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Abstract. The liveness characteristics of a system are intimately related to the notion of 
fairness. However, the task of modelling explicitly fairness constraints is complicated in 
practice. To address this issue, we propose to check LTS (Labelled Transition System) 
models under a strong fairness assumption, which can be relaxed with the use of action 
priority. The combination of the two provides a novel and practical way of dealing with 
fairness. The approach is presented in the context of a class of liveness properties termed 
progress, for which it yields an efficient model-checking algorithm. Progress properties 
cover a wide range of interesting properties of systems, while presenting a clear intuitive 
meaning to users. An extensive comparison is provided of the approach proposed with 
classical LTL model-checking.  

1   Introduction 

Our research objective is the development of practical and effective techniques for modelling 
and analysing the behaviour of concurrent systems. We aim to support analysis based on the 
software architecture of a system, and believe that the analysis techniques need to be both 
accessible to practising software engineers, and supported by powerful automated tools. In 
particular, our approach is based on the use of Labelled Transition Systems (LTS) to specify 
behaviour and Compositional Reachability Analysis (CRA) to check composite system mod-
els. The architecture description of a system drives CRA in generating the composite model of 
the system based on the models of its components [1-3]. The model thus generated can be 
checked against the properties required of it.  

Previous papers have addressed the problem of verifying safety and liveness properties in 
the context of CRA [4, 5]. Our work on liveness property checking [4, 6] takes the automata-
theoretic approach to verification [7], adopted in a number of existing methods and tools [8-
10]. The approach is based on the use of Linear Temporal Logic (LTL) formulas or Büchi 
automata to represent liveness properties. The LTS of a program is viewed as a Büchi automa-
ton and the LTL formula for some property F is translated into the Büchi automaton for ¬ F. 
The automaton corresponding to the intersection of the system and the automaton obtained for 
¬ F is then constructed. If the resulting automaton is empty, the property F is not violated. In 
such a setting, fairness is represented in terms of constraints introduced in the form of Büchi 
automata, which are also composed with the system [8, 9]. Alternatively, in order to check 
some LTL formula f under some LTL fairness condition c, one can simply check the LTL 
formula (c ⇒  f) [10]. 

In general, it is a challenging task to think of the exact fairness considerations that need to 
be made for a system. Often, one finds that the constraints imposed are either not sufficient, or 
too strict, and that, as a result, unrealistic violations are detected, or some violations that may 
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in practice occur are not detected, respectively. Our experience is that the fairness assumptions 
that apply to a system are determined gradually. Users check properties under fairness assump-
tions that they may tailor, based on the feedback obtained from model checkers. For this rea-
son, we consider it important for a model-checking tool to support predefined notions of fair-
ness, and to provide the flexibility to easily tune these fairness assumptions to express different 
execution conditions of the system.  

In accordance with these requirements, this paper proposes an optional predefined assump-
tion of “fair choice” on the executions of an LTS model. As this is a strong assumption that 
may be too restrictive in some circumstances, we also introduce an action priority scheme that 
relaxes it. This combination provides a simple, practical and effective way of expressing and 
tailoring fairness assumptions during liveness property checks. Moreover, we have found that 
under fair choice, a specific class of liveness properties, which we have termed progress, can 
be checked without using Büchi automata. We express such properties in an intuitive way that 
does not require experience with temporal logic. 

In addition to its simplicity and flexibility, the overall approach that we present does not in-
crease the state-space of a system to be analysed. It is well known that, when a Büchi automa-
ton B is composed with a system, the size of the system can increase by m times in the worst 
case, where m is the size of B. Moreover, the size of a Büchi automaton may increase 
exponentially as a function of the length of the LTL formula that it represents [8]. Although 
efficient algorithms exist for the automatic translation of LTL formulas into Büchi automata 
[11], none of these algorithms guarantee to generate the minimal automaton. Of course, the 
potential advantage from the use of Büchi automata is that in the best case, the state-space to 
be analysed is zero. This happens when no initial portion of the behaviour accepted by the 
automaton appears in the system. However, we will show that this best case does not normally 
appear for the liveness properties and fairness constraints that we consider.  

Note that the class of liveness properties that can be expressed as progress properties is a 
subset of those that can be expressed with LTL. Consequently, we do not see progress as sup-
planting the need for general LTL model checking. We simply propose it as a more accessible 
alternative to Büchi automata, whenever it covers the particular needs of the system developer. 
As discussed later in the paper, our experience and that of others [12] indicate that a large 
number of interesting properties of systems can be expressed and checked in terms of progress 
properties.  

The results of our work have been incorporated in an analysis tool – the Labelled Transition 
System Analyser (LTSA) [2, 13]. The examples used in the paper to illustrate progress check-
ing were developed using the LTSA tool. We will briefly present how models of system 
behaviour are described for the LTSA. The tool uses a simple process algebra notation, called 
FSP for Finite State Processes, to define the behaviour of processes. As an aid to understand-
ing, the LTSA supports the facility of drawing the LTS corresponding to an FSP specification. 
In the interests of brevity, we do not formally describe the FSP semantics in this paper. Rather, 
we hope to make the meaning of our specifications clear by means of brief descriptions, and by 
including the associated LTSs, when appropriate. 

The remainder of this paper is organised as follows. The next section uses a simple tele-
phone switching system to introduce FSP. The example is used again in section 3, to describe 
informally the way progress properties are specified and checked under the proposed fairness 
and action priority schemes. Section 4 provides the formal framework for our approach. Sec-
tion 5 presents the Readers/Writers example that is used to illustrate and evaluate our ap-
proach. In section 6, we look into the classical way of checking LTL properties with Büchi 
automata, and compare our approach with that taken by the SPIN LTL model checker. Our 
experience with several case studies is discussed in section 7. Finally, section 8 presents re-
lated work, and section 9 closes the paper with conclusions and plans for future work. 
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2 A Telephone Switching System   

A simple telephone switching system will be used as an introductory example to both our 
specification language FSP, and to our approach to progress and fairness.  

const Phones = 2 

 

PHONE (Id = 0) = (call[Id] ->  

   ( connect[Id] -> end[Id] -> PHONE 

   | engaged[Id] -> PHONE) ). 

 

SWITCH = (call[i:1..Phones] -> connect[i] -> ENGAGED[i]), 

ENGAGED[i:1..Phones]=( call[x:1..Phones] -> engaged[x] -> ENGAGED[i] 

    | end[i] -> SWITCH). 

 

|| PHONES = (forall [i:1..Phones] PHONE(i) || SWITCH). 

 

PHONE(1) 

call.1 connect.1 

engaged.1 

end.1 

0 1 2 

 

 

PHONE(2) 

call.2 connect.2 

engaged.2 

end.2 

0 1 2 

 

 

SWITCH 

call.1 

call.2 connect.2 

call.1 

call.2 

end.2 

engaged.2 

engaged.1 

connect.1 

call.1 

call.2 

end.1 

engaged.2 

engaged.1 

0 1 2 3 4 5 6 7 8 

 

Fig. 1. FSP specification and corresponding LTSs for telephone switching system 

The system, whose FSP description is provided in Fig. 1, consists of a SWITCH that handles 
incoming calls to some recipient (let us call it Rec), and a number of PHONEs in range 
Phones, from which these calls may originate. The behaviours of SWITCH and PHONE are 
defined using action prefix (“->”), choice (“|”) and recursion. On receipt of a call from some 
phone i (call[i:1..Phones]), the switch connects i to Rec (connect[i]) and transits to state EN-
GAGED[i], which represents the fact that Rec is currently engaged. If further calls are received 
while the switch is in state ENGAGED, then the switch notifies their originators that the line is 
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engaged. On completion of a telephone conversation (end[i]), the switch goes back to its initial 
state. A phone is characterised by its Id (such parameters are given default values in FSP, 
which can be overridden in composition expressions). It is used to make a call to Rec 
(call[Id]), after which one of two alternative behaviours is possible. The switch connects the 
phone and after the conversation ends the PHONE goes back to its initial state. Alternatively, 
if the line is engaged, PHONE simply returns to its initial state. The LTSs generated by our 
tools for the components of the telephone switching system are illustrated in Fig. 1. 

The PHONES system is expressed as the parallel composition of SWITCH, with as many in-
stances of PHONE as the constant Phones defines (in our example, two). Processes assembled 
with the || parallel composition operator run concurrently by synchronisation on actions that 
are common to their alphabets and interleaving of the remaining actions. Based on these rules, 
the LTS that corresponds to system PHONES is as depicted in Fig. 2. 

PHONES

call.1

call.2 connect.2 call.1

end.2

engaged.1

connect.1

end.1

call.2

engaged.2

0 1 2 3 4 5 6

 

Fig. 2. LTS for the composite telephone switching system 

3   Progress, Fairness, and Priority 

The regular occurrence of some actions in a system execution indicates that system behaviour 
progresses as desired or expected. We would therefore like to be able to check on the model of 
a system that, in all possible executions of the system, such actions occur regularly. In the 
context of an infinite execution, regularly means infinitely often. A property that asserts that an 
action a is expected to occur infinitely often in every infinite execution of the system is ex-
pressed in LTL as ◊a. We call properties of this type progress. Often, progress is not deter-
mined by a single action but by one of a set of alternatives. For example, a system may be 
considered to make progress if it outputs one of a set of values. Consequently, we define pro-
gress properties in terms of a finite set of actions as follows: 

progress P = {a
1
,a

2
..a

n
} — defines a progress property P which as-

serts that in any infinite execution of a target system, at least one of the ac-
tions a

1
,a

2
..a

n
 occurs infinitely often. 

The LTL formulation of the progress property P is ◊(a1 ∨   a2 … ∨  an).  
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For system PHONES of the previous section, it is likely that a designer would expect both 
progress properties GET_THROUGH.1 and GET_THROUGH.2 to hold, where1: 

progress GET_THROUGH.1 = {connect[1]}  
progress GET_THROUGH.2 = {connect[2]}  

The reason is that an execution of the system where calls from a particular phone are never 
connected is clearly undesirable. When thinking about progress properties, one implicitly 
makes some fairness assumptions about the system they apply to. For example, consider the 
LTS of PHONES, illustrated in Fig. 2. At state (0), transitions (0, call.1, 4) and (0, call.2, 1) 
are enabled. Assuming that the system scheduler does not favour one or the other transition, 
one would expect that, if the system returns to state (0) regularly, both transitions will be se-
lected regularly. However, the LTS model is not expressive enough to capture such notions of 
fairness. In fact, it is possible for the LTS of Fig.2 to repetitively go through states (0), (1) and 
(2), indefinitely. For this reason, we introduce in the LTS model the notion of fair choice, 
which is assumed to hold when we check progress properties of a system: 

Fair Choice: If a choice over a set of transitions is executed infinitely often, 
then every transition in the set is executed infinitely often. 

Under fair choice, progress properties GET_THROUGH[i] hold for PHONES. Now consider 
the case where the second phone may get barred because, for example, its owner has not paid a 
telephone bill. The behaviour of such a B_PHONE, and of a system that includes it could be 
modelled as follows:  

B_PHONE (Id = 0) =  ( call[Id] -> ( connect[Id] -> end[Id] -> B_PHONE 

      | engaged[Id] -> B_PHONE) 

                    | barred[Id] -> STOP). 

 

|| B_PHONES = ( forall [i:1..Phones-1] PHONE(i) 

   || B_PHONE(Phones) || SWITCH). 

For simplicity, we assume that a phone does not get barred while used for a call. The LTS of 
system B_PHONES is illustrated in Fig. 3. We can see that in this system, progress property 
GET_THROUGH.2 is no longer satisfied: action connect.2 can only occur finitely many times 
in any fair infinite execution that reaches states (1), (2), or (3) at some point. The set of states 
{1,2,3} is called a terminal set of states, because each state is mutually reachable, but no state 
outside the terminal set can be reached from any of those states. We prove later that in finite 
state systems, any fair infinite execution reaches a terminal set of states. As a result, the only 
actions that are repeated infinitely often in such executions are actions that label transitions 
between states of the terminal set. The LTSA reports the violation as follows: 

Progress violation: GET_THROUGH.2 

Trace to terminal set of states: 

 call.1 

 connect.1 

 barred.2 

Actions in terminal set: 

{call.1, connect.1, end.1} 

                                                           

1 In FSP, such combinations of properties can be expressed by using ranges as follows: 

 progress GET_THROUGH[i:1..Phones] = {connect[i]} 
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 call.1 

call.2 

barred.2 call.1 connect.1 

end.1 

connect.2 call.1 

end.2 

engaged.1 

connect.1 

barred.2 

end.1 

call.2 

barred.2 

engaged.2 

0 1 2 3 4 5 6 7 8 9 

 

Fig. 3. LTS of system B_PHONES, where the second phone may be barred  

However, this violation does not correspond to a real problem with the system. It is obvious 
that connect.2 cannot occur infinitely often if, after some point, call.2 no longer occurs either. 
So the desired property is in fact that, if calls are made from a specific client regularly, then 
this client must also be connected regularly, i.e., for every client i, the following LTL property 

must hold: ◊call.i ⇒  ◊connect.i. We call this form of progress property conditional pro-
gress, which we define as follows: 

progress P = if {a
1
,a

2
..a

n
} then {b

1
,b

2
..b

n
} — defines a progress 

property P which asserts that in any infinite execution of a target system, if any 
of the actions a

1
,a

2
..a

n
 occurs infinitely often then at least one of the actions 

b
1
,b

2
..b

n
 also occurs infinitely often. 

Progress properties GET_THROUGH can therefore be restated as follows: 

progress GET_THROUGH[i:1..Phones] = if {call[i]} then {connect[i]} 

This property is satisfied by system B_PHONES; after the second phone is barred, calls are no 
longer made from it. The property therefore ensures that, when a phone is operational, calls 
made from it are not consistently ignored, which is what the user wishes to check.  

Assume now that we wish to check whether the above progress properties are still satisfied 
in the original PHONES system, when the scheduler favours calls made from PHONE(2). 
Such a PRIORITY_PHONES system is modelled, in our approach, by giving high priority to 
action call.2, i.e. to calls received from PHONE(2). The FSP model for this system, together 
with its corresponding LTS are illustrated below: 

call.2 connect.2 call.1

end.2
engaged.1

0 1 2 3

 

|| PRIORITY_PHONES = PHONES << {call[2]}. 

What has actually happened to the LTS of PHONES (Fig.2) by giving high priority to action 
call.2 is that, at state (0), where both call.1 and call.2 are available, call.2 is always selected, 
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which results in cutting off the part of the LTS that involves states (4), (5) and (6). If we now 
check the GET_THROUGH progress properties on this system, we obtain the following result: 

Progress violation: GET_THROUGH.1 

Trace to terminal set of states: 

Actions in terminal set: 

{call.1, engaged.1, call.2, connect.2, end.2} 

Clearly, with such a scheduler, PHONE(1) is never connected, because when PHONES is in 
state (0) (see Fig. 2), transition (0, call.2, 1) is always the one selected. Note that, if fair choice 
had not been assumed in the original PHONES system, then both progress properties 
GET_THROUGH.1 and GET_THROUGH.2 would be violated. A counterexample for property 
GET_THROUGH.2 would then be the one obtained for system PRIORITY_PHONES. How-
ever, as discussed, such violations are in general not interesting to the user, since any reason-
able scheduler implements some sort of fairness. For this reason, our approach is based on 
checking progress under fair choice, and then selectively stress-checking the system by apply-
ing action priority.   

4 Formal Framework 

This section formally presents our approach to analysing progress properties. It also introduces 
the notion of action priority, and its role in counterbalancing the effects of fair choice. 

4.1 Labelled Transition Systems 

Let States be the universal set of states, Act be the universal set of observable action labels, and 
Actτ = Act ∪ {τ}, where τ is used to denote an action that is internal to a subsystem, and there-
fore unobservable by its environment. An LTS of a process P is a quadruple 〈S, A, ∆, q〉  where:  

− S ⊆  States is a finite set of states, 
− A = αP ∪ {τ}, where αP ⊆  Act is the communicating alphabet of P, 
− ∆ ⊆  S × A × S, is a transition relation that maps a state and an action onto another state, 
− q ∈  S indicates the initial state of P. 

For an LTS P = 〈S, A, ∆, q〉 , we say that action a∈ A is enabled at a state s∈ S, if ∃  s´∈ S such 
that (s, a, s´)∈∆ . Similarly, we say that a transition (s, a, s´)∈∆  is enabled at a state t∈ S if t=s.         

We call an execution of P an infinite sequence q0a0q1a1… of states qi and actions ai such that 
q0=q and ∀ i≥0, (qi, ai, qi+1) ∈  ∆. A trace of P is a sequence of observable actions that P can 
perform starting from its initial state [14].    

A state r is reachable from a state s in an LTS P= 〈S, A, ∆, q〉 , if ((r = s) or (∃  a∈ A and t∈ S, 
such that (s, a, t) ∈  ∆ and r is reachable from t)). For a state s∈ S, Reachable(s, P) denotes the 
set of states that are reachable from s in P, i.e. Reachable(s, P) ={r∈ S | r is reachable from s in 
P}. An LTS P = 〈S, A, ∆, q〉  transits into an LTS P´ = 〈S, A, ∆, q´ 〉  with an action a ∈  A if 

(q, a, q´) ∈  ∆. That is, 〈S, A, ∆, q〉  → a 〈S, A, ∆, q´ 〉  if (q, a, q´) ∈ ∆.  
A terminal set of states C⊆ S in an LTS P = 〈S, A, ∆, q〉  is a strongly connected component 

with no outgoing transitions i.e. 

• ∀  s ∈  C, C ⊆  Reachable(s, P)), and   
• ∀  s ∈  C, Reachable(s, P) ⊆  C.   

It follows directly from the above definition that C is a terminal set of states in an LTS P if 
∀ s∈ C, Reachable(s, P) = C. 
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4.2 Checking Progress under Fair Choice 

Our progress-checking algorithm is based on the following theorem: 

Terminal Set Theorem – Let P = 〈S, A, ∆, q〉  be a finite-state process that executes under 
“fair choice”. If w is a legal infinite execution of P, then the set of states that appear infinitely 
often in w forms a terminal set of states in P. 

Proof: Let S1 ⊆  S be the set of states that occur infinitely often in w. Since P consists of a finite 
number of states, then S1 is not empty. With fair choice, the fact that states in S1 are repeated 
infinitely often in w implies that all transitions that are enabled at these states also occur infi-
nitely often in w. This means that all states that are reachable from states of S1 in P occur infi-
nitely often in w. We conclude that ∀ s∈ S1, Reachable(s,P) ⊆  S1. It is also straightforward that 
since all states in S1 are repeated infinitely often in w, then every state in S1 is reachable from 
any other state in S1, and therefore ∀ s∈ S1, S1 ⊆  Reachable(s,P). We conclude that ∀ s∈ S1, 
Reachable(s,P) = S1 and therefore S1 is a terminal set of states.   

The Terminal Set Theorem establishes that a fair infinite execution w is obtained by repeating 
infinitely often states in a terminal set of states. As a result, the actions that occur infinitely 
often in w are exactly those actions that are enabled at states in the terminal set. Therefore, a 
property “progress P = {a

1
,a

2
..a

n
}” is satisfied iff for each terminal set of states C in the 

LTS of the system, the following holds: ∃ s∈ C, such that some action a∈ {a
1
,a

2
..a

n
} is en-

abled at s (we say that a is enabled in C). Similarly, a property “progress P = if 
{a

1
,a

2
..a

n
} then {b

1
,b

2
..b

n
}” is satisfied iff in the LTS of the system, there is no termi-

nal set of states where some action in {a
1
,a

2
..a

n
} but no action in {b

1
,b

2
..b

n
} are enabled.    

The algorithm that decides whether a progress property is satisfied is therefore based on the 
computation of the terminal sets of states of a system. Terminal sets are found by computing 
the strongly connected components in the LTS graph and applying the additional criterion that 
no transition exists to a state outside the strongly connected component. Tarjan [15] showed 
that strongly connected components can be computed in linear time. Consequently, the check 
that progress properties hold is efficient. Note that it is only necessary to compute the terminal 
sets once to check any number of progress properties. As diagnostic information in case of 
progress violations, the LTSA tool displays a trace of actions leading to the terminal set to-
gether with the actions enabled in the set (see sample LTSA output above).  

The LTSA performs a default progress check when no progress properties are explicitly 
specified. This consists of checking progress with respect to all actions in the alphabet of the 
system. For a system S, this is equivalent to checking that ∀  a∈α S, progress P

a
={a}. If no 

actions in αS are missing from terminal sets of states in S, then liveness is guaranteed in the 
system, since all actions always eventually occur. However, the liveness guarantee is with 
respect to the assumption of fair choice. We will see in the next section that liveness problems 
related to scheduling only become apparent when the system model is augmented to reflect 
adverse conditions. 

4.3 Action Priority 

The progress checking mechanism proposed is based on the assumption of fair choice, which 
corresponds to strong fairness on the transitions of the global system, i.e., of the LTS obtained 
by the parallel composition of the system processes. This is a strong condition; for example, it 
is stronger than the classic notion of strong fairness with respect to the system processes (this 
notion is explained in section 8). However, even strong fairness is in general too restrictive to 
be practical [16]. In fact, practical schedulers in computing systems do not implement strong 
fairness [17]. This means that some executions that may be exhibited by the system will be 
ignored by the checking mechanism as unfair. To find problems with such executions, we 
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propose a simple action priority scheme that allows the user to stress-test a system by applying 
adverse scheduling conditions. With our scheme, a set of actions in a process is given higher or 
lower priority than the remaining ones in the process alphabet. We introduce the following 
abbreviations: 

P a → to mean that ∃  P´ such that P a → P´   
P ⁄ a →   to mean that ⁄ ∃  P´ such that P a → P´   

The low (high) priority operators >> (<<) take as arguments a process P = 〈S1, A1, ∆1, q1〉  and a 
set of actions K ⊆  Act, and return process P>>K = 〈S1, A1, ∆, q1〉  (P<<K = 〈S1, A1, ∆, q1〉), 
where the semantics for ∆ are given by Rule 1 (Rule 2) below: 

Rule 1: Let a ∈ Actτ. Then:  

KPKP

PP
a

a

>>′ →>>
′→

   if ((a ∉  K) or (∀  b ∈  (A1 – K),  P ⁄ b →  )) 

 
Rule 2: Let a ∈ Actτ. Then: 

KPKP

PP
a

a

<<′ →<<
′→

   if ((a ∈  K) or (∀  b ∈  K,  P ⁄ b →  )) 

Intuitively, P>>K expresses the fact that actions in K have lower priority than the remaining 
actions in αP. As a result, at any state where multiple actions are eligible, actions in K are 
ignored unless it is not possible to execute any action in αP-K instead. In contrast, in P<<K, 
actions in K have high priority, so actions in αP-K are only selected when it is not possible to 
execute some action in K instead.  

Action priority is thus used in our approach to force specific transitions to be taken when a 
choice is possible. Let P be the original system to be checked, and P´ be the result of applying 
action priority to P. Then selected unfair executions of P will correspond to fair executions of 
P´. These unfair executions of P can therefore be checked with our mechanism by checking 
system P´ under fair choice. It should be mentioned that fairness and action priority are only 
applicable in the context of liveness-property checking. Safety analysis is always carried out 
on the original system because, since action priority removes transitions, it may remove erro-
neous system behaviour. This is in lines with our methodology where, as described in section 
7, safety analysis is performed first. 

5   Case Study: Readers/Writers 

To illustrate our approach to progress analysis using action priority, we will use the well-
known Readers/Writers problem. This is concerned with access to a shared database by two 
kinds of processes. Readers execute transactions that examine the database while Writers both 
examine and update the database. For the database to be updated correctly, Writers must have 
exclusive access to the database while they are updating it. If no Writer is accessing the data-
base, any number of Readers may concurrently access it. Access to the database is controlled 
by a read/write lock which processes must acquire before accessing the database. The FSP 
model for such a lock and the processes that acquire and release it, is defined below. 
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const Nread = 2          // Maximum readers 

range R = 1..Nread 

const Nwrite=2           // Maximum writers 

range W = 1..Nwrite 

range ReadR = 0..Nread 

range WriteW = 0..Nwrite 
 
READWRITELOCK = RW[0][False],  

RW[readers:ReadR][writing:Bool] = 

 ( when (!writing)  

           reader[R].acquire -> RW[readers+1][writing] 

| reader[R].release -> RW[readers-1][writing] 

| when (readers==0 && !writing)  

           writer[W].acquire -> RW[readers][True] 

| writer[W].release -> RW[readers][False]). 

 
USER = (acquire -> release -> USER). 

 
||READERS_WRITERS =  

(reader[R]:USER||writer[W]:USER||READWRITELOCK). 

The system consists of the parallel composition of the user processes with the lock. The proc-
ess READWRITELOCK is defined as a choice among a set of guarded actions controlled by the 
variables writing and readers. The action for a reader to acquire a lock is only permitted when 
writing is false indicating that the lock has not been acquired by a writer. The action for a 
writer to acquire the lock is only permitted when the lock has not been acquired for either read 
or write access (readers==0 && !writing).  The LTS generated for the composition READ-
ERS_WRITERS is depicted in Fig. 4.  

 reader.1.acquire 

reader.2.acquire 

writer.1.acquire 

writer.2.acquire 

writer.2.release 

writer.1.release 

reader.1.acquire 

reader.2.release 

reader.1.release 

reader.2.release 

reader.1.release 

reader.2.acquire 

0 1 2 3 4 5 

 

Fig. 4. LTS for READERS_WRITERS 

The progress properties of interest in this system are that writers can always acquire the lock 
and that readers can always acquire the lock: 

progress WRITER = {writer[W].acquire} 

progress READER = {reader[R].acquire} 
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The progress property WRITER is satisfied if any writer in the range W acquires the lock. The 
property READER is satisfied if any reader in the range R acquires the lock. A progress check 
of these properties against the READERS_WRITERS system discovers no violations. 

Now we will examine the behaviour of the system under adverse conditions. For the 
READERS_WRITERS system, these adverse conditions occur when there is always competi-
tion for the lock. This happens when either the lock is requested frequently or the lock is held 
by processes for long periods. To model these conditions, we give release actions for both 
readers and writers low priority. Consequently, in any choice between acquiring and releasing 
the lock, acquiring it will have priority. On the other hand, the same priority is given to the 
acquire actions of readers and writers. This reflects our assumption that the system will be 
running under a scheduler that is not consistently biased against one or the other type of proc-
ess, when both types are interested in acquiring the lock. The system we check thus becomes: 

||RW_PROGRESS = READERS_WRITERS 

>> {reader[R].release, writer[W].release}. 

Progress analysis of this system results in the following violation: 

Progress violation: WRITER 

Trace to terminal set of states: 

 reader.1.acquire 

Actions in terminal set: 

{reader.1.acquire, reader.1.release,  

   reader.2.acquire, reader.2.release} 

This is the writer starvation situation in which writers do not get access because the number of 
readers with read access never drops to zero. In this simple example, the terminal set of states 
{3,4,5} causing the violation can be seen in the LTS of RW_PROGRESS depicted in Fig. 5.  

 reader.1.acquire 

reader.2.acquire 

writer.1.acquire 

writer.2.acquire 

writer.2.release 

writer.1.release 

reader.1.acquire 

reader.1.release 

reader.2.release 

reader.2.acquire 

0 1 2 3 4 5 

 

Fig. 5. LTS for RW_PROGRESS 

The problem of writer starvation can be fixed by making readers defer to waiting writers. To 
detect waiting processes, we modify the definition of USER processes such that they request 
access to the lock before attempting to acquire it: 

USER = (request-> acquire -> release -> USER). 

The revised definition of the lock that uses this information is listed below: 
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READWRITELOCK = RW[0][False][0], 

RW[readers:ReadR][writing:Bool][wwaiting:WriteW] = 

( when (!writing && wwaiting==0)  

      reader[R].acquire  -> RW[readers+1][writing][wwaiting] 

| reader[R].release  -> RW[readers-1][writing][wwaiting] 

| when (readers==0 && !writing)  

      writer[W].acquire  -> RW[readers][True][wwaiting-1] 

| writer[W].release  -> RW[readers][False][wwaiting] 

| writer[W].request  -> RW[readers][writing][wwaiting+1] 

| reader[R].request  -> RW[readers][writing][wwaiting]). 

The new version keeps a count of waiting writers wwaiting. Readers only acquire access if 
there are no writers waiting (!writing && readers<Nread && wwaiting ==0). This new ver-
sion of the lock when checked under the same conditions no longer detects a violation of the 
progress property WRITER. However, it is now possible for readers to starve: 

Progress violation: READER 

Trace to terminal set of states: 

 reader.1.request 

 reader.2.request 

 writer.1.request 

 writer.2.request 

Actions in terminal set: 

     { writer.1.request, writer.1.acquire,                   

   writer.1.release, writer.2.request,   

   writer.2.acquire, writer.2.release} 

The problem of reader starvation can be fixed by introducing a “turn” variable that lets readers 
and writers run alternately when competition exists for the lock, as follows: 

READWRITELOCK = RW[0][False][0][False], 

RW[readers:ReadR][writing:Bool][wwaiting:WriteW][readers_turn:Bool] = 

(when (!writing && (wwaiting==0 || readers_turn))  

      reader[R].acquire  -> RW[readers+1][writing][wwaiting][False] 

|reader[R].release  -> RW[readers-1][writing][wwaiting][readers_turn] 

|when (readers==0 && !writing)  

      writer[W].acquire  -> RW[readers][True][wwaiting-1][True] 

|writer[W].release  -> RW[readers][False][wwaiting][readers_turn] 

|writer[W].request  -> RW[readers][writing][wwaiting+1][readers_turn] 

|reader[R].request  -> RW[readers][writing][wwaiting][readers_turn]). 

The above system satisfies both the READER and WRITER progress properties.  Examples of 
conditional progress properties related to the READERS_WRITERS system are shown below: 

progress WREL[i:W] = if {writer[i].acquire} then {writer[i].release} 

progress RREL[i:R] = if {reader[i].acquire} then {reader[i].release} 

These properties assert for each writer and for each reader that, if they regularly acquire the 
lock, they must also regularly release it. None of these properties is violated by the two ver-
sions of the system presented. 
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6 Checking Progress Properties with Büchi Automata 

As discussed, one of the motivations for our approach to progress and fairness is that the use of 
Büchi automata may exacerbate state explosion. This section explains how this problem oc-
curs, and demonstrates it in terms of the Readers/Writers problem in the context of the LTSA 
and SPIN model checkers. Büchi automata are finite automata on infinite inputs and can, as 
such, be used to specify liveness properties of a system.  

Definition – A Büchi automaton B is a 5-tuple 〈S, A, ∆, q0, F〉 , where S is a finite set of states, 
A⊆  Actτ is a set of actions, ∆ ⊆  S×A×S is a set of transitions on observable actions, q0∈ S is the 
initial state, and F⊆ S is a set of accepting states.    

An execution of B = 〈S, A, ∆, q0, F〉  on an infinite word w=a0a1a2… over A is an infinite se-
quence σ=q0a0q1a1q2..., where (qi, ai, qi+1)∈∆ , ∀ i ≥0. An execution σ is accepting if it contains 
some accepting state of B an infinite number of times. As Büchi automata may be non-
deterministic, there can be several alternative executions of an automaton on a given infinite 
word. An infinite word w is accepted by B if there exists an accepting execution of B on w.  

 

reply 

request 

reply 

request 0 1 

 

Fig. 6. Büchi automaton for property (request ⇒  ◊ reply) 

For example, the automaton illustrated in Fig. 6 accepts all words over {request, reply} which 
satisfy the property (request ⇒  ◊ reply). The accepting state (0) is distinguished by the dou-
ble circle. The automaton accepts any infinite word that can take it through state (0) an infinite 
number of times. Therefore, it will never accept a word which, at some point, contains a re-
quest that is never followed by a reply.  

A Büchi automaton is called empty if it does not accept any word over its alphabet. A Büchi 
automaton is non-empty if at least one cycle in its graph contains some accepting state [8]. 
This can be explained intuitively as follows. For finite-state systems, an infinite execution can 
be obtained by following a path to some state r of some cycle, and then indefinitely following 
the path from r to r defined by the cycle. If the cycle contains some accepting state, then the 
execution is accepting. 

Büchi automata are strictly more expressive than LTL. More specifically, any LTL formula 
can be algorithmically translated into a Büchi automaton that accepts exactly those infinite 
words over its alphabet that satisfy the formula [7]. Based on this fact, a widely used method 
for checking that a finite-state process P satisfies an LTL formula F proceeds as follows: 

1. Build the Büchi automaton for ¬  F. 
2. Build the automaton corresponding to the intersection of the automaton describing the 

program with the automaton obtained for ¬  F.  
3. Check if the automaton obtained in step 2 is empty.  

The first step of the above procedure can be performed algorithmically: an efficient algorithm 
has been proposed by [11]. However, as proven by Gribomont and Wolper in [8], the size of a 
Büchi automaton may increase exponentially as a function of the length of the formula that it 
represents (the length of the formula being the number of literals and operators in it). More-
over, there is no guarantee that the algorithm yields the minimal automaton corresponding to 
the formula. This fact becomes apparent in section 6.2, in the context of SPIN.  
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Step 2 computes the intersection of the system with the automaton generated by step 1. The 
state-space of the intersection of the system with the automaton is equal, in the worst case, to 
the product of their respective state-spaces. Therefore, a property may increase the number of 
the states that need to be explored during verification. In the best case, the resulting state-space 
is zero. This happens when no initial portion of the behaviour accepted by the automaton ap-
pears in the system. However, this best case normally appears when the formula being checked 
is a safety property. For purely liveness properties, it is not possible to decide, after exploring 
some finite initial portion of an execution, that the execution does not satisfy the property. This 
is due to the fact that any arbitrary finite sequence of actions can be extended to an infinite 
sequence satisfying a specific liveness property [18]. In sections 6.1 and 6.2, we show that 
progress properties indeed increase the state-space of a system, when expressed as Büchi 
automata. 

Finally, step 3 can be performed by computing the strongly-connected components in the 
graph of the Büchi automaton generated from step 2, for which there exist efficient algorithms 
(the one in [19] for example is linear to the size of the graph).  

The above approach to verification is adopted in a number of existing methods and tools [8-
10]. In [6], we show how we adapted this basic mechanism to fit our CRA framework. In our 
approach, Büchi automata are introduced as simple components of a system described as a 
hierarchy of components. The intersection of an LTS with a Büchi automaton is computed as a 
parallel composition between LTSs.  

Note that, the use of non-deterministic Büchi automata in checking properties of a system 
restricts the user to check one property at a time. Of course, one could claim that the conjunc-
tion of all the desired properties could be checked as a single property. However, this is not 
recommended, due to the fact that lengthier properties normally result in larger Büchi auto-
mata. This is also demonstrated in section 6.2. Checking properties one at a time introduces the 
following inconvenience: when changes are introduced in a system to correct some part of its 
behaviour that violates a specific property, all properties that have already been checked must 
be checked again, one by one. This is obviously avoided by our progress-checking mechanism, 
since any number of progress properties can be checked simultaneously on the unmodified 
(since no property automata are required) state-space of the system. 

6.1   LTSA 

In this section, we show how properties of the Readers/Writers problem can be checked with 
Büchi automata, in the context of the LTSA tool. LTSA is not yet equipped with an LTL trans-
lator, and therefore the automata used have been generated manually. For example, we used 
automaton WRITER, illustrated at the bottom of Fig. 7, to check progress property WRITER. 
Automata used for verification correspond to negated properties. Therefore automaton 

WRITER expresses the LTL formula (◊ ¬ (writer.1.acquire ∨  writer.2.acquire)).  
As described in [4], we mark accepting states of an automaton with a special transition, 

which we call accepting transition. Such transitions loop from an accepting state to itself, and 
are named by prefixing the name of the automaton by the character @, reserved to denote an 
accepting transition. According to this, state (1) is the accepting state in both automata illus-
trated in Fig. 7. The intersection of an automaton with the system is then computed as an LTS  
parallel composition [6].  

Intuitively, the automaton at the top of Fig. 7 accepts any execution where, at some random 
point, actions write.1.acquire and write.2.acquire never occur again. This random point is 
reflected by state (1), which is an accepting state, and where the automaton may jump non-
deterministically (by performing action τ).  The non-deterministic step is necessary to express 
the fact that this state need only be reached eventually. 
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WRITER

tau

writer.1.acquire

writer.2.acquire

@WRITER0 1

 

WRITER
tau

writer.1.acquire
writer.2.acquire

writer.1.acquire
writer.2.acquire

@WRITER writer.1.acquire
writer.2.acquire

0 1 2

 
Fig. 7. (top) Büchi automaton for property WRITER – (bottom) WRITER made complete  

An automaton is complete if, at every state, all the actions in its alphabet are enabled. In order 
to check the property under fair choice, we need to use a complete version of automaton 
WRITER. The reason is that, with fair choice, we only need to check terminal sets of states in 
the graph of the system. An undefined transition in the Büchi automaton that is composed with 
the system may cause a non-terminal set of states to become terminal. This is illustrated in Fig. 
8, where SYS_WRITER corresponds to the intersection of system SYS, with the automaton 
WRITER at the top of Fig. 7. Although it is obvious that SYS does not violate the desired prop-
erty under fair choice, SYS_WRITER contains a terminal set of states, {1}, where the accepting 
transition is enabled. The misleading violation is due to the fact that the automaton used was 
not complete. 

A Büchi automaton can always be made complete by adding one state. The added state is a 
non-accepting state, and undefined transitions of the initial automaton are made to lead to the 
new state. For example, automaton WRITER at the top of Fig. 7 is transformed into the one at 
the bottom of the same figure. The new state is state (2), and the added transitions are transi-
tions: (1, writer.1.acquire, 2) and (1, writer.2.acquire, 2). 

Using the complete automaton, the system READERS_WRITERS || WRITER consists of 18 
states. This system is larger than the original READERS_WRITERS by 3 times, which corre-
sponds to the size of the Büchi automaton. It is clear that, when complete automata are used 
for verification, the system state-space is always increased as a result of computing its 
intersection with the automaton of interest.  

SYS

reader.1.acquire

reader.2.acquire

writer.1.acquire

writer.2.acquire

0
SYS_WRITER

tau

reader.1.acquire

reader.2.acquire

writer.1.acquire

writer.2.acquire

reader.1.acquire

reader.2.acquire

@WRITER

0 1

Fig. 8. A complete Büchi automaton must be used when fair choice is assumed 

6.2   SPIN 

SPIN [20] performs model checking on-the-fly, which means that it checks the state-space of 
the system while generating it. This is combined with efficient partial-order reduction tech-
niques, as a means of avoiding state-explosion. The advantage of on-the-fly techniques is that 
they can stop at the first error encountered, rather than exploring the entire state-space of a 
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system. These techniques are ideal for early stages of design, which tend to contain many 
errors. However, when a system is correct, such model checkers still need to explore the entire 
state-space. 

In SPIN, liveness properties can be checked under the optional constraint of weak fairness 
with respect to the system processes. Under this constraint, every process that contains at least 
one transition that remains continuously enabled will execute within finite time. Weak fairness 
is implemented using Choueka’s flag construction algorithm [21]. The exploration is then 
performed on n+1 copies of the state-space, where n is the number of processes in the system. 
This means that, theoretically, SPIN’s weak fairness option increases the state-space to be 
explored by n+1 times, in the worst case. Moreover, SPIN’s cycle detection algorithm is based 
on a nested depth-first search, which theoretically also doubles the system state-space. How-
ever, the designers of the tool report that: “ The worst case additional complexity contributed 
by this construction is a multiplication of the CPU time requirements by 2 x (n+1), where n is 
the number of processes in the Promela model. The memory requirements remain largely unaf-
fected, by virtue of the storage technique that is explained in [10] ” (http://cm.bell-
labs.com/cm/cs/what/spin/Man/WhatsNew.html). 

Readers/Writers: Version 1 
The input language of SPIN, Promela, is different in style than FSP. Therefore, the aim of this 
section is not to compare the state-spaces generated by Promela and FSP for the READ-
ERS/WRITERS problem. Rather, we intend to illustrate, in the context of SPIN – one of the 
most efficient LTL model checkers – the problems related with the use of Büchi automata in 
model checking. The Promela models discussed in this section are included in the Appendix. 
We only describe them briefly here – they should in general be straightforward.  

We define two types of processes in Promela, Reader and Writer. The keyword active that 
is prefixed to the proctype definitions, together with the array suffixes [R] and [W], are used to 
specify that [R] processes of type Reader and [W] processes of type Writer are active in the 
initial system state. The Read/Write lock is implemented by means of two global variables: 
readers counts the number of readers currently accessing the database, and writing records 
whether any writer is currently accessing the database. There is no need to have a separate 
process for the Read/Write lock, because these variables can be tested and set with an atomic 
step, as follows: 

 atomic {       /* acquire read */ 

  (!writing && readers <= R) -> readers++; 

 } 

In SPIN, LTL formulas are state-based rather than action-based. To check properties related to 
readers and writers accessing the database, we label the corresponding states in the process 
definitions with labels RD and WT, respectively. In this way, property WRITER is expressed as 

◊a, where a is defined as follows: 

  #define a  (Writer[2]@WT || Writer[3]@WT) 

Note that Writer[i]@WT means that the writer with process id i2 is currently at its local state 
labelled with WT. We use the SPIN LTL translator to automatically translate the property into 
a Promela never-claim, which we include in the specification. 

Initially, we check the Promela specification for the first version of Readers/Writers against 
safety (i.e., assertions and deadlocks). The following result is obtained: 

                                                           
2 These are the process ids assigned to the Writers by Spin. 
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(Spin Version 3.2.4 -- 10 January 1999) 
 + Partial Order Reduction 

Full statespace search for: 
 never-claim          - (not selected) 
 assertion violations + 
 cycle checks        - (disabled by -DSAFETY) 
 invalid endstates + 

State-vector 24 byte, depth reached 12, errors: 0 
      13 states, stored 
      12 states, matched 
      25 transitions (= stored+matched) 
       8 atomic steps 
 
hash conflicts: 0 (resolved) 
(max size 2^19 states) 
2.542  memory usage (Mbyte) 

Verification shows that the system does not violate any safety properties. Note that the never 
claim is not taken into account for checking safety. Therefore, we know that SPIN has ex-
plored the entire state-space, which consists of 13 states. In the discussions that follow, we call 
the state-space of the system in the absence of Büchi automata the original state-space.  

In the second phase, we check progress property WRITER by including its corresponding 
never-claim. We check the property under weak fairness, and obtain the following result: 

State-vector 32 byte, depth reached 168, errors: 1 
      22 states, stored (138 visited) 
      61 states, matched 
     199 transitions (= visited+matched) 
      89 atomic steps 

As expected from our experience using the LTSA, property WRITER is violated. Even though 
the on-the-fly algorithm that SPIN implements stops the graph exploration after detecting an 
error, the explored state-space is larger than the original one. This is due to the added never-
claim. We can also see that states have been visited multiple times (22 states stored, vs. 138 
states visited), due to the weak fairness assumption and the nested depth-first search.  

SPIN additionally supports a more intuitive way of expressing progress properties. This is 
achieved by marking selected states in the specification as progress states. SPIN then checks 
that ◊progress, where progress is true in a system state if at least one of the system processes 
is in a progress state. The way this is performed is by adding to the system a pre-defined Büchi 
automaton for the property.  

To try the SPIN progress-checking approach for property WRITER, we label the states WT of 
writers as “progressWT”, and check the system for progress violations. The following result 
is then obtained: 

Full statespace search for: 
 Never-claim          + 
 assertion violations + (if within scope of claim) 
 non-progress cycles  + (fairness enabled) 
 invalid endstates - (disabled by never-claim) 
 
State-vector 32 byte, depth reached 119, errors: 1 
      13 states, stored (80 visited) 
      31 states, matched 
     111 transitions (= visited+matched) 
      51 atomic steps 

An error is now found after 13 states. The state-space is therefore still larger than the original 
one, since 13 states now correspond to part of the state-space. However, it is smaller than the 
state-space obtained previously. The reason is that the pre-defined automaton used for progress 
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properties has fewer states than the one generated automatically by the LTL translator. This 
confirms the fact that automatic algorithms do not normally generate the minimal automaton 
for LTL formulas. The following versions of the Readers/Writers problem therefore use the 
SPIN progress mechanism to check progress properties. 

Note that unlike our approach, SPIN’s progress mechanism can deal neither with the con-
junction of a number of progress properties, nor with conditional progress. For example, it 
cannot check if at least one progress state from each component process must occur infinitely 
often in the executions of a system. A conjunction of progress conditions can be dealt with by 
changing the progress labels in the system and repeating verification, whereas conditional 
progress can only be checked by using the standard LTL checking mechanism.  

Version 2 
To correct the liveness property violation of version 1, we make readers defer to waiting writ-
ers, and additionally use variable readers_turn that lets readers and writers run alternately 
when competition exists for the lock. The Promela model is the second one included in the 
appendices. By checking the model against safety properties, we find that the original state-
space consists of 52 states. The results obtained when checking liveness are illustrated below: 

State-vector 32 byte, depth reached 51, errors: 0 
     102 states, stored (250 visited) 
     418 states, matched 
     668 transitions (= visited+matched) 
     286 atomic steps 

We can see that the original state-space has increased by almost 2 times, which corresponds to 
the size of the pre-defined Büchi automaton used to express progress. Additionally, we check 
property READERS, by removing the prefix progress from label progressWT, and turning label 
RD into progressRD. As mentioned, the SPIN progress mechanism cannot deal with the con-
junction of progress properties, so they have to be checked one at a time. 

In this case, the verifier detects a violation after exploring just 29 states. Note that the LTSA 
reported no error for this version of the Readers/Writers model. By performing a guided simu-
lation based on the counterexample produced, we find how the error may occur; in states 
where the lock is free and is required by both types of processes, it is possible for the scheduler 
to consistently grant the lock to a writer. This happens despite the weak fairness assumption, 
because as soon as a writer is granted access, the reader process is no longer enabled. There-
fore, as it is not continuously enabled, the fairness condition need not force it to execute within 
finite time.  

This situation can also be detected with the LTSA, by giving the writers’ requests and ac-
quires high priority. However, as discussed, we consciously chose to give low priority to re-
lease actions, as we assumed that a practical scheduler would not permit situations such as the 
one above. We can see that our priority scheme gives us the flexibility in trying the system 
under different and possibly gradually increasing stress conditions. 

Version 3 
Our third Promela model makes the conditions under which readers and writers acquire the 
lock symmetrical. This version satisfies both progress properties, under the weak fairness as-
sumption. The original state-space consists of 164 states, as opposed to a state-space of 326 
states that is explored for checking progress. We have also experimented with checking the 
conjunction of properties READERS and WRITERS. We have thus included the never claim 
corresponding to property ◊a ∧  ◊b, where a and b are defined as follows: 

 #define a (Reader[0]@RD || Reader[1]@RD) 

 #define b (Writer[2]@WT || Writer[3]@WT) 
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The state-space then goes up to 935 states. It is therefore clear that, when using Büchi auto-
mata, it is worth checking properties one at a time, rather than checking their conjunction.  

6.3   Fairness 

With an LTL model checker, a system can be checked against an LTL property f under an LTL 
fairness constraint c, by checking the LTL property (c ⇒  f). Therefore, any LTL model 
checker can incorporate fairness directly. The increase in the length of the formula to be 
checked may result in a non-negligible increase of the size of the automaton generated for it 
(the size may be exponential to the length of the formula). 

Alternatively, fairness constraints can be expressed directly as Büchi automata. In that case, 
the intersection of the system with these constraints and with the property of interest is com-
puted, and the resulting automaton is again checked for emptiness. Note that this intersection 
results in a generalised Büchi automaton, which is defined differently than standard Büchi 
automata. It is not the aim of this paper to analyse this mechanism; the interested reader is 
referred to [8] for details. Again, each fairness automaton of size n introduced in the system 
may increase the state-space by n times, in the worst case.  

In general, capturing fairness assumptions by means of automata may increase the state-
space. Again, fairness properties express purely liveness constraints on the executions of the 
system, and would therefore not be expected to reduce the system state-space. Moreover, fair-
ness assumptions are not easy to express in LTL, which is another factor that may discourage 
non-expert users from using tools that are based on this approach. This is particularly the case 
for generic fairness assumptions such as weak or strong fairness. In general, we believe that it 
is useful to provide the users with a pre-defined optional fairness assumption. This is taken into 
account both in SPIN and LTSA, as already discussed. 

The difference in the fairness assumptions supported by the two tools is largely determined 
by the difference in analysis approaches. SPIN uses an on-the-fly approach to analysis, which 
preserves information about states and actions of individual processes, whereas we use CRA, 
where this information is not preserved under composition. Therefore, we found that the notion 
of fairness with respect to transitions in the global system fits more naturally with our frame-
work. As mentioned, SPIN’s weak fairness option theoretically increases the state-space to be 
explored by n+1 times, in the worst case, where n is the number of processes in the system. Far 
from introducing any overhead, fair choice is incorporated very naturally in all our liveness-
checking mechanisms, whether related to progress properties, or to properties expressed as 
Büchi automata [6]. 

SPIN’s weak fairness constraint is a reasonable minimal assumption in the context of most 
applications. However, it is often the case that additional constraints need to be imposed in 
order to express stronger assumptions on a system’s scheduler, in which case the standard LTL 
approach has to be applied. Rather than starting in a conservative way, with minimal assump-
tions about a system’s scheduler, our approach starts from constraining the scheduler with a 
strong assumption, and then gradually stresses the system as required. A justification for this is 
that we prefer to initially avoid misleading property violations, at the risk of missing problems 
that may occur in practice. These problems can be uncovered gradually, by imposing adverse 
scheduling conditions by means of action priority.  

6.4   Conclusion 

This section briefly summarises the issues illustrated by our case study. It is clear that Büchi 
automata, although very expressive, impose an overhead on verification algorithms both in 
terms of space and time (the former being of course a greater concern in model checking). 
Progress properties, although less expressive, present a clear, intuitive meaning to users, be-
sides avoiding the above disadvantages. Moreover, several such properties can be checked 
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during a single exploration of the state-space. When Büchi automata are used, it is recom-
mended to check one property at a time, rather than the conjunction of these properties.  

The algorithms applied in checking progress properties can operate on the fly, in order to 
avoid checking the entire state-space when an error is detected. Our experience with SPIN has 
shown that on-the-fly techniques may considerably reduce the state-space to be explored, in 
the presence of errors. In the context of CRA, on-the-fly mechanisms may be used at the last 
level of composition, where the state-space of the global system is computed based on that of 
its immediate sub-components.   

We have also seen that, imposing action priority on a system checked under fair choice of-
fers flexibility in expressing a variety of assumptions on the scheduler of a system. In general, 
it is expected that the users will use action priority to gradually increase the stress under which 
the system is checked. Rather than as a burden to users, we view this as adding power to the 
tool, with a mechanism that is easy to understand and handle.  

7   Experience and Applications 

Our experience so far in analysing architectural models leads us to believe that progress prop-
erties are sufficiently expressive to allow many liveness properties, of interest at the software 
architecture level, to be verified. This also coincides with the experience of others. In their 
work on patterns in property specifications [12], Dwyer et. al report that the most common 
property pattern is Response, described in LTL as (a⇒◊ b). Our progress and conditional 
progress schemes cover a wide range of properties that fall in this category. For example, for 
a=true, (a⇒◊ b) becomes ◊b, which corresponds to a progress property. Additionally, 
checking the conditional progress property “progress Response = if {a} then {b}” 
guarantees that (a⇒◊ b) holds in all executions where a occurs infinitely often, i.e. in execu-
tions where ◊a holds. This is formulated in the following theorem: 

Conditional Progress Theorem – The LTL formula A = ( ◊a ⇒  (a ⇒  ◊b)) is equivalent to 
the LTL formula B = ( ◊a ⇒  ◊b), which can be expressed as a conditional progress property. 

Proof:  
If. We first prove that A ⇒  B, by proving that ¬B ⇒  ¬A.  
Assume that ¬ B = ◊a ∧  ¬  ◊b is true, which means that both ◊a and ¬ ◊b are true. This 
implies that ∃  time instant ti where a is true and ◊b is false. Therefore, at time instant ti, 
(a⇒◊ b) is false, which implies that ( a ⇒  ◊b) is also false. We have that: 

¬ B ⇒  ( ◊a ∧  ¬ (a ⇒  ◊b)) (1)  
¬ A = ( ◊a ∧  ¬ (a ⇒  ◊b)) (2) 

From (1) and (2) we conclude that ¬B ⇒  ¬A. 

Only if. We prove that B ⇒  A. It is straightforward to show that ◊b ⇒  (a ⇒  ◊b), by the fact 
that (a ⇒  ◊b) = (¬ a ∨  ◊b). So we have that: 

 B = ◊a ⇒  ◊b  (1) 
 ◊b ⇒  (a ⇒  ◊b) (2) 

From (1) and (2) we conclude that ( ◊a ⇒  ◊b) ⇒  ( ◊a ⇒  (a ⇒  ◊b)). Therefore B ⇒  A.  

In many cases, one wishes to check that a system satisfies a response property (a ⇒  ◊b), on 
condition that the triggering action a occurs regularly in the execution. For example, the user 
might accept the fact that a client may never receive a reply to its last request before crashing. 
The conditional progress theorem shows that, in those cases, it suffices to simply check the 
corresponding conditional progress property ◊a ∧  ¬  ◊b. This property will indeed accept by 
default all executions where ◊a does not hold. However, on executions where it does, it will 
check that b also occurs infinitely often.  
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Now consider the case where a process P remains blocked waiting for b after performing a. 
Such situations are not detected by property ( ◊a ⇒  ◊b). However, the user may then addi-
tionally check progress property ◊αP, where αP is the alphabet of process P. The latter prop-
erty checks whether it is possible for a process P to remain permanently blocked after some 
point. For instance, let us return to the initial PHONES system of section 2, and substitute 
PHONE(2) with a “call_waiting” phone which, when the line is engaged, simply waits to be 
connected: 

 

CW_PHONE(Id = 0) = (call[Id] ->  

                       ( connect[Id] -> end[Id] -> CW_PHONE 

                       | engaged[Id] -> WAIT)), 

WAIT = (connect[Id] -> CW_PHONE). 

 

|| CW_PHONES = ( forall [i:1..Phones-1] PHONE(i) 

    || CW_PHONE(Phones) || SWITCH). 

In this system, one can check the following combination of progress properties: 

progress GET_THROUGH[i:1..Phones] = if {call[i]} then {connect[i]} 

progress BLOCKED[i:1..Phones] = {call[i],connect[i],end[i],engaged[i]} 

The following violation is then reported: 

Progress violation: BLOCKED.2 

Trace to terminal set of states: 

 call.1 

 connect.1 

 call.2 

 engaged.2 

Actions in terminal set: 

{call.1, connect.1, end.1} 

We can see that, although the conditional progress property GET_THROUGH is satisfied, 
PHONE(2) may block as a result of an incompatibility between its call-waiting behaviour, and 
the behaviour of the switch. We believe that in general, by combining simple and conditional 
properties, developers can avoid the use of the general response pattern, in most cases of inter-
est.  

In some circumstances, a response pattern  (a⇒◊ b) may need to be made stricter by re-
quiring that exactly one b action corresponds to each a action. For example, a client server 
system may need to ensure that exactly one reply is produced for each client request. This is a 
combination of a progress and a safety property. The progress property simply expresses that 

(request⇒◊ reply). The safety property requires that requests and replies alternate themselves, 
without forcing the actual occurrence of either of these actions. Our approach to modelling and 
analysing safety properties is described in [5]. In general, our analysis methodology separates 
the phases of safety and liveness analysis. This is due to the fact that specialised and efficient 
algorithms have been developed for each type of property. However, it also reflects the differ-
ent concerns of the user at each one of these phases [6]. For example, it is critical to first en-
sure that a system never enters an unsafe state, before finding out whether specific good events 
eventually happen. Note that any property that can be expressed as a Büchi automaton can be 
separated algorithmically into a pure liveness and a pure safety property [22]. 

We have applied our approach to a number of case studies. For example, on a model of an 
Active Badge System with 566,820 states and 2,428,488 transitions [2], we showed that badge 
commands are not acknowledged if badges move between locations too frequently.  

The combination of progress checks and action priority also provides an elegant way of 
dealing with models that incorporate a notion of discrete time. The passing of time is modelled 
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as a global tick action [23]. Then for a closed system, the maximal progress condition that is 
usually assumed for discrete time models is ensured by making the tick action low priority: 
“>> {tick}”. We consider a system as closed, when the interesting part of the behaviour of 
its environment has been included in the model, and therefore the system is not expected to 
interact with components that are not part of it. In this case, all actions in the system can be 
considered as internal, and therefore they are urgent with respect to the passage of time. Addi-
tionally, the fact that a system is free of both zeno behaviours, and of time deadlocks, can be 
demonstrated by asserting the progress property: “progress NoZeno_NoDeadlock = 

{tick}”.  
We have used these principles in a number of small case studies [13]. We have also used 

them to construct and check a discrete time model for a Bounded Retransmission Protocol used 
in one of Philips’ products. This is a standard industrial case study used to demonstrate the 
strength of verification techniques in handling real-time systems. We have managed to prove 
the correctness of this protocol with respect to both safety, and liveness properties. Moreover, 
our technique has helped us to establish the minimum timeout values that guarantee correct-
ness of the protocol. Our experience is described in detail in [24].  

8   Related Work 

Progress. Manna and Pnueli classify properties of programs into a hierarchy, where each class 
is characterised by a canonical temporal formula scheme [18]. They associate the term pro-
gress with several classes of this hierarchy. These formulas do not always correspond to live-
ness properties in the safety/liveness classification. Their work gives a detailed description of 
the differences between the two classifications. In fact, our progress properties are a subclass 
of the properties referred to in [18] as response. The notion of progress also appears in Unity 
[25], where selected types of formulas are handled, and classified as safety and progress. Their 

progress properties correspond to LTL properties of the type (a⇒ ◊b) (leads to) and aUb 
(ensures), where U denotes strong until. 

As mentioned, SPIN [26] uses the notion of progress in a similar context to ours. Our ap-
proach differs significantly from that of SPIN both in terms of expressiveness, and algorithmi-
cally, as discussed in section 6.  

Fairness. The issue of fairness has been extensively investigated. Lehmann et al. introduced 
three notions of fairness that are useful in practice [27]. An infinite execution is uncondition-
ally fair if every transition is taken infinitely often, strongly fair if for every transition, if it is 
enabled infinitely often it is executed infinitely often, and weakly fair if for every transition, if 
it is enabled continuously from some point on, it is taken infinitely often. The term transition 
can be substituted by process or action to obtain the same fairness conditions with respect to 
processes [28] or actions [29]. Weak, strong, and unconditional fairness are also referred to as 
justice, fairness (or compassion) and impartiality. Based on these definitions, our assumption 
of fair choice corresponds to strong fairness with respect to the transitions in the global system. 
Different notions of fairness are appropriate for different system models. Apt et al. [30] pre-
sent some criteria of effectiveness and utility of adopting some notion of fairness in a computa-
tional model.  

Queille and Sifakis [16] stress the importance of defining fairness with respect to specific 
actions or predicates of the system, which they call relative fairness. Natarajan and Cleaveland 
[31] take such an approach, and propose a notion of weak fairness with respect to success, in 
order to determine when a process passes a test. The framework presented by Manna and 
Pnueli [18] supports the specification of weak and strong fairness with respect to specific sys-
tem transitions. 
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An interesting approach to fairness in a compositional setting is the one associated with I/O 
automata [32]. An I/O automaton definition includes a “task partition”, i.e. a partition on its 
locally controlled actions. The fairness assumption made on such automata is then weak fair-
ness with respect to each equivalence class in the task partition. In other words, fairness states 
that, for each equivalence class C, a fair infinite execution of an I/O automaton contains infi-
nitely many actions from C, or infinitely many states in which no action in C is enabled. Weak 
fairness with respect to the component processes of a system can then be expressed by having 
the alphabet of each process constitute an equivalence class in the task partition of the system 
I/O automaton.   

A way of dealing with fairness in model checking is to add Büchi acceptance conditions to 
the system. For example in [9], all components of the system are Büchi automata, and there-
fore only executions that are acceptable by the product Büchi automaton are checked for cor-
rectness. Gribomont and Wolper [8] describe how a Büchi automaton can be used to express a 
fair process scheduler. The branching logic CTL cannot express the fact that properties are 
required to hold only along fair executions. For this reason in [28], Clarke et al extend their 
model with a set of state predicates, and define fair paths as paths where each one of these 
predicates holds infinitely often. This is equivalent to turning the model of the system into a 
generalised Büchi automaton. In this framework, they describe how to express weak and un-
conditional fairness with respect to processes. Their proposed mechanism requires the user to 
modify the initial model of the system. More recent work by Clarke et al [33] reports that 
fairness constraints are expressed as CTL formulas that must hold infinitely often along any 
fair path. Their symbolic model-checking algorithms take fairness into account. Finally, in 
Unity [25], the notion of fairness requires that every statement is selected infinitely often in 
any infinite execution.  

Priority. Priority has been introduced as a means of assigning more importance to some ac-
tions than others. Examples of actions that require special treatment are interrupts and time-
outs. In [34], Phillips performs a study and comparison between various approaches to intro-
ducing priority in process algebra. Relative vs. absolute and conditional vs. exclusive forms of 
priority appear in the literature. Recently, dynamic priority has also been proposed in the con-
text of real-time systems [35]. In our approach, priority is not used as a modelling operator. 
Rather, it is simply used as a way of eliminating transitions, and obtaining system executions 
that would otherwise be considered unfair. Therefore, we do not need to consider whether the 
semantic equivalence of our model remains a congruence with the introduction of a priority 
scheme. As a result, we have taken a very simple approach to priority, similar to the initial one 
proposed by Cleaveland and Hennessy in [36]. 

9   Discussion and Conclusion 

The work presented in this paper was motivated by a desire to achieve a balance between ex-
pressive power, accessibility and efficiency of analysis methods. As demonstrated in this pa-
per, despite their expressive power, Büchi automata may exacerbate the state explosion prob-
lem. Moreover, they are not easy to specify without the use of an automated tool [20]. In gen-
eral, this approach to verification is appropriate for experienced users of an analysis tool, that 
can use effectively a formalism like LTL or Büchi automata to specify properties or fairness 
assumptions of the system. The effort of using such a mechanism should only be required by 
the user if no simpler method is available for performing the specific analysis of interest.  

In general, methods should require minimal effort before engineers start realising the bene-
fits from their use [37]. The progress checking mechanism that we propose provides a way of 
checking liveness in a system, which is easily accessible by non-experts. Although less expres-
sive than LTL and Büchi automata, progress properties can be specified in a simple intuitive 
way, and can be checked on the unmodified LTS of the system. In the context of CRA, pro-
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gress properties are specified independently of the processes and composite subsystems that 
form a system. Consequently, they can be applied meaningfully to a subsystem as well as to 
the composite system as long as the subsystem contains the progress actions in its alphabet. A 
single traversal of the LTS of a system is sufficient to check any number of progress proper-
ties.  

In our framework, progress and safety properties can be combined efficiently, and checked 
simultaneously. Therefore, users need to revert to LTL model checking only for specific 
classes of liveness properties. Our experience and that of others in analysing architectural 
models leads us to believe that progress properties are sufficiently expressive to allow many 
liveness properties, of interest at the software architecture level, to be verified. Additionally, 
the combination of progress checks and action priority provides an elegant way of dealing with 
models that incorporate a notion of discrete time.  

In the context of liveness property checking, the possibility of including a notion of fairness 
is essential. Moreover, as argued in earlier sections, it is important for a tool to provide a pre-
defined optional fairness assumption, that could be easily applied by users who don’t have the 
expertise to express such assumptions explicitly. We have taken a non-conservative approach 
to the issue, which imposes a strong constraint on the scheduler of a system. This simplifies the 
liveness-checking mechanisms, and avoids imposing any additional time or space overheads to 
them. In general, we believe that, rather than checking liveness with no or very weak fairness 
constraints and obtaining misleading violations, it is preferable from the developer’s point of 
view to get only realistic results from the tool, even at the risk of missing problems that may 
occur in practice. 

The advantage of action priority is that it is simple to model, and the LTS of the system is 
automatically updated accordingly. The user can therefore easily experiment with checking 
various instances of the system behaviour, by applying different priorities to it. As a result, the 
coverage of the checking mechanism under fair choice can be increased. This process is guided 
by users, who may enforce adverse scheduling conditions based on their intuition about vul-
nerable parts of the system behaviour. 

We found that the notion of fairness with respect to transitions fits more naturally with our 
framework. In the context of CRA, it is not easy to apply fairness with respect to processes of 
the system, because the LTS of a composite system does not retain information about which 
processes it consists of. In CRA, action priority is applied to produce subsystem versions 
solely for checking progress at the subsystem level. These “test” subsystems are not used in 
constructing composite behaviours, since the application of action priority removes parts of 
system behaviour. In our implementation, action priority is applied during the construction of a 
composite LTS from component processes. Therefore, action priority can also be used for 
performing partial searches on systems that are too large for exhaustive exploration. In these 
cases, action priority provides a way of selecting interesting behaviours for analysis. The cur-
rent priority scheme allows only coarse-grained control of scheduling. To refine this control, 
we plan to investigate the use of more powerful priority schemes, such as relative and dynamic 
action priorities. 
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APPENDIX  

/* first SPIN program: plain Readers/Writers */ 
 
#define R 2 
#define W 2 
#define a  (Writer[2]@WT || Writer[3]@WT) 
 
byte readers = 0; 
bool writing = false; 
 
 
active [R] proctype Reader ( ) { 
 do  :: 
 atomic {       /* acquire read */ 
  (!writing && readers<=R) -> readers++; 
 } 
RD: assert (!writing);  /* now reading */ 
 readers--;  /* release read */ 
 od 
} 
 
active [W] proctype Writer ( ) { 
 do  :: 
 atomic {       /* acquire write */ 
  (!writing && readers==0) -> writing = true; 
 } 
WT: assert (readers==0); /* now writing */ 
 writing = false;  /* release write */ 
 od 
} 
 
never {    /*  !([]  <>  a)  */ 
T0_init: 
 if 
 :: (! ((a))) -> goto accept_S2 
 :: (1) -> goto T0_init 
 fi; 
accept_S2: 
 if 
 :: (! ((a))) -> goto T0_S2 
 fi; 
T0_S2: 
 if 
 :: (! ((a))) -> goto accept_S2 
 fi; 
accept_all: 
 skip 
} 
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/* second SPIN program: using readers_turn variable, version 1 */ 

#define R 2 
#define W 2 
 
byte readers = 0; 
bool writing = false; 
byte wwaiting = 0; 
bool readers_turn = true; 
 
 
active [R] proctype Reader ( ) { 
 do  :: 
 atomic {       /* acquire read */ 
  ((!writing && readers<=R) &&  
        (wwaiting==0 || readers_turn))  
   -> readers++; readers_turn = false;  
 } 
RD: assert (!writing); 
 readers--;  /* release read */ 
 od 
} 
 
active [W] proctype Writer ( ) { 
    do  :: 
    wwaiting++; 
    atomic {       /* acquire write */ 
      (!writing && readers==0) 
      -> writing = true; readers_turn = true; 
    } 
progressWT:    wwaiting--;   /* writing */ 
     assert (readers==0);  
    writing = false;  /* release write */ 
    od 
} 
 
/* In order to check property READER, label RD is turned into label 
progressRD, and label progressWT is turned into WT */ 
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/* third SPIN program: using readers_turn variable, version 2 */ 

 
#define R 2 
#define W 2 
 
byte readers = 0; 
bool writing = false; 
byte rwaiting = 0; 
byte wwaiting = 0; 
bool readers_turn = true; 
 
 
active [R] proctype Reader ( ) { 
 do  :: 
 rwaiting++; 
 atomic {       /* acquire read */ 
  ((!writing && readers<=R) &&  
        (wwaiting==0 || readers_turn))  
   -> readers++; readers_turn = false;  
 } 
RD: rwaiting--;   /* reading */ 
 assert (!writing); 
 readers--;  /* release read */ 
 od 
} 
 
active [W] proctype Writer ( ) { 
 do  :: 
 wwaiting++; 
 atomic {       /* acquire write */ 
  ((!writing && readers==0) &&  
        (rwaiting==0 || !readers_turn)) 
   -> writing = true; readers_turn = true; 
 } 
WT: wwaiting--;   /* writing */ 
 assert (readers==0);  
 writing = false;  /* release write */ 
 od 
} 
 


