
A Piecewise Linear Dual Phase-1 Algorithm for the

Simplex Method with All Types of Variables

István Maros

Department of Computing, Imperial College, London

Email: i.maros@ic.ac.uk

Departmental Technical Report 2000/13

ISSN 1469–4174

Abstract

A dual phase-1 algorithm for the simplex method that handles all types of vari-

ables is presented. In each iteration it maximizes a piecewise linear function of dual

infeasibilities in order to make the largest possible step towards dual feasibility with

a selected outgoing variable. The new method can be viewed as a generalization of

traditional phase-1 procedures. It is based on the multiple use of the expensively

computed pivot row. By small amount of extra work per iteration, the progress

it can make is equivalent to many iterations of the traditional method. In addi-

tion to this main achievement it has some further important and favorable features,

namely, it is very efficient in coping with degeneracy and numerical difficulties. Both

theoretical and computational issues are addressed. Examples are also given that

demonstrate the power and flexibility of the method.

Keywords: Linear programming, Dual simplex method, Phase-1, Piecewise

linear functions.

1

Maros Dual Phase-1 2 of 25

1 Introduction

The dual simplex algorithm (DSA) developed by Lemke [7] has long been known as

a better alternative to Dantzig’s primal simplex [2] for solving certain types of linear

programming (LP) problems, mostly in cases where a dual feasible solution is readily

available. In an earlier paper [9] we presented a piecewise linear dual phase-2 procedure

that handles all types of variables and is especially efficient in the presence of many upper

bounded variables. This latter situation is typical in the LP relaxation of mixed integer

programming problems within branch and bound type solution algorithms. In such a case

there are many upper bounded variables and an optimal basic solution to a node problem

which is dual feasible for the immediate successor problems is available. However, in many

other cases a dual feasible solution is not available and the dual algorithm cannot be used

even if it would be advantageous.

There are some techniques to obtain a dual basic feasible solution for the problem. The

most typical one is the dual variant of the big-M method. In this case an extra ‘≤’ type

constraint
∑

xj is added to the original constraints. It is made non-binding by setting the

right-hand-side coefficient equal to a large number (the big M). This enables the gradual

build-up of a dual feasible basis if one exists. For details c.f., [12]. This and the other

methods have been worked out for the case when the LP problem is in the standard form.

If all types of variables are present in a problem the situation is more complicated. In

such a case, one possibility is to introduce additional variables and constraints to convert

the problem into the standard form with nonnegative variables only and apply the big-M

or other methods.

In this paper we propose a more efficient algorithm to obtain a dual feasible solution for

a problem with all types of variables. Our motivation was the computational enhancement

of dual phase-1 in this general case. The key idea in the new approach is the multiple

use of the (expensively) updated pivot row. The algorithm is a modification of the DSA

such that in each iteration the largest possible step is made with a selected outgoing

variable towards dual feasibility. This is achieved by maximizing a concave piecewise

Maros Dual Phase-1 3 of 25

linear function in every iteration. We show that the extra work per iteration is little

and the algorithm can result in a considerably increased efficiency by greatly reducing

the number of iterations in dual phase-1. This algorithm is monotone in the sum of dual

infeasibilities. As such, the number of infeasibilities can even increase (though in this

case the sum will definitely decrease), remain the same (even in the nondegenerate case,

though infeasible positions may change) or decrease. The algorithm has some inherent

flexibility that can alleviate or overcome occasional numerical and/or algorithmic (like

degeneracy) difficulties.

The rest of the paper is organized as follows. In section 2 we state the primal and dual

problems with all types of variables and discuss relevant work done in this area. Section 3

gives an analysis of dual infeasibility, it introduces a new dual phase-1 procedure and gives

its algorithmic description. Section 4 presents two numerical examples that illustrate the

operation of the procedure. It is followed by a summary and conclusions in section 5.

2 Problem statement

2.1 The primal problem

We consider the following primal linear programming (LP) problem:

minimize cTx,

subject to Ax = b,

l ≤ x ≤ u,

where A ∈ Rm×n, c, x, l and u ∈ Rn and b ∈ Rm. Some or all of the components of l and

u can be −∞ or +∞, respectively. A itself is assumed to contain a unit matrix I, that

is, A = [I, Ā], so it is of full row rank. Variables which multiply columns of I transform

every constraint to an equation and are often referred to as logical variables. Variables

which multiply columns of Ā are called structural variables.

By some elementary transformations it can be achieved that the variables (whether

logical or structural) fall into four categories as shown in Table 1 (for further details, see

Maros Dual Phase-1 4 of 25

Orchard-Hays [11]).

Feasibility range Type Reference

xj = 0 0 Fixed variable

0 ≤ xj ≤ uj < +∞ 1 Bounded variable

0 ≤ xj ≤ +∞ 2 Non-negative variable

−∞ ≤ xj ≤ +∞ 3 Free variable

Table 1: Types of variables

2.2 The dual problem

First, we restate the primal problem to contain bounded variables only.

(P1) minimize cTx,

subject to Ax = b,

0 ≤ x ≤ u,

where all components of u are finite.

A basis to (P1) is denoted by B and is assumed (without loss of generality) to be the

first m columns. Thus, A is partitioned as A = [B,N], with N denoting the nonbasic part

of A. The components of x and c are partitioned accordingly. Column j of A is denoted

by aj. A basic solution to (P1) is

xB = B−1

(
b−

∑
j∈U

ujaj

)
,

where U is the index set of nonbasic variables at upper bound. The ith basic variable

is denoted by xBi. The dj reduced cost of variable j is defined as dj = cj − πT aj =

cj − cT
BB−1aj which is further equal to cj − cT

Bαj if the notation αj = B−1aj is used.

The dual of (P1) is:

(D1) maximize bTy − uTw,

subject to ATy − w ≤ c,

w ≥ 0,

Maros Dual Phase-1 5 of 25

where y ∈ Rm and w ∈ Rn are the dual variables. Stating the dual when the primal has

all types of variables is cumbersome. However, we can think of the reduced costs of the

primal problem as the logical variables of the dual [11]. In this way dual feasibility can

be expressed quite simply as shown in the next section.

In practice, dual algorithms work on the primal problem using the computational tools

of the sparse primal simplex method but perform basis changes according to the rules of

the dual.

The upper bounded version of the DSA was first described by Orchard-Hays [11] and

later by Chvátal [1]. They both deal with dual phase-2. Maros also published a general

dual phase-2 algorithm (BSD in [9]) that handles all types of variables and appears to be

computationally very efficient.

For phase-1 of the primal with all types of variables Maros developed the FEWPHI

algorithm [8] that can make several iterations with one updated column. Similar ideas for

the primal with slightly different scope are also discussed by Wolfe [13] and Greenberg [5].

For dual phase-1 the most relevant work is [4] in which Fourer gives a theoretical

discussion of a procedure that is based on the above advanced ideas for the primal. His

algorithm is monotone in both the sum and number of infeasibilities.

The creation of the updated pivot row p, i.e., the computation of αpj for all nonbasic

indices j is an expensive operation in SSX (c.f. [10]). Traditional dual methods make

one iteration with the pivot row and discard it. It will be shown that the new method,

GDPO (Generalized Dual Phase One), that takes advantage of some ideas of BSD and

handles all types of variables, makes one step with the pivot row but it corresponds to

(rarely) one or (frequently) many iterations of the traditional method at the price of one.

GDPO is monotone only in the sum of infeasibilities which increases its flexibility. It also

has some additional favorable features that enhance its effectiveness and efficiency. As a

result, GDPO seems to be an attractive substitute for a general dual phase-1 algorithm.

Maros Dual Phase-1 6 of 25

Table 2: Dual feasibility of nonbasic djs (primal minimization)

Type of nonbasic Dual feasibility

variable

0 dj of any sign

1 dj ≥ 0 if xj = 0

dj ≤ 0 if xj = uj

2 dj ≥ 0

3 dj = 0

3 Dual phase-1 with all types of variables

If there are only type-2 variables in the problem then w is not present in (D1). Assuming

that B is a basis to A, dual feasibility is expressed by

BT y = cB

NT y ≤ cN , or dN = cN −NT y ≥ 0.

In practice, of course, all types of variables are present in a problem and it is de-

sirable to handle them algorithmically rather than introducing additional variables and

constraints and reverting to the traditional formulation. The dj of a basic variable is zero.

For nonbasic variables the dual feasible values are shown in Table 2 (for proof c.f. [11]).

Since the dj of a type-0 variable is always feasible such variables can be, and in fact are,

ignored in dual phase-1. Any dj that falls outside the feasibility range is dual infeasible.

We define two index sets of dual infeasible variables:

M = {j : (xj = 0 and dj < 0)}, (1)

and

P = {j : (xj = uj and dj > 0) or (type(xj) = 3 and dj > 0)},

Maros Dual Phase-1 7 of 25

where type(xj) denotes the type of xj.

There is an easy way to make the dj of upper bounded variables feasible. They can

be infeasible in two different ways. Accordingly, we define two index sets:

T+ = {j : type(xj) = 1 and j ∈ P}

T− = {j : type(xj) = 1 and j ∈ M}

If we perform a bound swap for all such variables, the corresponding djs become feasible.

In this case the basis remains unchanged but the solution has to be updated:

xB := xB −
∑
j∈T+

ujαj +
∑
j∈T−

ujαj, (2)

where αj = B−1aj, ‘:=’ denotes assignment, and the sum is defined to be 0 if the corre-

sponding index set is empty. Computing αj for all j in (2) would be relatively expensive.

However, this entire operation can be performed in one single step for all variables involved

in the following way.

xB := xB −
∑
j∈T+

ujαj +
∑
j∈T−

ujαj

= xB −B−1

∑
j∈T+

ujaj −
∑
j∈T−

ujaj


= xB −B−1ã

(3)

with the obvious interpretation of ã. Having constructed ã, we need only one FTRAN

operation with the inverse of the basis.

Assuming that such a dual feasibility correction has been carried out the definition of

P simplifies to:

P = {j : type(xj) = 3 and dj > 0}, (4)

While this redefinition is not really necessary at this stage it will be very useful for the

new algorithm.

Using infeasibility sets M and P , the sum of dual infeasibilities is defined as

f =
∑
j∈M

dj −
∑
j∈P

dj, (5)

Maros Dual Phase-1 8 of 25

where any of the sums is zero if the corresponding index set is empty. It is always true

that f ≤ 0. In dual phase-1 the objective is to maximize f subject to the dual feasibility

constraints. When f = 0 is reached the solution becomes dual feasible. If it cannot be

achieved the dual is infeasible.

The dual simplex method performs basis changes using the computational tools of the

primal. However, in dual the pivot row (the outgoing variable) is selected first, followed

by a dual ratio test to determine the pivot column (incoming variable).

Let us assume row p is selected somehow (i.e., the pth basic variable xBp will leave

the basis). The elimination step of the simplex transformation subtracts some multiple

of row p from dN . If this multiplier is denoted by t then the transformed value of each dj

can be written as a function of t:

d
(p)
j (t) = dj − tαpj. (6)

With this notation, d
(p)
j (0) = dj and the sum of infeasibilities as a function of t can be

expressed (assuming t is small enough such that M and P remain unchanged) as:

f (p)(t) =
∑
j∈M

d
(p)
j (t)−

∑
j∈P

d
(p)
j (t) = f (p)(0)− t

(∑
j∈M

αpj −
∑
j∈P

αpj

)
.

Clearly, f of (5) can be obtained as f = f (p)(0). To simplify notations, we drop the

superscript from both d
(p)
j (t) and f (p)(t) and will use dj(t) and f(t) instead.

The change in the sum of dual infeasibilities, if t moves away from 0, is:

∆f = f(t)− f(0) = −t

(∑
j∈M

αpj −
∑
j∈P

αpj

)
. (7)

Introducing notation

vp =
∑
j∈M

αpj −
∑
j∈P

αpj (8)

(7) can be written as ∆f = −tvp. Therefore, requesting an improvement in the sum of

dual infeasibilities (∆f > 0) is equivalent to requesting

−tvp > 0

Maros Dual Phase-1 9 of 25

which can be achieved in two ways:

If vp > 0 then t < 0 must hold, (9)

if vp < 0 then t > 0 must hold. (10)

As long as there is a vi 6= 0 with type(xBi) 6= 3 (type-3 variables are not candidates to

leave the basis) there is a chance to improve the dual objective function. The precise

conditions will be worked out in the sequel. From among the candidates we can select vp

using some simple or sophisticated (steepest edge type) rule.

Let k denote the original index of the pth basic variable xBp, i.e., xk = xBp (which is

selected to leave the basis). At this point we stipulate that after the basis change dk of

the outgoing variable take a feasible value. It corresponds to releasing the p-th dual basic

(equality) constraint so that it remains a satisfied inequality. This is not necessary but it

gives a better control of dual infeasibilities.

If t moves away from zero (increasing or decreasing as needed) some of the djs move

toward zero (the boundary of their feasibility domain) either from the feasible or infeasible

side and at a specific value of t they reach it. Such values of t are determined by:

tj =
dj

αpj

, for some nonbasic j indices

and they enable a basis change since dj(t) becomes zero at this value of t, see (6). It

also means that the j-th dual constraint becomes tight at this point. Let us assume the

incoming variable xq has been selected. Currently, dk of the outgoing basic variable is

zero. After the basis change its new value is determined by the transformation formula

of the simplex method giving

d̄k = − dq

αpq

= −tq,

which we want to be dual feasible. The proper sign of d̄k is determined by the way the

outgoing variable leaves the basis. This immediately gives rules how an incoming variable

can be determined once an outgoing variable (pivot row) has been chosen. Below is a

verbal description of these rules. Details are given in the next section.

Maros Dual Phase-1 10 of 25

1. If vp > 0 then tq < 0 is needed for (9) which implies that the pth basic variable

must leave the basis at lower bound (because d̄k must be nonnegative for feasibility).

In the absence of dual degeneracy this means that dq and αpq must be of opposite

sign. In other words, the potential pivot positions in the selected row are those that

satisfy this requirement.

2. If vp < 0 then tq > 0 is needed which is only possible if the outgoing variable xBp

(alias xk) is of type-1 leaving at upper bound. In the absence of degeneracy this

means that dq and αpq must be of the same sign.

3. If vp 6= 0 and the outgoing variable is of type-0 then the sign of dq is immaterial.

Therefore, if vp > 0 we look for tq < 0 and if vp < 0 choose from the positive t

values.

It remains to see how vector v = [v1, . . . , vm]T can be computed for row selection. In

vector form, (8) can be written as

v =
∑
j∈M

αj −
∑
j∈P

αj = B−1

(∑
j∈M

aj −
∑
j∈P

aj

)
= B−1ã (11)

with obvious interpretation of auxiliary vector ã. The latter is an inexpensive operation

in terms of the revised simplex method.

3.1 Analysis of the dual infeasibility function

We can investigate how the sum of dual infeasibilities, f(t), changes as t moves away from

0 (t ≥ 0 or t ≤ 0). We show that, in either case, f(t) is a piecewise linear concave function

with break points corresponding to different choices of the entering variable. The global

maximum of this function is achieved when its slope changes sign. It gives the maximum

improvement in the sum of dual infeasibilities that can be achieved with the selected

outgoing variable by making multiple use of the updated pivot row.

Let the index of the pivot row be denoted by p, the outgoing variable by xBp (≡ xk)

and the index of the incoming variable by q. The pivot element is αpq.

Maros Dual Phase-1 11 of 25

Reduced costdq dj

αpq αpj xBpp

uq

q j

Figure 1: The key elements of the dual pivot step.

After the basis change, the new values of dj are determined by:

d̄j = dj −
dq

αpq

αpj for j ∈ N, (12)

and for the leaving variable:

d̄k = − dq

αpq

.

The feasibility status of a dj (described in Table 2) may change as t moves away from

zero. We assume that feasibility correction for upper bounded variables has been carried

out thus the corresponding djs are at feasible level. The following analysis uses (6) and

(12) to keep track of the changes of the feasibility status of each dj(t).

I. t ≥ 0, i.e., the outgoing variable leaves at upper bound.

(a) αpj > 0, dj(t) is decreasing

i. dj(0) > 0

A. If dj(0) is infeasible, i.e., j ∈ P , type(xj) = 3 (free), dj(t) remains

infeasible as long as t <
dj(0)

αpj

and it becomes infeasible again if t >

dj(0)

αpj

when j joins M .

Maros Dual Phase-1 12 of 25

B. If dj(0) is feasible, dj(t) remains feasible as long as t ≤ dj(0)

αpj

after

which it becomes negative and j joins M .

ii. If dj(0) = 0 and xj is at lower bound or type(xj) = 3, dj(t) remains feasible

only if t =
dj(0)

αpj

= 0. For t > 0 it becomes infeasible and j joins M .

(b) αpj < 0, dj(t) is increasing

i. dj(0) < 0

A. If dj(0) is infeasible, i.e., j ∈ M , dj(t) remains infeasible as long as

t <
dj(0)

αpj

. If type (xj) = 3, it becomes infeasible again when t >
dj(0)

αpj

and j joins P .

B. If dj(0) is feasible and xj is a bounded (type-1) variable then dj(t)

remains feasible as long as t ≤ dj(0)

αpj

, after which it becomes positive

and j joins P .

ii. If dj(0) = 0 and, additionally, xj is at upper bound or type(xj) = 3 then

it remains feasible only for t =
dj(0)

αpj

= 0; for t > 0 it becomes positive

and j joins P .

II. t ≤ 0, i.e., the outgoing variable leaves at zero.

(a) αpj > 0, i.e., dj(t) is increasing

i. dj(0) < 0

A. If dj(0) is infeasible, i.e., j ∈ M , dj(t) remains infeasible as long as

t >
dj(0)

αpj

. If type(xj) = 3, it becomes infeasible again when t <
dj(0)

αpj

and j joins P .

B. If dj(0) is feasible, i.e., xj is at upper bound, then dj(t) remains feasible

as long as t ≥ dj(0)

αpj

, after which it becomes positive and j joins P .

ii. If dj(0) = 0 and, additionally, xj is at upper bound or type(xj) = 3 then

dj(t) remains feasible only for t =
dj(0)

αpj

= 0; for t < 0 it becomes positive

and j joins P .

Maros Dual Phase-1 13 of 25

(b) αpj < 0, i.e., dj(t) is decreasing

i. dj(0) > 0

A. If dj(0) is infeasible, j ∈ P , type(xj) = 3, dj(t) remains infeasible as

long as t >
dj(0)

αpj

and it becomes infeasible again if t <
dj(0)

αpj

when j

joins M .

B. If dj(0) is feasible (xj is at upper bound), dj(t) remains feasible as long

as t ≥ dj(0)

αpj

after which it becomes negative and j joins M .

ii. dj(0) = 0, and, additionally, xj is at lower bound or type(xj) = 3 then

dj(t) remains feasible only if t =
dj(0)

αpj

= 0; for t < 0 it becomes negative

and j joins M .

The above discussion can be summarized as follows.

1. If t ≥ 0 is required then the dual feasibility status of dj (and set M or P , thus the

composition of f(t)) changes for values of t defined by positions where

dj < 0 and αpj < 0 or

dj ≥ 0 and αpj > 0

2. If t ≤ 0 is required then the critical values are defined by

dj < 0 and αpj > 0 or

dj ≥ 0 and αpj < 0.

The second case can directly be obtained from the first one by using −αpj in place of αpj.

In both cases there are some further possibilities. Namely, if type(xj) = 3 (free variable)

and dj 6= 0 then at the critical point the feasibility status of dj changes twice. First when

it becomes zero (feasible), and second, when it becomes nonzero again. In both cases

the critical value is dj/αpj. It is also worth keeping track of changes of dual feasibility of

upper bounded (type-1) positions. Though they will be treated by ‘feasibility correction’

the required bound swaps have to be recorded. The critical values of t (for the t ≥ 0 case)

are defined by dj/αpj if xj is at lower bound and αpj > 0 or if xj is at upper bound and

αpj < 0. If the finally chosen value of t is larger than some of the threshold values defined

Maros Dual Phase-1 14 of 25

by bounded variables then these variables will take part in bound swap for feasibility

correction.

Let the critical values defined above for t ≥ 0 be arranged in an ascending order:

0 ≤ t1 ≤ · · · ≤ tQ, where Q denotes the total number of them. For t ≤ 0 we make a

reverse ordering: tQ ≤ · · · ≤ t1 ≤ 0, or equivalently, 0 ≤ −t1 ≤ · · · ≤ −tQ. Now we are

ready to investigate how f(t) characterizes the change of dual infeasibility.

Clearly, Q cannot be zero, i.e., if row p has been selected as a candidate it defines at

least one critical value, see (8). Assuming vp < 0 the initial slope of f(t), according to

(7), is

s0
p = −vp =

∑
j∈P

αpj −
∑
j∈M

αpj. (13)

Now t ≥ 0 is required, so we try to move away from t = 0 in the positive direction. f(t)

keeps improving at the rate of s0
p until t1. At this point dj1(t1) = 0, j1 denoting the

position that defined the smallest ratio t1 =
dj1(0)

αpj1

. At t1 the feasibility status of dj1

changes. Either it becomes feasible at this point or it becomes infeasible after t1.

If t1 ≥ 0 then either (a) dj1 ≥ 0 and αpj1 > 0 or (b) dj1 ≤ 0 and αpj1 < 0. In these

cases:

(a) dj1(t) is decreasing.

(i) If dj1 was feasible it becomes infeasible and j1 joins M . At his point s0
p decreases

by αpj1 , see (13).

(ii) If dj1 was infeasible (j1 ∈ P) it becomes feasible and j1 leaves P . Consequently,

s0
p decreases by αpj1 .

If dj1 = 0 then we only have (i).

(b) dj1(t) is increasing.

(i) If dj1 was feasible it becomes infeasible and j1 joins P . At his point s0
p decreases

by −αpj1 , see (13).

Maros Dual Phase-1 15 of 25

f(t)

tt1 t2 t3 t4

Figure 2: The sum of dual infeasibilities as a function of t.

(ii) If dj1 was infeasible (j1 ∈ M) it becomes feasible and j1 leaves M . Conse-

quently, s0
p decreases by −αpj1 .

If dj1 = 0 then we only have (i).

Cases (a) and (b) can be summarized by saying that at t1 the slope of f(t) decreases by

|αpj1| giving s1
p = s0

p − |αpj1|. If s1
p is still positive we carry on with the next point (t2),

and so on. The above analysis is valid at each point. Clearly, f(t) is linear between two

neighboring threshold values. For obvious reasons, these values are called breakpoints.

The distance between two points can be zero if a breakpoint has a multiplicity > 1.

Since the slope decreases at breakpoints f(t) is a piecewise linear concave function as

illustrated in Figure 2. It achieves its maximum when the slope changes sign. This is a

global maximum. After this point the dual objective starts deteriorating.

If vp > 0 then t ≤ 0 is required. In this case the above analysis remains valid if αpj is

f(t)

tt1 t2 t3 t4

Maros Dual Phase-1 16 of 25

substituted by −αpj. It is easy to see that both cases are covered if we take s0
p = |vp| and

sk
p = sk−1

p − |αpjk
|, for k = 1, . . . , Q.

3.2 Dual phase-1 step with all types of variables

Let t0 = 0 and fi = f(ti). Obviously, the sum of dual infeasibilities in the breakpoints

can be computed recursively as fi = fi−1 + si−1
p (ti − ti−1), for i = 1, . . . , Q.

Below, we give the description of one iteration of the algorithm which we call GDPO

(for Generalized Dual Phase One). We assume that dual feasibility correction according

to (2) has been carried out before the iterations started. During ratio test, GDPO may

introduce breakpoints for upper bounded variables. The presented algorithm properly

handles these ‘break points’. Namely, the passed ones are recorded and will take part in

feasibility correction.

An iteration of the Generalized Dual Phase-1 (GDPO) algorithm:

1. Identify sets M and P as defined in (1) and (4). If both are empty, solution is dual

feasible, procedure terminates.

2. Form auxiliary vector ã =
∑
j∈M

aj −
∑
j∈P

aj.

3. Compute the vector of dual phase-1 reduced costs: v = B−1ã, as in (11).

4. Select an improving candidate row according to some rule (i.e., Dantzig [2] or Devex

[6, 3]), denote its basic position by p. This will be the pivot row.

If none exists, terminate: The dual problem is infeasible.

5. Compute the p-th row of B−1: βT = eT
p B−1 and determine nonbasic components of

the updated pivot row by αpj = βT aj for j ∈ N .

6. Compute dual ratios for eligible positions according to rules under I., if vp < 0, or

II., if vp > 0, as discussed in section 3.1. Store their absolute values in a sorted

order: 0 ≤ |t1| ≤ · · · ≤ |tQ|.

Maros Dual Phase-1 17 of 25

7. Set i = k = 0, t0 = 0, f0 = f(0), s0
p = |vp| and T+ = T− = ∅; k will run through

all breakpoints defined in Step 6, i covers those which do not define bound swaps.

While k < Q and sk
p ≥ 0 do

k := k + 1

Let jk denote the column index of the variable that defined the k-th smallest ra-

tio, |tk|.

If type(xjk
) = 1 move xjk

to its opposite bound, i.e., set xjk
= ujk

or xjk
= 0, and

T+ = T+ ∪ {jk} or T− = T− ∪ {jk}. Bound swaps do not change the slope of f .

else Compute fk = fi + si
p(tk − ti), sk

p = si
p − |αpjk

|, i = k.

end while

Let q denote the index of the last breakpoint for which the slope sk
p was still nonneg-

ative, q = jk. The maximum of f(t) is achieved at this break point. The incoming

variable is xq.

8. Update solution:

(a) Take care of basis change:

Compute αq = B−1aq

Update xB: x̄B = ExB, E denoting the elementary transformation matrix

created from αq.

Update basis inverse (B̄−1 = EB−1) and the basic/nonbasic index sets.

(b) Take care of bound swaps in the new basis:

x̄B := x̄B −
∑
j∈T+

ujᾱj +
∑
j∈T−

ujᾱj, (14)

where the sum is defined to be 0 if the corresponding index set is empty. Also,

the list of variables at upper bound has to be updated. Note: ᾱjs in (14) are

defined in the new basis: ᾱj = B̄−1aj.

Maros Dual Phase-1 18 of 25

3.2.1 Work per iteration

It is easy to see that the extra work required for GDPO is generally small.

1. Ratio test: same work as with traditional dual.

2. The break points of the piecewise linear dual objective function have to be stored

and sorted. This requires extra memory for the storage, and extra work to sort.

However, the tk values have to be sorted only up to the point where f(t) reaches its

maximum. Therefore, if an appropriate priority queue is set up for these values the

extra work can be kept at minimum.

3. Taking care of bound swaps according to (3) requires the transformation (FTRAN)

of a single composite column.

3.2.2 Implementation

For the efficient implementation of GDPO a sophisticated data structure (priority queue)

is needed to store and (partially) sort the break points. Additionally, since row and

column operations are performed on A, it is important to have a data structure that

supports efficient row and columnwise access of A.

3.2.3 Key features of GDPO

The main computational advantage of the introduced GDPO algorithm that it can make

multiple steps with one updated pivot row. These steps correspond to several traditional

iterations. A multiple step of GDPO requires very little extra work compared to the

traditional method.

GDPO is an efficient generalization of the traditional dual simplex algorithm in the

sense that the latter stops at the smallest ratio (first breakpoint) while GDPO can pass

many breakpoints making the maximum progress towards dual feasibility with the selected

outgoing variable. Its efficiency of is not hampered by the presence of all types of variables.

Maros Dual Phase-1 19 of 25

GDPO possesses a favorable anti-degeneracy property. It can pass zero ratios in two

different ways: (i) the |αpjk
| of a zero ratio does not make the slope of f change sign,

(ii) djk
= 0 for a type-1 variable and αpjk

has the ‘wrong’ sign (dj is moving in the

infeasible domain). This ratio is simply ignored and a bound swap is triggered for the

corresponding xjk
.

The freedom of multiple choice created by the break points can be used to enhance the

numerical stability of GDPO. Namely, if |αpjq | of the optimal breakpoint is too small and

q > 1 we can take one of the previous breakpoints with sufficiently large pivot element.

4 Two examples of the algorithmic step

The operation of GDPO is demonstrated on two examples. We assume pivot row p has

been selected based on vp and the updated pivot row has been determined. The types of

the variables and the dj values are given. The status of upper bounded variables is also

indicated (LB for ‘at lower bound’ and UB for ‘at upper bound’).

Example-1. The problem has 12 nonbasic variables. Now vp = 10 which is the t ≤ 0

case. The sum of dual infeasibilities is f = −35. The solution is dual degenerate.

j 1 2 3 4 5 6 7 8 9 10 11 12

type(xj) 3 3 3 2 2 2 2 2 1 1 1 1

Status LB LB UB UB

αpj 8 4 1 4 2 −1 −1 1 −1 1 −1 1 vp = 10

dj −24 2 0 −8 −1 1 0 0 0 1 −1 −2 f = −35

Infeasibility M P M M

Ratio −3 0 −2 −0.5 −1 0 0 −2

2nd ratio −3

Maros Dual Phase-1 20 of 25

Altogether, 9 ratios have been defined, Q = 9. Note, for the first position there are two

identical ratios. After sorting the absolute values of the ratios:

Index 1 2 3 4 5 6 7 8 9

jk 9 7 3 5 6 4 12 1 1

|tjk
| 0 0 0 0.5 1 2 2 3 3

αpjk
1 −1 1 2 1 4 1 8 8

Now, applying Step 7 of GDPO, we obtain

k i jk |tk| αpjk
fk = fi + si

p(tk − ti) sk
p = si

p − |αpjk
| Remarks

0 0 0 −35 10

1 0 9 0 1 −35 10 BSW for x9

2 0 7 0 −1 −35 10− | − 1| = 9

3 2 3 0 1 −35 9− |1| = 8

4 3 5 0.5 2 −35 + 8× (0.5− 0) = −31 8− |2| = 6

5 4 6 1 1 −31 + 6× (1− 0.5) = −28 6− |1| = 5

6 5 4 2 4 −28 + 5× (2− 1) = −23 5− |4| = 1

7 6 12 2 1 −23 1 BSW for x12

8 6 1 3 8 −23 + 1× (3− 2) = −22 1− |8| = −7

BSW stands for bound swap. We have used 8 of the 9 breakpoints. At termination of this

step of GDPO k = 8, therefore, the entering variable is x1 that has defined t8. The dual

steplength is −3 (= t8). Traditional methods would have stopped at the first breakpoint

resulting in a degenerate iteration.

Maros Dual Phase-1 21 of 25

It is instructive to monitor how dual infeasibility changes at the nonzero breakpoints.

j 1 2 3 4 5 6 7 8 9 10 11 12

type(xj) 3 3 3 2 2 2 2 2 1 1 1 1

αpj 8 4 1 4 2 −1 −1 1 −1 1 −1 1

dj −24 2 0 −8 −1 1 0 0 0 1 −1 −2 f = −35

Infeasibility M P M M

dj + 0.5αpj −20 4 0.5 −6 0 0.5 −0.5 0.5 −0.5 1.5 −1.5 −1.5 f = −31

Infeasibility M P P M M (M)

dj + αpj −16 6 1 −4 1 0 −1 1 −1 2 −2 −1 f = −28

Infeasibility M P P M M (M)

dj + 2αpj −8 10 2 0 3 −1 −2 2 −2 3 −3 0 f = −23

Infeasibility M P P M M (M)

dj + 3αpj 0 14 3 4 5 −2 −3 4 −3 4 −4 1 f = −22

Infeasibility P P M M (M) (P)

(M) and (P) denote temporarily infeasible positions which are subject to feasibility cor-

rection by bound swap. Such positions do not contribute to f . At the end of Step 7 of

GDPO we still have four infeasible positions, P = {2, 3}, M = {6, 7}. Some infeasibilities

disappeared and new ones were created but the sum of infeasibilities has been reduced

from −35 to −22. It is interesting to see what happens if we increase t to 4. The outcome

is f = −37 which shows a rate of deterioration of 15. The reason for this rate is that at

t = 3 we have a breakpoint with multiplicity of 2 (see line ‘2nd ratio’), both defined by

x1. Therefore, passing through it, the slope decreases by 2|αp1| = 16 from +1 to −15.

Maros Dual Phase-1 22 of 25

Example-2. This problem has 5 nonbasic variables. Here, vp = −4 which is the t ≥ 0

case. The sum of dual infeasibilities is f = −8.

j 1 2 3 4 5

type(xj) 2 1 1 2 3

Status UB LB

αpj −2 −3 2 −1 1 vp = −4

dj −4 0 1 −1 3 f = −8

Infeasibility M M P

Ratio 2 0 0.5 1 3

Altogether, 5 ratios have been defined, Q = 5. After sorting (the absolute values of) the

ratios:

Index 1 2 3 4 5

jk 2 3 4 1 5

|tjk
| 0 0.5 1 2 3

αpjk
−1 2 −3 −2 1

Applying Step 7 of GDPO, we obtain

k i jk |tk| αpjk
fk = fi + si

p(tk − ti) sk
p = si

p − |αpjk
| Remarks

0 0 0 −8 4

1 0 2 0 −3 −8 4 BSW for x2

2 0 3 0.5 2 −8 4 BSW for x3

3 0 4 1 −1 −8 + 4× (1− 0) = −4 4− | − 1| = 3

4 3 1 2 −2 −4 + 3× (2− 1) = −1 3− | − 2| = 1

5 4 5 3 1 −1 + 1× (3− 2) = 0 1− |1| = 0

Now, we have used up all 5 breakpoints. Two of them will be handled by feasibility

correction. The other three have contributed to the reduction of dual infeasibilities. The

last breakpoint defines dual steplength of 3 (= t5). and the entering variable xj5 =

x5. In this case GDPO could reach dual feasibility with one updated pivot row in one

Maros Dual Phase-1 23 of 25

step. Traditional methods would have stopped (at best) at the first non-BSW breakpoint

resulting in an improved but still dual infeasible solution.

Again, we can trace the change of dual infeasibilities at the genuine breakpoints (other

than bound swaps).

j 1 2 3 4 5

type(xj) 2 1 1 2 3

αpj −2 −3 2 −1 1

dj −4 0 1 −1 3 f = −8

Infeasibility M M P

dj − αpj −2 3 −1 0 2 f = −4

Infeasibility M (P) (M) P

dj − 2αpj 0 6 −3 1 1 f = −1

Infeasibility (P) (M)

dj − 3αpj 2 9 −5 2 0 f = 0

Infeasibility (P) (M)

It is important to emphasize that tracing infeasibility as shown above is actually not

done in GDPO as there is no need for that. We included it only to demonstrate the

outcome of different possible choices of the incoming variable.

5 Summary

We have presented a generalization of the dual phase-1 algorithms that handles all types

of variables efficiently. It is based on the piecewise linear nature of the dual objective

if defined as a function of releasing one basic equation. The main advantage is that a

number of very cheap iterations can be made with one updated pivot row. As additional

benefit, GDPO possesses several favorable features making it particularly suitable for

inclusion in optimization software.

We have shown GDPO can be implemented efficiently. The given examples have clearly

Maros Dual Phase-1 24 of 25

indicated its superiority over the traditional method that stops at the first breakpoint.

Similar pattern can be expected in case of large scale problems resulting in huge savings

in overall computational work in dual phase-1.

As a last point, we indicate that for the selection of the pivot row any of the known

methods can be used, including the Dantzig rule [2], dual Devex [6] or dual steepest edge

[3]. In practice the combination of dual steepest edge and GDPO proved to be particularly

efficient.

References

[1] Chvátal, V., Linear Programming, Freeman and Co., 1983.

[2] Dantzig, G.B., Linear Programming and Extensions, Princeton University Press,

Princeton, N.J., 1963.

[3] Forrest, J.J., Goldfarb, D., “Steepest edge simplex algorithms for linear program-

ming” Mathematical Programming, 57, 1992, No. 3., p. 341–374.

[4] Fourer, R., “Notes on the Dual Simplex Method”, Unpublished, March, 1994.

[5] Greenberg, H.J., “Pivot selection tactics”, in Greenberg, H.J. (ed.), Design and Im-

plementation of Optimization Software, Sijthoff and Nordhoff, 1978, p. 109–143.

[6] Harris, P.M.J., “Pivot Selection Method of the Devex LP Code”, Mathematical Pro-

gramming, 5, 1973, p. 1–28.

[7] Lemke, C.E., “The Dual Method of Solving the Linear Programming Problem”,

Naval Research Logistics Quarterly, 1, 1954, p. 36–47.

[8] Maros, I., “A general Phase-I method in linear programming”, European Journal of

Operational Research, 23(1986), p. 64–77.

Maros Dual Phase-1 25 of 25

[9] Maros, I., “A Piecewise Linear Dual Procedure in Mixed Integer Programming”, in F.

Giannesi, R. Schaible, S. Komlosi (eds.), New Trends in Mathematical Programming,

Kluwer Academic Publishers, 1998, pp. 159–170.

[10] Maros, I., Mitra, G., “Simplex Algorithms”, Chapter 1 in Beasley J. (ed.) Advances

in Linear and Integer Programming, Oxford University Press 1996, p. 1–46.

[11] Orchard-Hays, W., Advanced Linear-Programming Computing Techniques, McGraw-

Hill, 1968.

[12] Padberg, M., “Linear Optimization and Extensions”, Springer, 1995.

[13] Wolfe, Ph., “The composite simplex algorithm”, SIAM Review, 7 (1), 1965, p. 42–54.

