
Advances in Design and Implementation of

Optimization Software

Istv�an Maros and Mohammad Haroon Khaliq

Imperial College, London

Email: i.maros@ic.ac.uk, mhk@doc.ic.ac.uk

Departmental Technical Report 2000/11

ISSN 1469{4174

Abstract

Developing optimization software that is capable of solving large and complex

real-life problems is a huge e�ort. It is based on a deep knowledge of four areas:

theory of optimization algorithms, relevant results of computer science, principles

of software engineering, and computer technology. The paper highlights the diverse

requirements of optimization software and introduces the ingredients needed to ful-

�l them. After a review of the hardware/software environment it gives a survey

of computationally successful techniques for continuous optimization. It also out-

lines the perspective o�ered by parallel computing, and stresses the importance of

optimization modeling systems. The inclusion of many references is intended to

both give due credit to results in the �eld of optimization software and help readers

obtain more detailed information on issues of interest.

Keywords: Large scale optimization, optimization software, implementation

technology.

1

Maros, Khaliq Optimization Software

1 Introduction

The importance of optimization is growing steadily. In addition to the well-established

applications, such as in the petrochemical industry, transport or manufacturing, we are

witnessing a rapid escalation of optimization into new areas like medical image processing

or �nancial engineering. The newly emerging problems are increasingly large, complex

and diÆcult to solve.

In the early days of optimization it became clear that the straightforward implemen-

tation (coding) of a theoretically favorable algorithm may not perform properly. This has

triggered research into the intricacies of what makes an optimizer good that is capable of

solving diverse real-life problems.

Developing serious optimization software is a huge e�ort. It requires deep knowledge

in several areas (see section 3). At the beginning, such a work was done as part of

academic life and the results were available to the scienti�c community (e.g. simplex solver

XMP [60], nonlinear and simplex solver MINOS [65], and interior point solver OB1 [48]).

However, soon it turned out that it is a big business to develop and market high quality

optimization software. A couple of competing systems have appeared, developed by people

with roots in academia. As a `result' key algorithmic details have become mostly secret

with little published. In many cases it was unknown to the public whether an improvement

in the performance of a system was a result of a certain, but not closely speci�ed, new

algorithmic element, better coding or something else.

Currently, academic optimization software is catching up with, and temporarily may

even supersede, the performance of commercial systems. However, this approach is just

asymmetric since the academic results are readily available to commercial developers but

not vice versa.

Still there are some important developments that have been published by researchers

and they have contributed substantially to the understanding of what is required for good

optimization software. Apparently, there is a growing interest in the mathematical pro-

gramming community for the subject. This fact has motivated the preparation of this

paper. The diverse nature of optimization makes it impossible to overview everything es-

2

Maros, Khaliq Optimization Software

sential that has happened. Therefore, the paper concentrates on some important common

features of optimization software.

The pioneering work in this area was done by W. Orchard-Hays in his book Advanced

Linear-Programming Computing Techniques [66] in 1968. This was the �rst time when

issues of building an optimization system were addressed explicitly. Since then the publi-

cation of details of implementation has become accepted in scienti�c literature. Also an

important event was a NATO ASI School on Design and Implementation of Optimization

Software in 1977. The proceedings edited by H.J. Greenberg [36] (published in 1978) is

a rich source of papers re
ecting the state-of-the-art of that time. Further developments

came to light at the International Workshop on Advances in Linear Optimization and

Software, Pisa, 1980. Since then there have been several meetings on similar topics.

As the theory and solution algorithms of optimization have evolved a number of publi-

cations have appeared discussing di�erent questions of computational optimization. Scant

few of them also addressed directly issues of implementation. Within the limitations of

this paper it is impossible to provide a comprehensive bibliography of all papers that

have some relevance to optimization software. A restricted list of papers dealing with

implementation is [3, 5, 7, 9, 23, 25, 26, 29, 32, 35, 43, 49,62, 63, 73].

To give a little idea of what the magnitudes of the development are, we recall that in

1969 the program library of the Wang desktop computers (forerunners of the current PCs)

included the simplex method which was 30 lines of code (including input/output) written

in Basic. It was a logically correct translation of the rules of the full tableau version

of the simplex method. It could solve the supplied 5 � 6 test problem, but not much

more. During testing it failed even on smaller (non-pathological) problems. Nowadays

the simplex part of modern optimization systems consists of 10�40,000 lines of code in

some high level language (Fortran or C/C++).

Why is there such an enormous di�erence? How much more do the new systems

`know'? How is that achieved? Here we attempt to outline some answers to these ques-

tions in the case of continuous optimization. Integer programming (IP) solvers use con-

tinuous algorithms as the main computational engine. Details of strategic techniques of

3

Maros, Khaliq Optimization Software

IP are beyond the scope of the paper.

The organization of the rest of the paper is as follows. In section 2 we provide a

brief overview of some characteristics of optimization systems. Section 3 discusses the

requirements of optimization software. In section 4 we give a survey of the most important

hardware and software features that have relevance to optimization algorithms. This

section discusses details that are not widely considered in the mathematical programming

community though they have a strong impact on the quality of optimization software.

Some computationally successful techniques are overviewed in section 5. The role of

modeling systems is brie
y discussed in section 6. In section 7 we outline the perspectives

o�ered by parallel computing and, �nally, section 8 presents some concluding remarks.

2 Characteristics of optimization systems

The ultimate goal of developing (new) optimization algorithms is to solve real-life prob-

lems. These problems can be deterministic or stochastic, linear or nonlinear, continuous

or discrete. Though most of them require di�erent solution algorithms there are some

common elements in them that make it possible (and reasonable) to combine several

methods into one system.

It is typical that the algorithms do linear algebra on vectors and matrices. These

entities tend to be sparse, i.e. the ratio of the number of nonzero entries to the total

possible entries is very small, usually 0:01% � 1%. As such, for computational purposes

the number of nonzeros (z) is an important third parameter in describing the size of a

sparse problem in addition to the number of rows (m) and columns (n). The size of the

matrix of a linear programming (LP) problem can, for instance, be described as 16,000

rows, 25,000 columns and 150,000 nonzeros.

It is the low density (or sparsity) that makes it possible to solve huge problems even on

desktop personal computers (PCs). Utilizing sparsity is a major feature of optimization

software. For example, the explicit inverse of a 10,000�10,000 basis in the simplex method

with 50,000 nonzeros can be fully dense with 100,000,000 nonzeros requiring 800MB of

main memory just to store it which is prohibitively large. With sparse storage and an ap-

4

Maros, Khaliq Optimization Software

propriately chosen equivalent form of the inverse we can expect less than 150,000 nonzeros

to represent the inverse which is easy to handle even on a low speci�cation PC.

Only the nonzero coeÆcients of a problem need to be stored. There are di�erent ways

of storing sparse problems as discussed in section 5.1. During solution, transformations are

performed on the vectors and matrices generating new nonzeros (�ll-in). The �ll-in can

be so dramatic that the storage of the intermediate matrices (and operations with them)

may become impossible. This has triggered research for �nding algorithms or algorithmic

equivalents that reduce the growth of nonzeros and have some other favorable features.

Section 5.2 gives some more details of this e�ort.

An important feature of professional optimization systems is algorithmic richness. In

the �rst place, it means that they are able to solve a variety of optimization problems,

like linear, quadratic, mixed integer, or network programming. Additionally, for a given

problem (e.g. LP) they have several solution algorithms incorporated (e.g. primal and dual

simplex and an interior point method for LP), and even within a principal algorithm (e.g.

primal simplex) there are several alternatives available for the main algorithmic steps (e.g.

choosing the incoming variable|also known as �nding the search direction). The aim of

this richness is to enable the `tuning' of the solution algorithm so that it can solve any

actual problem in the best possible way. Criteria for the best possible way are discussed

in section 3.

A high degree of comprehensiveness is a typical characteristic of professional optimiza-

tion software. Academic optimization systems usually concentrate on fewer algorithmic

options and are designed to enable deeper testing of new algorithmic ideas. An excellent

collection of academic optimization software, which is freely available for academic users,

can be found in [64].

3 Requirements of optimization software

As the development of optimization software is a major e�ort it is reasonable to expect

that the codes possess some desirable properties. The most important ones can brie
y be

summarized as follows.

5

Maros, Khaliq Optimization Software

Robustness: A wide range of problems can be solved successfully. If the attempt is un-

successful a meaningful answer is returned (e.g. unrecoverable numerical troubles).

Robustness implies reliability and accuracy.

EÆciency: In simple terms, eÆciency means execution speed. A fast algorithm imple-

mented with code optimized by good design and pro�ling permits a solution to be

obtained quickly.

Capacity: Large (size includes the number of nonzeros) and diÆcult (e.g. mixed integer)

problems can be solved on a given computer con�guration.

Portability: The system can be used on di�erent hardware and software platforms. Bi-

nary portability can be achieved if the same or a similar hardware/software combi-

nation is used. Source level portability is easier to achieve and can be done by using

some of the standard high level languages that are available on nearly all types of

computers (independent of hardware and operating system).

Memory scalability: The system can adjust to the size of the main memory and operate

reasonably eÆciently if at least a minimum amount of memory is available. At the

same time, it can adapt well if more memory is allocated. (The system is not

critically memory-hungry.)

Modularity: The implementation is divided into data structures, functions, and transla-

tion units according to a design that is both intuitive and adheres to good software

engineering practice.

Extensibility: The code permits both the simple addition of new features internally to

the product and the straightforward integration of that product as a building block

for other code.

Code stability: The behaviour of the optimization system code is well-de�ned even in an

error situation. At the least, the system will not leak resources under an exception

condition, and should attempt to continue running safely and meaningfully.

6

Maros, Khaliq Optimization Software

Maintainability: The impact of changes or additions to the code should be minimal.

Source code is well annotated.

User friendliness: Sometimes also referred to as ease of use. This soft notion has several

interpretations and has di�erent meanings for a beginner and an advanced user.

Under this heading the availability of a stand-alone and callable subroutine version

is also understood.

To satisfy these requirements deep knowledge of four areas is imperative: theoretical

background of optimization algorithms, relevant results of computer science, principles of

software engineering, and the state-of-the-art in computer technology.

The aforementioned properties can be ensured partly in algorithm design and partly

in an implementation phase as shown in the following table.

Algorithm

design Implementation

Reliability x x

Accuracy x x

EÆciency x x

Capacity x x

Portability x

Modularity x

Code stability x

Maintainability x

Scalability x x

User friendliness x x

The phases of developing optimization software and their relationship can be depicted

as follows:

7

Maros, Khaliq Optimization Software

Design

Implementation

Experimentation

The diagram shows that experimentation plays an important role in this process. On

the other hand, nowadays it is commonplace that implementation is a rich source of new

algorithmic ideas.

Evaluation of optimization software is an important issue for both developers and

users. Over the years, libraries of standard test problems have been established that

serve this purpose. These libraries are as follows: linear programming [28], quadratic

programming (QP) [57], mixed integer programming (MIP) [10], and general nonlinear

programming (NLP) [12]. These sets are freely available, therefore they are widely used

in reporting achievements in algorithmic development. The rationale is one of the basic

requirements of scienti�c publications: the claimed results must be reproducible. Unfor-

tunately, this requirement is sometimes not fully respected and reports on proprietary

problems get published.

4 The computing environment

Optimization problems cannot be solved without computers. In fact, the solution of real-

life LP problems signi�cantly inspired the development of computers in the '50s [20]. The

crucial role of computers makes it necessary to survey some features of the hardware and

software environment the solvers have to operate in. Here we discuss some details that

are not widely known to the mathematical programming community, or their impact on

optimization software is not fully recognized. It is important to remember that computing

environments, especially the hardware, change very rapidly. What is covered in this

section re
ects the status quo at the time of writing the paper (August 2000).

8

Maros, Khaliq Optimization Software

4.1 Computer hardware

The proliferation of inexpensive, feature-rich computer hardware and its continuous evo-

lution has had a signi�cant impact not only on the use of optimization software, but also

its further development. Processing power tends to double every 18 months (Moore's

Law) as does data storage capability (Parkinson's Law of Data). Nevertheless, the price

of components tends to stay low. The result is that economical and powerful workstations

are readily available that can perform large-scale optimization|something that was the

domain of expensive mainframe computers alone until the late '80s.

For optimization software the hardware features of the memory hierarchy, and the

central processing unit (CPU) of a computer are most important. Knowledge of how to

exploit these technologies now, and directions they will take in the future is crucial in

the production of portable code that not only executes quickly today, but also scales well

onto future machines.

Considering the memory hierarchy, in decreasing order of speed, decreasing order of

cost per memory unit, and increasing capacity we may enumerate the components as

follows: registers, L1 cache, L2 cache, RAM, and the hard disk ([15, page 266] and [82,

pages 43{45]).

Each CPU has a small set of registers which are best used for rapidly changing and/or

heavily accessed variables. Unfortunately, registers are not addressable by languages other

than machine-speci�c assembler, but eÆcient code coupled with an optimizing compiler

can give good register usage (e.g. allocation of loop variables) [15, page 268].

The L1 cache resides on a CPU, is marginally slower than a register, and can be either

a uni�ed instruction and data, or a separate instruction block and a data block ([4]

and [82, page 12]). The slower L2 cache has recently come to exist in the CPU too, with

a size of 256KB or more compared with 32{128KB for the L1 cache [4]. The caches keep

data close to the CPU for rapid access, otherwise that data would be brought in time

and again from slower main memory [69, page 545]. A frequently accessed variable held

in a cache exhibits temporal locality. Each time the CPU wants a variable, the cache is

queried and if the data is there we have a cache hit, with the item supplied to the CPU

9

Maros, Khaliq Optimization Software

from the cache location. Since contiguous data tends to be accessed in programs, a cache

will insert not only data currently needed, but also some items around that too to get

more cache hits by guessing it will need what is nearby|this is spatial locality [83]. If

data is not consistently accessed, is widely separated from other data, or is requested

for the �rst time, we have the risk of a cache miss. For a direct-mapped cache, data is

retrieved from memory, a location is isolated in the cache and before it is placed there any

existing item is ejected from the cache. Fully associative and set-associative caches have

the capacity to allow several items to be held at a cache location, but they are slower than

the direct-mapped cache due to scanning operations that must be performed to try to

get a cached item or signal a cache miss. Cache misses can delay a CPU for hundreds of

cycles [38], but they are easily caused, such as through sparse matrix computations [83].

Research into software manipulation of caches is underway which will be of bene�t to

optimization software [38].

RAM and the hard disk drive have the slowest access times, but sizes typically in

hundreds of megabytes, and many tens of gigabytes respectively. RAM works at the

nanosecond level, yet currently CPUs are so fast that the RAM slows execution! Hard

disk drives give persistent storage, but work at the millisecond level. Code that leads

to thrashing in virtual memory mechanisms or needs considerable disk access clearly will

have poor execution times ([8, pages 7{10] and [51, page 122]).

The features of the CPU that most a�ect optimization software are: the type of the

processor, the number of
oating point units (FPUs) and arithmetic logic units (ALUs),

and the number and depth of pipelines.

A processor is typically described as a Complex Instruction Set Computer (CISC) or a

Reduced Instruction Set Computer (RISC), with a given clock frequency and instruction

bit width. For example, the Intel Pentium III family are all CISC CPUs, but the 64 bit

SUN SPARC series are RISC processors. CISC CPUs have the advantage of low memory

requirements for code, but although RISC machines have higher memory demands, they

are faster due to hardware optimization of key operations [82, pages 91{95]. CISC-RISC

hybrid processors are available that wrap a CISC shell over a RISC core, such as CPUs

10

Maros, Khaliq Optimization Software

in the AMD Athlon series [4]. Recently, recon�gurable processors are in production, the

Crusoe chip being an example, that have the property of being able to work as CISC

or RISC depending on the code they are given at the expense of some CPU speed [45].

Many factors, such as the system bus speed, a�ect the speed of a machine. However, in

general a higher clock frequency means a faster processor, as does a higher bit width of

instructions.

Floating point (FP) calculations on a processor occur in the FPUs, built to implement

the IEEE 754 standard usually [41, page 85]. Double precision (DP) numbers, typically

8 bytes in length (around 16 decimal digits accuracy), are processed here, but it should

always be remembered that calculations|addition especially|are subject to errors that

can accumulate ([70,71], and [86, pages 4{9]). More details on issues of numerical accuracy

are discussed in section 5.3. Complementing FPUs are ALUs which undertake exact

arithmetic on integers only, and sometimes they are employed for address calculations

([4] and [82, pages 348{350]). The more FPUs and ALUs a chip has, the greater the

throughput of number processing that can be attained.

Most CPUs now have at least one pipeline made up of about 5{10 structural units,

designed to perform an operation and pass the result to the next unit. Superscalar

architectures have multiple pipelines. A pipeline can exist in many parts of a CPU, such

as the ALU or the FPU. The depth, however, is �xed by factors such as the format of

instructions and the amount of instruction unrolling to be done if the pipeline has to be

stopped|as explained shortly [69, pages 438{440]. A pipeline increases CPU performance

by allowing a sequence of instructions to be in the CPU per clock cycle, thereby boosting

instruction throughput. A pipeline entity, however, is eÆcient only when the results

of one operation are not pending on the results of another|this would cause a stall.

Branching|jumps from boolean evaluation, function calls, and function returns|in a

program is a major cause of these halts in the running of pipelines [69, page 442]. The

hardware and software methods to contain this problem are discussed next.

A CPU with a pipeline can stall as one option in a problem situation, but other options

are branch prediction or dynamic branching. Branch prediction makes an assumption, e.g.

11

Maros, Khaliq Optimization Software

a boolean test is always false, and bypasses a stall. If the guess was wrong, then operations

have to be 'rewound' and the correct instructions used ([40, pages 379{381] and [69, page

496]). In dynamic branching, a small hardware lookup table is used holding the depth of

branching and the number of times a branch held true or false. By using the lookup table

a pipeline can be adjusted to follow the branch that occurs most often|this is useful in

looping constructs since the wrong decision occurs only at the �nal iteration. The trouble

with this method is that too many branches in code will over�ll the table [69, pages 498{

503]. The branching problem is one of several issues signi�cant enough for the number of

pipeline units to be kept low [69, page 521].

In software, the best method to utilize pipelines is to avoid branching, especially

nested, as much as possible. Loop unrolling is a well-known technique to speed code by

reducing boolean tests. This technique is implemented by optimizing compilers when the

number of iterations is known at compile time. If the number of iterations is known only

at run time, then code safety issues arise that necessitate employing loop unrolling with

caution, e.g. in C++ if a loop is unrolled to a level of 4 but iterates through an array

of length 3 at run time then an exception arises unless boolean tests are performed for

each iteration. If simple branching can be avoided by a single operation in code, then it

is preferable to replace the branch [15, pages 280{281]. For example in C, line /* 2 */

below can replace the implied if-else structure of line /* 1 */ in the following code

excerpt (used in a presolve routine for MPS �les when the objective row|of conditional

code \N"|needs to be ignored by setting a
ag to zero) :

/* characters are one of : 'E', 'G', 'L', or 'N' */

/* 1 */

theResultChar = (theTestChar == 'N') ? '\x0' : '\x1';

/* 2 */

theResultChar = (theTestChar / 'N') ^ '\x01';

Since branching can be caused by function call and return, reducing the number of

12

Maros, Khaliq Optimization Software

functions in code is useful [8, page 11]. As an example, in C++, the keyword inline

allows compilers to check the syntax of a short function and then embed its code in

place of all function calls [15, pages 107{152]. This is one way to approach a trade-o�

in dealing with branching in code: a program should be modular and maintainable, but

also must exhibit minimal branching. Sometimes, it is better to leave branching in place,

such as when branches call di�erent functions or alter di�erent data types, since program

transformations can leave the code unreadable. If possible, placing all of the disjoint code

of a function that has had simple branching removed into one location can be of use, as

streamlined execution occurs once the branch direction has been found by the CPU.

There is an interesting development in hardware technology under the heading of re-

con�gurable computing. This notion refers to hardware recon�guration as opposed to a

software one (see Crusoe processor above). Boolean satis�ability problems can directly

be represented by recon�gurable computing units so that the evaluation of a Boolean

expression is carried out in hardware at very high speed. For each problem instance the

hardware is recon�gured (the equivalent of traditional `problem input'). Early indications

show that a speedup of up to 100 times can easily be achieved by this method. Investi-

gations are underway on how to exploit this powerful new tool for better computational

algorithms in integer programming.

The importance of the knowledge of hardware for optimization software was recognized

by some researchers (c.f., [23, 73]) but little has been published in this area.

4.2 Computer software

Computer software is a tool for converting algorithms into computer programs. Nowadays

optimization programs are written in some high level language, mostly Fortran or C/C++.

These languages are highly standardized so their code can easily be compiled on di�erent

hardware/software platforms resulting in identically working programs. This is the basis

of source level portability.

The eÆciency of optimization code is a�ected by the following software factors: the

operating system, the choice of programming language, and the compiler employed.

13

Maros, Khaliq Optimization Software

Operating systems act as the interface between user software and hardware, typically

allowing multiple users access to resources in a way that gives the impression that each user

has sole access. This latter feature|known as multitasking|is achieved today through

intelligent scheduling of processes or threads to a processor. Operating systems di�er

markedly from each other, but some of the di�erences can be categorized thus: size of

the code base which a�ects kernel size and the resources the kernel uses (e.g. 128MB

RAM minimum for Windows 2000), support for threads or processes (e.g. Linux has

process-based operation but the speed it attains rivals thread-based operating systems

like Windows NT), the performance they guarantee as the number of users on a system

increases, and the quality of the interface provided for programming highly optimized

code (e.g. Visual C++ has access to many features of Windows-based system kernels).

The operating system best suited for an optimizer is diÆcult to isolate early. It is of

great bene�t therefore that coding be undertaken in a standardized language, like C, so

that through portability the best operating system will be found by compiling and testing

on di�erent platforms.

The choice of programming language has an enormous impact on optimization soft-

ware. The main contenders in this �eld are FORTRAN77, C, and recently C++ (e.g.

[1, 75, 77]). A language decision must consider at least the following: standardization

so that portability is allowed (the aforementioned have ANSI standards), whether the

language is interpreted (like APL and MatLab) or compiled (like C) since the former is

excellent for prototyping ideas but the latter is the means for fast code, whether there

is control of static and dynamic memory (FORTRAN77 is capable only of the former;

FORTRAN90 and later versions have dynamic memory support), whether code can be

made modular for extensibility (e.g. the ability to create not only a stand-alone optimizer,

but the same optimizer as a callable routine that can be integrated into a library), and the

amount of safety the language provides against erroneous execution (e.g. the exception

safety mechanism of C++).

To illustrate a decision for a programming language for an optimization system, we take

the example of C++. The language is standardized to ANSI/ISO level since 1997 with

14

Maros, Khaliq Optimization Software

good compiler support on practically all platforms [42]. It is a compiled language so we

can expect well-written code to have good execution speed on di�erent systems. Memory

management is under the control of the programmer, so we can allocate and deallocate

resources at run time, e.g. using functions new and delete or standard components such

as vectors or queues [78, pages 128{129]. Object-oriented programming is allowed using

classes so that modular code can be made that is intuitive to expand and maintain. Last

of all, there is a well-de�ned exception mechanism in the language that allows software

to recover from errors without program termination which could leak resources [80, pages

38{39].

The quality of a compiler in
uences the speed of well-written code on a given plat-

form. A code may use generic speed optimizations|such as low function depth to reduce

excessive stack usage [2, page 153], use pointers instead of arrays or vice versa, and exhibit

minimal branching|but because the optimizing ability of each compiler is di�erent, the

run time performance is di�erent [15, pages 5{6]. What must be noted, however, is that

the quality of compiler-optimized code is competitive with or exceeds hand-optimized

code, and the former is improving. For example, C code optimized by the GNU C com-

piler \gcc" is very diÆcult to better with optimization by hand. Languages like C++

allow the inclusion of assembler into code which the compiler then integrates. In this

respect hand-optimized code may better compiler-optimized code. However, impressive

gains in using assembler will need to be balanced against the loss of portability of a sys-

tem [2, pages 28{29]. Lastly, compilers di�er in the quality and breadth of the libraries

they are packaged with. This can lead to speed di�erences in the same function that is

part of a language standard, e.g. malloc in C [44, page 167].

To end this section, we should like to state our own experience of utilizing the com-

putational environment. An `environment aware' code of an optimization algorithm can

be|without loss of portability|up to three times faster than an unsophisticated but

otherwise carefully coded version of exactly the same algorithm.

15

Maros, Khaliq Optimization Software

5 Techniques

Writing programs that implement optimization algorithms can be a source of major sur-

prises. It can happen that correctly coded, theoretically convergent algorithms among

other things:

� run very slowly,

� require a huge amount of memory,

� do not converge,

� give the wrong answer (e.g. problem declared unbounded or infeasible though opti-

mal)

� work only on small test problems (or worse, just on a speci�c test problem),

� sometimes do not work at all (e.g. loop in�nitely or break down due to numerical

diÆculties)

Why is this? That the code does not follow the principles of implementation technology

of optimization software is often the cause. As the ingredients of a good program are

good algorithms and data structures, in this section we outline how this recipe can be

interpreted for large scale sparse optimization.

5.1 Data structures

Data structures are responsible for the eÆcient storage and manipulation of sparse vectors

and matrices occurring in large scale optimization. Their choice is vital for eÆciency and

scalability; the right choice depends on the intended usage. The two main types are static

and dynamic data structures, and some examples include:

1. The LP matrix for the simplex method is static|usually a set of sparse row and(!)/or

column vectors. If memory allows, it is worth maintaining both to help smooth

transition between primal and dual operations and enable utilization of sparsity in

updating (an important source of speedup).

16

Maros, Khaliq Optimization Software

2. The nonzero pattern of AAT in IPMs is created with dynamic structures.

3. Factorization of a sparse simplex (SSX) basis or AAT for IPM uses dynamic struc-

tures, and the result is stored statically.

For static storage, sparse vectors are best kept in packed form in which case the

nonzero elements are stored in consecutive locations in a DP array and their indices are

in an integer (or pointer) array. The length of the vector in terms of the number of

nonzeros must also be stored.

Static matrices are stored as a set of packed row/column vectors in a linear array.

If these vectors are located consecutively then only their starting positions have to be

recorded (i.e. n + 1 positions). However, it is more practical to assume that logically

neighboring vectors are not stored consecutively. In this case both the starting position

and the length (or the position of the last element) of a vector must be recorded (i.e. 2n

positions). This gives much needed
exibility because there are cases when even a static

structure must undergo a one-o� change (during presolve, adding constraints or variables,

etc.).

Matrices in network optimization are very simple (containing no more than two nonze-

ros which are usually �1) and they can be stored in two linear arrays.

For storing sparse data that keeps changing structurally (e.g. intermediate data during

factorization of a simplex basis) dynamic storage schemes are needed. The most eÆcient

ones are linked lists|mostly doubly linked. They can be used to avoid, for instance,

repeated search for elements with a certain property (e.g. linked list of rows with equal

nonzero counts) or shifting arrays during insertion of new elements. More about data

structures and operations on them can be found in [22, 35].

Use of linked lists comes with some overhead. Elements are accessed at one more level

of indirection than in an array, so their use has to be well organized. If properly used,

they are one of the most important factors in the eÆciency of sparse optimization.

Sparse data structures have to be designed in such a way that they bene�t from

caching as much as possible. While with explicitly stored dense vectors or matrices this

occurs automatically, it is far from obvious in the case of sparse data. Wrongly designed

17

Maros, Khaliq Optimization Software

structures may su�er from heavy cache miss (which, on the other hand, is not easy to

detect).

In the early days of computational optimization it was noticed [43] that even among

the nonzeros there may be only very few distinct values, e.g. �1. This phenomenon is

called super sparsity. Setting up a (relatively short) list of distinct nonzeros, a matrix

entry can be retrieved by referencing it on the list. While in the '70s this method enabled

the solution of considerably larger problems, nowadays, with more memory available, its

advantages are o�set by the loss of access speed due to nested indirect referencing.

5.2 Algorithms

The enormous progress in the capabilities of optimization software is the result of designing

computationally more suitable algorithms and implementing them `professionally' taking

full advantage of the computing environment.

When a new algorithmic element (or a complete system) is developed its performance

has to be evaluated. One of the most e�ective methods of monitoring performance is

pro�ling. It enables us to measure how much of the solution time is spent in the di�erent

functional units of the program thus pointing to locations where improvements can be

made. It is also useful in evaluating the e�ects of new algorithmic developments. Pro�ling

is supported in nearly all software development systems. Therefore, it is widely used

among developers of optimization software.

Presenting all the algorithmic achievements that have lead to the current state-of-the-

art in optimization software would �ll a book. Here we have to restrict the discussion to

arbitrarily selecting some of the most important elements.

5.2.1 General framework of optimization

Most continuous optimization algorithms follow the pattern:

18

Maros, Khaliq Optimization Software

1. Input problem.

2. Do preprocessing: presolve (� problem simpli�cation), scaling.

3. Determine initial solution.

4. Check stopping criterion / optimality condition.

If satis�ed go to Step 7, otherwise �nd improving direction.

5. Find steplength. If in�nite, terminate.

6. Move to new solution, perform update, return to Step 4.

7. Evaluate outcome, postprocessing, post optimality analysis.

In the case of a branch and bound or branch and cut algorithm for mixed integer pro-

gramming the above is included in a hierarchy and the �rst two steps are usually di�erent

from the above.

5.2.2 Some algorithmic variants and their implementation

It is typical that certain algorithmic steps have several mathematically equivalent forms,

and at times a step is not uniquely de�ned. In some cases it is known that one alternative

is better than the other(s), like the elimination form of the inverse (EFI) in SSX is better

than the simple product form (PFI). However, in most other cases the best choice is

problem dependent, like the choice of the normal equation or the augmented system form

in IPMs. The purpose of having this sort of selection is to be able to identify the most

suitable variant to the problem and situation (more e�ective, faster, better accuracy, lower

space overhead, etc.).

Due to the limitations of the paper, in this section we give just examples of some

important algorithmic variants and their implementations.

5.2.2.1 Preprocessing. The purpose of preprocessing is to bring the problem into a

computationally more suitable form. Presolve is used to eliminate redundant constraints,

loosen/tighten existing ones without (signi�cantly) increasing the density of the matrix

involved. The criteria of presolve are di�erent for LP SSX, IPM and MIP [6, 13, 31, 74].

For instance, in LP the loosening of bounds, up to generating implied free variables, is

advantageous. However, in MIP tightening is the main issue. By scaling the numerical

19

Maros, Khaliq Optimization Software

properties of the problem can be improved so that the chances of numerical troubles are

substantially reduced [7, 18].

In IPMs, obtaining sparse factorization of AAT is also considered under `preprocess-

ing'. The importance of this step cannot be underestimated. This is one of the most

heavily researched area in IPMs (see [50] or [5] for an overview). The success of this step

fundamentally determines the performance of the IPM code.

5.2.2.2 Starting procedures. They are used to �nd a `good' initial solution with

little computational e�ort. How is `good' de�ned? It can mean several di�erent things. It

is usually said that a starting procedure is good if an initial solution is quick to obtain, close

to optimality/feasibility, least degenerate, has few nonzeros, or enables quick iterations

[9, 33, 59, 66]. In IPMs, the starting point must be well centered [5, 72]. In SSX a (near)

triangular basis is advantageous (it can be found by variants of the `crash' technique) or

a block triangular basis (with matrix reordering and `mini' LPs). EÆciency of starting

procedures is by no means a negligible issue.

Example: A `Lower Triangular Symbolic' crash with feasibility awareness [59] in the

case of a problem with 16,676 constraints and 15,695 variables found all columns can

be reordered in triangular fashion. Timing on a low speci�cation PC was 29.45s with

`straightforward' code, but 0.33s with appropriate doubly linked lists|a speedup of nearly

100 times. For larger problems the rate of improvement is expected to grow further.

In IPMs, the computational cost of determining a starting solution is equivalent to

the work of one IPM iteration.

5.2.2.3 Finding a search direction. It is the most time consuming operation in the

majority of optimization algorithms. The choice heavily in
uences the number of itera-

tions required to solve a problem. Generally, there is a trade-o� between the quality of the

direction and the e�ort of �nding it. Appropriate data structures and carefully designed

algorithmic details (e.g. coding to achieve a high level of cache hits) can contribute to the

speedy operation of this functional unit.

In SSX, for instance, there is a huge variety of `pricing' techniques to �nd an im-

20

Maros, Khaliq Optimization Software

proving direction (`incoming variable'), such as (i) �rst improving candidate, (ii) Dantzig

rule, (iii) (dynamic) partial pricing, (iv) sectional pricing, (v) normalized pricings (simple

dynamic, Devex, steepest edge), (vi) multiple pricing, (vii) composite pricing, (ix) anti-

degeneracy column selection. Some relevant references are [11, 19, 24, 30, 34, 39, 52{54,66,

81]. Many of these strategies have additional parameters and some of them can be used

in combination (e.g. partial sectional partial pricing (PSPP) is very eÆcient in network

simplex). In case of full single pricing (Dantzig, Devex, steepest edge) the reduced cost

vector can explicitly be maintained. This speeds up pricing but puts an additional work-

load on updating. The trade-o� depends on the way the updating is implemented and

sometimes also on the nature of the problem.

While some of the above pricing techniques are known to be inferior to others they need

not be discarded completely. Recent investigations [58] have shown that the application of

several pricing techniques in combination can considerably improve the quality of column

selection. In such cases even the `weak methods' can contribute to the overall success.

The important message of this observation is that a good combination of algorithmic

elements can be more e�ective than any single one alone.

Determining a search direction is susceptible to numerical error and can wrongly indi-

cate a direction pro�table. It can lead to all sorts of troubles. As a precautionary measure

(i) the corresponding linear algebra must be implemented in a numerically stable way, (ii)

a reliable quality check is needed to catch an error as early as possible and corrective

action must be included for the case of a failed check.

5.2.2.4 Finding the steplength. This algorithmic unit serves to determine the dis-

placement of the solution along the search direction. It has to satisfy a number of criteria,

like maintaining feasibility (if already feasible), making largest progress towards optimal-

ity/feasibility, staying close to the central path, and taking care of numerical stability.

Some references are [5,19,32,34,52,55,66,87{89]. Here, various logical tests are performed

on computed numerical values. Therefore, it is also a source of numerical troubles.

In SSX, this step is known as the ratio test for determining the pivot position. It

requires the updated incoming column (primal) or the updated pivot row (dual). From

21

Maros, Khaliq Optimization Software

a numerical and eÆciency point of view it is important that the matrix is stored both

column- and rowwise. If the updated row/column vector is not accurate enough the ratio

test may have a qualitatively and/or quantitatively wrong outcome (e.g. division by small

quantities that otherwise should be zero or quantities with the wrong sign).

An example of an algorithmic alternative that is theoretically intuitive and has very

desirable computational features can be introduced at this point. In both phases of the

dual and in phase-1 of the primal simplex it is possible to choose the pivot position

by maximizing a piecewise linear (gain) function at each iteration that gives the largest

possible progress in the direction of the actual (phase-1 or 2) objective [34,52,55,87]. The

distinguishing features of this method are: (i) using proper data structures this method

can be implemented very eÆciently with hardly more work than the traditional pivot

method, (ii) it has inherently better numerical stability because it creates a large
exibility

in �nding a pivot element (if the pivot at the maximum of the function is not `good'

enough, usually several other elements are still available along the break points of the gain

function), (iii) it is very e�ective in coping with degeneracy as it can bypass degenerate

vertices more easily than the traditional pivot procedures. This method is the basis of

the great success of the dual SSX for MIP.

5.2.2.5 Update. At the end of each iteration not only the solution but also the inter-

mediate data needed for the iterations has to be updated. This work can be as simple as

adding a new factor to the PFI in the SSX method, but can also be quite involved like up-

dating the explicitly kept reduced costs (requiring the computation of the updated pivot

row) or using Forrest-Tomlin or Bartels-Golub update for maintaining triangularity of

the EFI. These complex operations require carefully designed data structures for eÆcient

performance. The speedup between straightforward and sophisticated, sparsity-exploiting

implementations can be up to 50 times.

At this stage the periodical (or extraordinary) regeneration of some of the intermediate

data also has to be done, like refactorization of the SSX basis, resetting Devex weights,

recomputing the reduced costs, etc. The most critical of these is the refactorization

(reinversion). It has to produce a sparse and accurate representation of the inverse of the

22

Maros, Khaliq Optimization Software

basis and has to be very fast. While it was an area of intensive research in the '70s and

'80s, nowadays it is widely accepted that computationally the most suitable form is the

one proposed by Suhl and Suhl [79].

5.2.3 Control of optimization

The operation of modern optimization systems is controlled by a number of parameters.

The purpose of the parameters is to adjust the algorithm to the problem to solve it accu-

rately and eÆciently. There are numeric and strategy parameters. Typical representatives

of the �rst category are all sorts of tolerances and density handling parameters. In the

second category we �nd decision variables describing which algorithm or algorithmic ele-

ment to use and how (primal or dual SSX, normal equation or augmented system in IPM,

strategy of presolve, scaling, ordering in IPM, pricing in SSX, number of candidates in

di�erent algorithmic steps, various MIP strategies, etc.).

Modern optimization systems have a large number (up to 100) of such parameters.

Most of them are accessible to the users through a parameter �le (specs �le) so that they

can be modi�ed if needed, though this action requires knowledge and experience. Param-

eters have default values (worked out by the developers) that ensure robust operation of

the solver for problems without extreme features.

5.2.4 Adaptivity

An algorithmic step can be made in several di�erent ways as shown above. It is quite

problem- and situation-dependent which alternative is the most suitable. Therefore, it

is worth implementing several techniques and letting a supervisory algorithm choose the

most appropriate one.

The choice can be a pre-selection of an algorithm, algorithmic element or numeric

parameter based on a preliminary analysis of the problem at hand. This choice is then

applied throughout the solution.

Examples:

23

Maros, Khaliq Optimization Software

1. IPM: normal equations or augmented system.

2. SSX: use both column- and rowwise storage of A to speed up column and row

updates if there is enough memory available.

3. SSX: choose between primal and dual method.

4. SSX: choose pricing strategy (and its parameters).

The other possibility is to make selections `on-the-
y' based on the continual evaluation

of the entire process of optimization. As an example, we can think of the dynamic choice

of pricing strategies as mentioned earlier and discussed in [58].

The supervisory algorithm can be equipped with some intelligence such that it can

learn from the problem being solved. A knowledge base can also be set up to store

experience from previous solutions and use it in future runs. MIP solvers are expected to

be the main bene�ciaries of this idea but other algorithms can also take advantage of it.

5.3 Numerical issues

Optimization algorithms use the standard IEEE 754 normalized double precision
oating

point arithmetic. While it ensures an accuracy of about 16 digits, in several cases it

may not be suÆcient. The reason is that computations su�er from rounding error and

cancellation error, and errors in computed quantities can magnify and propagate. As a

result the solution algorithms may run into numerical diÆculties. In a `fortunate' case

the troubles lead just to reduced accuracy (few accurate digits in the, otherwise correct,

solution). In the worst case, they make the algorithm give a wrong answer (wrong optimal

basis, feasible problem declared infeasible, optimal problem found unbounded, etc.) or no

answer at all (divergence, oscillation, etc.).

The main diÆculty lies in the distinction between computed small numbers and com-

putational garbage that otherwise should be zero. Dividing by such a quantity simply

blows up the solution. Additionally, algorithms can make wrong branching decisions if

some computed quantities do not have the correct sign. To alleviate the problem, a wide

variety of tolerances are used to determine which computed value is considered zero. To

avoid the scale dependency, relative tolerances are much better than absolute ones.

24

Maros, Khaliq Optimization Software

All of these precautions do not eliminate the problem completely. Therefore, optimiza-

tion systems have to use such algorithmic components that have proven better numerical

characteristics (e.g. elimination form of inverse is preferred to the straight product form

in SSX or Cholesky factorization in IPM is preferred when the normal equations are not

too dense) and must be prepared to handle situations when errors do occur.

The main source of inaccuracy lies in computing dot products, or more speci�cally,

the `additions' in them. It is well known that addition is not an associative operation in

normalized
oating point computing and it can cause serious numerical troubles. There

are several methods to reduce the chance of catastrophic errors but none of them is a

cure-all. There is a software technique that can accumulate dot products in arbitrary

precision without loss of computational speed. This technique enabled the solution of

intractable LP problems [56]. The disadvantage of this method is that it uses assembly

level coding which reduces portability. Recently, a new processor has been introduced

that includes dot product with arbitrary precision as the �fth arithmetic operation in

hardware. It certainly will have an impact on optimization software [46].

6 Modeling systems and optimization

Creating, modifying, maintaining and analyzing large scale real-life optimization problems

is a major task. This activity is receiving increasingly eÆcient support from tools called

modeling systems. They have evolved from the matrix generators of the '70s and '80s.

Modeling systems allow model formulation in a similar way as humans naturally do it

(algebraic equations, sets, logic expressions, etc.). This enables better understanding

of the model and also serves as its documentation. These are quite important features

because nowadays optimization systems can solve much larger problems than humans can

easily comprehend.

Modeling is done using the speci�c modeling language of a given system. Though the

languages are di�erent they share many common features.

Modeling systems also serve as a working environment. Without leaving them, dif-

ferent solvers can be activated and the solution can be fed back to the model for further

25

Maros, Khaliq Optimization Software

analysis. They enable the maintenance of several versions of a model, even the creation

of a larger model from `sub-models'.

The few existing modeling systems are commercial products developed mostly by the

involvement and based on the results of academic researchers. It is beyond the scope of

this paper to review commercial modeling systems. Interested readers are referred to the

following publications and web sites: [14, 27, 37, 61, 68, 85].

7 Parallel computing and optimization

Parallel computing has much to o�er optimization software. This is an active area of

research because there is the potential to: (i) solve problems faster, and (ii) solve larger

problems [47]. A parallel computer has more than one CPU with the aim of achieving a

computational task more eÆciently than a uniprocessor system through dividing the work

to the processors ([16, pages 13{24], [17, pages 4{23] and [84]). Parallel machines can be

di�erentiated at the hardware and the software level|these will be the topics discussed

in this section.

At the hardware level, there are two parallel architectures currently available: shared

memory and distributed memory [67, pages 16{24]. The former has one system memory

used by a number of identical processors (e.g. the Cray T90 has up to 32 CPUs). Such

machines bene�t from fast interprocessor communication, and the need for only a single

copy of any data for execution. Their drawbacks lie not only in their cost, but also in the

fact that due to a limited bandwidth they cannot be scaled up to very many processors

[67, page 16]. Distributed memory parallel computers, however, can have thousands of

processors (e.g. the Fujitsu AP3000 has up to 1024 CPUs) with each one holding its

own system memory. These machines o�er economy (e.g. heterogeneous CPUs can be

connected), and scalability|to the extent that many machines can be connected despite

wide geographic separation. However, this architecture tends to have slower interprocessor

communication speeds. Thus, if a computational task cannot be split into relatively

independent blocks, then communication costs will contribute substantially to run times.

A further diÆculty is that at least some and at worst all program and problem data

26

Maros, Khaliq Optimization Software

must reside at each CPU for execution. In optimization software, these two problems,

aggravated by the inherent unsuitability of sparse computing on distributed machines,

have created an active area of research.

Parallel computers tend to be supplied with software tools speci�cally created to ex-

ploit the hardware best. The operating system can be UNIX, or a faster custom-made

one for a given machine. Numerical computing is supported not only by compilers of

C, C++, and FORTRAN, but also optimized libraries of code that abstract away the

details of hardware interface from programmers [21]. In fact, the MPI communication

protocol standard allows source-level portability to any parallel machine of C or FOR-

TRAN code through the use of library functions [67, pages 363{397]. Current software

tools are advanced enough to even allow code to con�gure how it views the hardware, e.g.

a hypercube will be viewed as the parallel topology even though the hardware has a ring

form [76, pages 319{352].

8 Conclusions

Current optimization systems, whether academic or commercial, are immensely more

capable than their predecessors a few decades ago. This is the result of developments

in computational algorithms for optimization, incorporation of advanced techniques and

methods of computer science and software engineering, and last, but not least, the achieve-

ments of computer technology (speed, capacity, and architecture).

The implementation of optimization algorithms is a nontrivial activity, it is sometimes

referred to as an art. However, this technology is based on the knowledge of a variety of

good optimization algorithms that are implemented using the results of computer science

and advanced hardware and software features of computers. As such, it is in the territory

of science.

The primary purpose of the paper was to highlight the complex nature of designing

and implementing optimization software and discuss brie
y the sources of its successes. It

was necessary to give a relatively detailed account of the computing environment in order

to make the aims and nature of the e�orts understandable. We pointed out that though

27

Maros, Khaliq Optimization Software

optimization problems and solution algorithms are quite di�erent they still have many

common features that makes it reasonable to combine several of them into comprehensive

systems. We also de�ned the criteria of good optimization software. New algorithms and

algorithmic elements are designed with these criteria in mind.

A secondary purpose of the paper was to give suÆcient guidance in the form of refer-

ences to readers interested in more details of the subject.

Taking into account the growing need for optimization and the evolution of the com-

puting environment, we can expect that the development of general and special purpose

optimization software will continue with great momentum. New systems will be able

to solve problems more reliably and quickly than their predecessors. Also, currently in-

tractable problems will become solvable. This progress will certainly be assisted by new

algorithmic discoveries and more advanced computers.

References

[1] O. Aberth and M. J. Schaefer. Precise Computation Using Range Arithmetic, Via

C++. ACM Transactions on Mathematical Software, 18(4):481{491, December 1992.

[2] M. Abrash. Michael Abrash's Graphics Programming Black Book. The Coriolis Group

Inc., Special edition, 1997.

[3] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. Data Structures and Pro-

gramming Techniques for the Implementation of Karmarkar's Algorithm. ORSA

Journal on Computing, 1:84{106, 1989.

[4] AMD Athlon Processor Technical Brief, December 1999. Publication #22054 Rev:D.

[5] E.D. Andersen, J. Gondzio, Cs. Meszaros, and X. Xu. Implementation of Interior-

Point Methods for Large Scale Linear Programs. In T. Terlaky, editor, Interior Point

Methods of Mathematical Programming, volume 5 of Applied Optimization, chapter 6,

pages 189{252. Kluwer Academic Publishers, 1996.

28

Maros, Khaliq Optimization Software

[6] E.D. Anderson and K.D. Anderson. Presolving in Linear Programming.Mathematical

Programming, 71(2):221{245, 1995.

[7] M. Benichou, J.M. Gautier, G. Hentges, and G. Ribiere. The eÆcient solution of

large-scale linear programming problems. Mathematical Programming, 13:280{322,

1977.

[8] A. Binstock and J. Rex. Practical Algorithms for Programmers. Addison-Wesley

Publishing Company, 1995.

[9] R.E. Bixby. Implementing the Simplex Method: The Initial Basis. ORSA Journal

on Computing, 4(3):267{284, Summer 1992.

[10] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An Updated Mixed

Integer Programming Library: MIPLIB 3.0. Optima, 54:12{15, 1998.

[11] R.G. Bland. New �nite pivot rule for the simplex method. Mathematics of Operations

Research, 2:103{107, 1977.

[12] I. Bongartz, A.R. Conn, N.I.M. Gould, and Ph.L. Toint. CUTE: constrained and

unconstrained testing environment. ACM Transactions on Mathematical Software,

21(1):123{160, 1995.

[13] A.L. Brearley, G. Mitra, and H.P. Williams. Analysis of Mathematical Programming

Problems Prior to Applying the Simplex Method. Mathematical Programming, 8:54{

83, 1975.

[14] A. Brooke, D. Kendrick, A. Meeraus, and R. Raman. GAMS. GAMS Development

Corp., http://www.gams.com/, 1998.

[15] D. Bulka and D. Mayhew. EÆcient C++ : Performance Programming Techniques.

Addison-Wesley Longman Inc., 2000.

[16] M. Cosnard and D. Trystram. Parallel Algorithms and Architectures. International

Thompson Computer Press, 1995.

29

Maros, Khaliq Optimization Software

[17] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture: A Hard-

ware/Software Approach. Morgan Kaufmann Publishers, Inc., 1999.

[18] A.R. Curtis and J.K. Reid. On the automatic scaling of matrices for gaussian elimi-

nation. J. Inst. Maths. Applics, 10:118{124, 1972.

[19] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,

Princeton, 1963.

[20] G.B. Dantzig. Impact of linear programming on computer development. OR/MS

Today, pages 12{17, August 1988.

[21] J. J. Dongarra and D. W. Walker. Software Libraries for Linear Algebra Computa-

tions On High Performance Computers. SIAM Review, 37(2):151{180, June 1995.

[22] I.S. Du�, A.M. Erisman, and J.K. Reid. Direct Methods for Sparse Matrices. Oxford

Science Publications. Clarendon Press, Oxford, 1986.

[23] J.J. Forrest and J.A. Tomlin. Vector Processing in Simplex and Interior Point Meth-

ods. Annals of Operations Research, 22:71{100., 1990.

[24] J.J.H. Forrest and D. Goldfarb. Steepest edge simplex algorithms for linear program-

ming. Mathematical Programming, 57(3):341{374, 1992.

[25] J.J.H. Forrest and J.A. Tomlin. Implementing Interior Point Linear Programming

Methods in the Optimization Subroutine Library. IBM Systems Journal, 31:26{38,

1992.

[26] J.J.H. Forrest and J.A. Tomlin. Implementing the Simplex Method in the Optimiza-

tion Subroutine Library. IBM Systems Journal, 31:11{25, 1992.

[27] R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for Math-

ematical Programming. Duxbury Press, 1993.

[28] D.M. Gay. Electronic mail distribution of linear programming test problems. COAL

Newsletter, 13:10{12, 1985.

30

Maros, Khaliq Optimization Software

[29] P.E. Gill, W. Murray, M.A. Saunders, and M.H. Wright. A Practical Anti{Cycling

Procedure for Linearly Constrained Optimization. Mathematical Programming,

45:437{474, 1989.

[30] D. Goldfarb and J. Reid. A Practicable Steepest-Edge Simplex Algorithm. Mathe-

matical Programming, 12:361{371, 1977.

[31] J. Gondzio. Presolve Analysis of Linear Programs Prior to Applying an Interior Point

Method. INFORMS Journal on Computing, 9(1):73{91, 1997.

[32] J. Gondzio and T. Terlaky. A computational view of interior point methods. In

Advances in Linear and Integer Programming, Oxford Lecture Series in Mathematics

and its Applications, chapter 3, pages 103{144. Clarendon Press, 1996.

[33] N.I.M. Gould and J.K. Reid. New crash procedures for large systems of linear con-

straints. Mathematical Programming, 45:475{501, 1989.

[34] H.J. Greenberg. Pivot selection tactics. In Design and Implementation of Optimiza-

tion Software [36], pages 143{174.

[35] H.J. Greenberg. A tutorial on matricial packing. In Design and Implementation of

Optimization Software [36], pages 109{142.

[36] H.J. Greenberg, editor. Design and Implementation of Optimization Software. Sijtho�

and Nordho�, 1978.

[37] H.J. Greenberg. A Computer-Assisted Analysis System for Mathematical Program-

ming Models and Solutions: A User's Guide for ANALYZE. Kluwer Academic Pub-

lishers, Boston, MA, 1993.

[38] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-Managed Cache

Design. Computer Architecture News, 28(2):107{116, May 2000.

[39] P.M.J. Harris. Pivot Selection Method of the Devex LP Code. Mathematical Pro-

gramming, 5:1{28, 1973.

31

Maros, Khaliq Optimization Software

[40] J. P. Hayes. Computer Architecture and Organization. The McGraw-Hill Companies,

Inc., Third edition, 1998.

[41] J. L. Hennessy and D. A. Patterson. Computer Architecture : A Quantitative Ap-

proach. Morgan Kaufmann Publishers, Inc., Second edition, 1996.

[42] International Standard for Information Systems|Programming Language C++.

ISO/IEC JTC1/SC22/WG21, November 1997. Morristown, N.J.

[43] J.E. Kalan. Aspects of Large-Scale In-Core Linear Programming. In Proceedings of

the 1971 annual conference of the ACM, pages 304{313. ACM, 1971.

[44] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall

Software Series. Prentice Hall PTR, 2nd edition, 1988.

[45] A. Klaiber. The Technology Behind Crusoe Processors, January 2000. Transmeta

Corporation.

[46] U. Kulisch. The Fifth Floating-point Operation for Top-Performance Computers.

Technical report, Institut fur Angewandte Mathematik, Universit�at Karlsruhe, 1997.

[47] I. J. Lustig and E. Rothberg. Giga
ops in Linear Programming. Operations Research

Letters, 18(4):157{165, 1996.

[48] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Computational Experience with a

Primal{Dual Interior Point Method for Linear Programming. Linear Algebra and

its Applications, 152:191{222, 1991.

[49] I.J. Lustig, R.E. Marsten, and D.F. Shanno. On Implementing Mehrotra's Predictor-

Corrector Interior Point Method for Linear Programming. SIAM Journal on Opti-

mization, 2:435{449, 1992.

[50] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods for linear pro-

gramming: Computational state of the art. ORSA Journal on Computing, 6(1):1{14,

1994.

32

Maros, Khaliq Optimization Software

[51] M. J. Karels M. K. McCusick, K. Bostic and J. S. Quarterman. The Design and

Implementation of the 4.4BSD Operating System. Addison-Wesley Publishing Com-

pany, Inc., 1996.

[52] I. Maros. A general Phase{I method in linear programming. European Journal of

Operational Research, 23:64{77, 1986.

[53] I. Maros. A multicriteria decision problem within the simplex method. In Gautam

Mitra, editor, Mathematical Models for Decision Support, pages 263{272. Springer

Verlag, 1988.

[54] I. Maros. A structure exploiting pricing procedure for network linear programming.

Research Report 18{91, RUTCOR, Rutgers University, NJ, USA, May 1991. 15

pages.

[55] I. Maros. A Piecewise Linear Dual Procedure in Mixed Integer Programming. In

R. Schaible F. Giannesi and S. Komlosi, editors, New Trends in Mathematical Pro-

gramming, pages 159{170. Kluwer Academic Publishers, 1998.

[56] I. Maros and Cs. M�esz�aros. A numerically exact implementation of the simplex

method. Annals of Operations Research, 58:3{17, 1995.

[57] I. Maros and Cs. M�esz�aros. A repository of convex quadratic programming problems.

Optimization Methods and Software, 11&12:671{681, December 1999.

[58] I. Maros and G. Mitra. Investigating the Sparse Simplex Algorithm on a Distributed

Memory Multiprocessor. Parallel Computing, 26:151{170, 2000.

[59] I. Maros and G. Mitra. Strategies for creating advanced bases for large-scale linear

programming problems. INFORMS Journal on Computing, 10(2):248{260, Spring

1998.

[60] R.E. Marsten. XMP: A Structured Library of Subroutins for Experimental Math-

ematical Programming. ACM Transactions on Mathematical Software, 7:487{497,

1981.

33

Maros, Khaliq Optimization Software

[61] Maximal Software, Inc., http://www.maximal-usa.com/mpl/. MPL Modeling Sys-

tem.

[62] K.A. McShane, C.L. Monma, and D.F. Shanno. An Implementation of a Prima-

Dual Interior Point Method for Linear Programming. ORSA Journal on Computing,

1:70{89, 1989.

[63] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method. SIAM

Journal on Optimization, 2:575{601, 1992.

[64] H.D. Mittelmann and P. Spellucci. Decision Tree for Optimization Software.

http://plato.la.asu.edu/guide.html.

[65] B.A. Murtagh and M.A. Saunders. MINOS 5.1 User's Guide. Technical Report SOL

83{20R, Stanford University, 1987.

[66] W. Orchard-Hays. Advanced Linear-Programming Computing Techniques. McGraw-

Hill, 1968.

[67] P. S. Pacheco. Parallel Programming With MPI. Morgan Kaufmann Publishers Inc.,

1997.

[68] Paragon Decision Technology, http://www.aimms.com/index.html. AIMMS.

[69] D. A. Patterson and J. L. Hennessy. Computer Organization & Design : The

Hardware-Software Interface. Morgan Kaufmann Publishers Inc., 2nd edition, 1998.

[70] F. Ris, C. Barkmeyer, and P. Farkas. When Floating-Point Addition Isn't Commu-

tative. SIGNUM Newsletter, 28(1):8{13, January 1993.

[71] T. G. Robertazzi and S. C. Schwartz. Best Ordering for Floating-Point Addition.

ACM Transactions on Mathematical Software, 14(1):101{110, March 1988.

[72] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization.

Discrete Mathematics and Optimization. Wiley, 1997.

34

Maros, Khaliq Optimization Software

[73] E. Rothberg and A. Gupta. EÆcient Sparse Matrix Factorization on High Per-

formance Workstations|Exploiting the Memory Hierarchy. ACM Transactions on

Mathematical Software, 17(3):313{334, 1991.

[74] M.W.P. Savelsbergh. Preprocessing and Probing for Mixed Integer Programming

Problems. ORSA Journal on Computing, 6:445{454, 1994.

[75] B. F. Smith. The Transition of Numerical Software : From Nuts-and-Bolts to Ab-

straction. SIGNUM Newsletter, 33(1):7{15, January 1998.

[76] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - The Com-

plete Reference, Volume 1, The MPI Core. Scienti�c and Engineering Computation

Series. The MIT Press, 2nd edition, 1999.

[77] R. S. Solanki and J. K. Gorti. Implementation of an Integer Optimization Plat-

form Using Object-Oriented Programming. Computers and Operations Research,

24(6):549{557, 1997.

[78] B. Stroustrup. The C++ Programming Language. Addison-Wesley Publishing Com-

pany, 3rd edition, 1997.

[79] U.H. Suhl and L.M. Suhl. Computing Sparse LU Factorizations for Large-Scale

Linear Programming Bases. ORSA Journal on Computing, 2(4):325{335, Fall 1990.

[80] H. Sutter. Exceptional C++. The C++ In-Depth Series. Addison-Wesley Longman

Inc., 2000.

[81] A. Swietanowski. A New Steepest Edge Approximation for the Simplex Method for

Linear Programming. Computational Optimization and Applications, 10(3):271{281,

1998.

[82] D. Tabak. Advanced Microprocessors. McGraw-Hill, Inc., Second edition, 1995.

[83] S. Toledo. Improving the memory-system performance of sparse-matrix vector mul-

tiplication. IBM Journal Of Research And Development, 41(6):711{725, November

1997.

35

Maros, Khaliq Optimization Software

[84] R. R. Trippi and E. Turban. Parallel Processing and OR/MS. Computers and

Operations Research, 18(2):199{210, 1991.

[85] P. Van Henteryck. The OPL Optimization Programming Language. MIT Press, 1999.

[86] P. J. L. Wallis. Improving Floating-Point Programming. John Wiley & Sons Ltd.,

1990.

[87] Ph. Wolfe. The composite simplex algorithm. SIAM Review, 7(1):42{54, 1965.

[88] S.J. Wright. Primal-Dual Interior Point Methods. SIAM, 1996.

[89] H. Yamashita and H. Yabe. Superlinear and quadratic convergence of some primal-

dual interior point methods for constrained optimization. Mathematical Program-

ming, 75:377{397, 1996.

36

