1998.

17

[11] Guy Steele. Private Conversation, January 1998.

[12] Donald Syme. Proving Java Type Sound. Technical Report 427, Cam-
bridge University, June 1997. to appear in Formal Syntax and Semantics
of Javatm, edited by Jim Alves Foss, Springer, LNCS.

[13] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1982.

18

Appendix

A1 The Syntax of Javas

Program ::= (ClassBody)�

ClassBody ::= ClassId ext ClassName {(MethBody)�}
MethBody ::= MethId is (� ParId : VarType.)�

{Stmts ; return [Expr] }
Stmts ::= � j Stmts ; Stmt
Stmt ::= if Expr then Stmts else Stmts

j Var = Expr j Expr j throw Expr
j try Stmts (catch ClassName Id Stmts)� finally Stmts
j try Stmts (catch ClassName Id Stmts)+

Expr ::= Value j Var j
Expr.MethName (Expr�) ([Expr])+([])�

Var ::= Name j Var.VarName j Var[Expr] j this

Value ::= PrimValue j null

PrimValue ::= intValue j charValue j byteValue j ...
VarType ::= SimpleType j ArrayType
SimpleType ::= PrimType j ClassName j InterfaceName
ArrayType ::= SimpleType[] j ArrayType[]

j InterfaceName

PrimType ::= bool j char j int j ...
Type ::= VarType j void j nil

Env ::= StandardEnv j Env ; Decl
StandardEnv ::= Exception ext Object...NullPE ext Exception...; ...
Decl ::= ClassId ext ClassName impl (InterfName)�

{(VarId :VarType)� (MethId : MethType)�}
j InterfId ext InterfName�{(MethId : MethType)�}
j VarId : VarType

MethType ::= ArgType ! (VarType j void)
ArgType ::= [VarType (�V arType)�]

19

A2 Some of the Javas Type Checking Rules

i is integer; c is character; x is identi�er

� ` null : nil; � ` true : bool; � ` false : bool;
� ` i : int; � ` c : char; � ` x : �(x)
Cf(z; �)g = z if z is integer, character, identi�er, null; true, or false

� ` v : T
� ` e : T0

� ` T
0 �wdn T

� ` v := e : void
Cf(v := e;�)g = Cf(v;�)g := Cf(e;�)g

� ` return : void
Cf(return;�)g = return

� ` e : bool
� ` stmts : void � ` stmt : T � ` stmts0 : T0

� ` stmts ; stmt : T
Cf(stmts ; stmt;�)g = Cf(stmts;�)g ; Cf(stmt;�)g
� ` if e then stmts else stmts

0 : void
Cf(if e then stmts else stmts0;�)g =

if Cf(e;�)g then Cf(stmts;�)g else Cf(stmts0;�)g

� ` v : T[]
� ` e : int

� ` v[e] : T
Cf(v[e];�)g = Cf(v;�)g[Cf(e;�)g]

� ` ei : Ti i2f1:::ng; n � 1
MostSpec(�; m; T1; T2 � ::: � Tn) = f(T; MT)g
� ` e1:m(e2:::en) : Res(MT)
Cf(e1:m(e2:::en);�)g =
Cf(e1;�)g:[Args(MT)]m(Cf(e2;�)g:::Cf(en;�)g)

� ` v : T
FDec(�; T; f) = (C; T0)

� ` v:f : T0

Cf(v:f;�)g = Cf(v;�)g:[C]f

mBody = m is �x1 : T1:::�xn : Tn:fstmtsg
xi 6= this i2f1:::ng
z1; :::; zn are new variables in �
stmts0 = stmts[z1=x1; :::; zn=xn]
�; z1 : T1:::zn : Tn ` stmts0 : T0

� ` T0 �wdn T

� ` mBody : T1 � :::� Tn ! T

Cf(mBody;�)g =
m is �x1 : T1:::�xn : Tn:fCf(stmts;�)gg

20

n � 0; k � 0; m � 0;� ` � 3

�(C) = C ext C0 impl I1:::In
fv1 : T1:::vk : Tk; m1 : MT1:::ml : MTlg

cBody = C ext C
0 fmBody1; :::mBodylg

�(this) = Undef

mBodyi = mi is mPrsStsi i2f1:::lg
�; this : C ` mBodyi : MTi i2f1:::lg
� ` cBody : �(C)
Cf(cBody;�)g = C ext C

0 fCf(mBody1;�)g:::Cf(mBodyl;�)gg

n � 0
p = cBody1; :::cBodyn
cBodyi = Ci ext :::f:::g for i2f1:::ng
� ` cBodyi : �(Ci) i2f1:::ng
� ` p 3

Cf(p; �)g = Cf(cBody1 ;�; this : C)g:::Cf(cBodyn;�; this : C)g

p = p1p2 =)
Classes(p1) \ Classes(p2) = ;

Classes(�) = Classes(p)
� ` p 3

� ` p 33

A3 Altering the Syntax of Javas to Obtain Javase Syntax

Type ::= ... j ClassName-Thrn
Expr ::= ...

j Expr.[ArgType]MethName(Expr�) replacesExpr.MethName(Expr�)
j Stmts

Var ::= ...

j Var.[ClassName]VarName replacesVar.VarName

j �i.[ClassName]VarName j�i[Expr] i an integer

j null.[ClassName]VarName
j null[Expr]

Value ::= ... j RefValue
RefValue ::= �i i an integer

A4 Some Javase Types

�(�i) =�:::�C

�; � `se �i : C
�(�i) = [[:::]]T[]1:::[]n

�; � `se �i : T[]
1
:::[]

n

� ` T �wdn Object

�; � `se null : T

�; � `se v : T
� ` T �wdn C

FDec(�; C; f) = (C; T0)

�; � `se v:[C]f : T0

�; � `se ei : T0i i2f1:::ng; n � 0
� ` T0i �wdn Ti i2f2:::ng
FirstFit(�; m; T01; T2 � ::: � Tn) = f(T; MT)g
�; � `se e1:[T2 � ::: � Tn]m(e2:::en) : Res(MT)

21

