
29/11/00 15:45 a45/p45 - 1 - mml611/F[papers]

Rules and Tools for Software Evolution Planning and Management
Meir M Lehman

Department of Computing
Imperial College

London SW7 2BZ
tel: +44 (0) 20 7594 8214
fax: +44 (0) 20 7594 8215

mml@doc.ic.ac.uk
http://www-dse.doc.ic.ac.uk/~mml/feast

Abstract
When first formulated in the early seventies, the laws of software evolution were, for a number of reasons,
not widely accepted as relevant to software engineering practice. Over the years, they have gradually
become recognised as providing useful inputs to understanding of the software process and have found their
place in a number of software engineering curricula. Now eight in number, they have been supplemented by
a Software Uncertainty Principle and a FEAST Hypothesis.

Based on all these and on the results of the recent FEAST/1 and current FEAST/2 research projects, this
paper develops and presents some fifty rules for application in software system process planning and
management and indicates tools available or to be developed to support their application. The listing is
structured according to the laws that encapsulate the observed phenomena and that lead to the recommended
procedure. Each sub-list is preceded by a textual discussion providing at least some of the justification for
the recommended procedure. The text is fully referenced. This directs the interested reader to the literature
that records observed behaviours, interpretations, models and metrics obtained from some three of the
industrially evolved systems studied, and from which the recommendations were derived.

Keywords: assumptions, E-type software, feedback, laws of software evolution, software process
management, process improvement, rules for process planning and management, software evolution.

1 Introduction
This paper focuses on the practical implications of the results of the FEAST/1 and earlier studies, their
observations , models derived therefrom, their interpretation and on conclusions reached by the FEAST/1
group in extensive discussions amongst themselves and with collaborator personnel. It also points to general
principles of software evolution and their methodological implications. To support application of the latter,
proposals for project planning and management tools are also included. The recommendations must, clearly,
be applied intelligently, not blindly. This requires insight into the relevant general observations, the data, the
models and the interpretations on which the conclusions are based. This relatively brief paper cannot
provide such detail and is restricted to a general review of the relevant phenomenology. Where appropriate,
references to additional sources and information will be given.

Observations and rules relevant to software system evolution planning and management [leh98d] were first
identified during studies of the evolution of OS/360-70 and other systems between 1968 [leh69] and 1985
[leh78,85,woo79]. More recently, with the active collaboration of ICL, Logica and Matra BAe Dynamics,
the FEAST/1 project [leh96b] (1996-1998) has been able to confirm, refine and extend the earlier results.
This was made possible by analysis of data on the evolution of their respective systems, VME Kernel, the
FW Banking Transaction system and a Matra-BAe defence system. Data on two real time Lucent
Technologies systems also became available for analysis during this time. Broadly speaking, the long-term
evolutionary behaviour of these current release based systems was qualitatively equivalent, though varying
in detail. This despite the very different application and implementation domains in which the systems were
developed, evolved, operated and used, and to which the respective data sets related. Moreover, the results
were broadly compatible with and supportive of those obtained in the earlier studies. Such similarity in the
long-term evolutionary behaviour of widely different systems over a period of rapidly evolving technology
suggests that the observed behaviour the rules derived therefrom is not primarily due to the technologies
employed. In the main these impact local behaviour. Global behaviour, as observed from outside the
process, appears to be determined, at least in part, by other forces. Thus it should be possible to extend the
conclusions to yield results of wide validity in the field of software, and ultimately more general, evolution.

The FEAST/2 project (1999 - 2001) [leh98b] expects, inter alia , to provide a firmer empirical base for the
conclusions briefly summarised here. It also seeks to refine earlier results by identifying the sources of
evolutionary trends and patterns and their implications on evolutionary behaviour. Such trends are unlikely
to be limited to specific implementation, application areas or environments but to be more widely relevant.

29/11/00 15:45 a45/p45 - 2 - mml611/F[papers]

As a practical guide, the paper follows the historical ordering and wording of the laws of software evolution
and other principles [leh85,97]. Some overlap between sections is unavoidable if excessive cross-references
are to be avoided. We trust that the paper is, nevertheless, useful and finds practical application.

The empirical evidence referred to in this paper is restricted to that obtained in the 70s studies as modified
and extended during FEAST/1. Additional insight and information is being accumulated in FEAST/2 and
will be made available in due course. The reader wishing for clarification, more detail or to see the data and
analyses from which many of the conclusions and recommendations were derived can access the relevant
literature via the FEAST web site [fea00].

2 Laws of Software Evolution
The eight laws of software evolution, formulated over the 70s and 80s [leh74,78,80], are listed in Table 1.
The present listing incorporates minor modifications that reflect new insights gained during the FEAST/1
project [94,97,98c]. They emerged from a follow up of the 1969 study of the evolution of IBM OS/360
[leh69] as strengthened by the results of other evolution studies in the seventies. Additional support came
from an ICL study in the eighties [kit82] but some criticism directed, primarily, at the inadequacy of the
statistical support came from Lawrence [law82]. Over the years, the laws have gradually become recognised
as providing useful inputs to understanding of the software process [pfl98] and have found their place in a
number of software engineering curricula. Additional support for six of the eight laws has accumulated as
the data obtained from its collaborators [leh98c ,00a] was analysed in the FEAST/1 project [leh96b]. In the
absence of relevant data, the remaining two laws were neither supported nor negated by the additional
evidence acquired from the latest studies

No. Brief Name Law
I

1974
Continuing Change E-type systems must be continually adapted else they become

progressively less satisfactory in use
II

1974
Increasing Complexity As an E-type system is evolved its complexity increases unless work is

done to maintain or reduce it
III

1974
Self Regulation Global E-type system evolution processes are self-regulating

IV
1978

Conservation of
Organisational Stability

Unless feedback mechanisms are appropriately adjusted, average effective
global activity rate in an evolving E-type system tends to remain constant
over product lifetime

V
1978

Conservation of
Familiarity

In general, the incremental growth and long term growth rate of E-type
systems tend to decline

VI
1991

Continuing Growth The functional capability of E-type systems must be continually increased
to maintain user satisfaction over the system lifetime

VII
1996

Declining Quality Unless rigorously adapted to take into account changes in the operational
environment, the quality of E-type systems will appear to be declining

VIII
1996

Feedback System
(Recognised 1971,
formulated 1996)

E-type evolution processes are multi-level, multi-loop, multi-agent
feedback systems

Table 1 - Current Statement of the Laws

In presenting some of the practical implications of the FEAST work to date, the structure of this paper
follows the order in which the laws were formulated. It is, however, now recognised that since the laws are
not independent they should not be linearly ordered. Thus the numbering of Table 1 has only historical
significance. Its use in structuring this paper is a matter of convenience and has no other implication. The
question of dependencies and relationships between the laws is currently the subject of further investigation
and an introductory description of that investigation is now available [leh00b]. If successful it should put to
rest the main criticisms to which the laws have been subjected over the years [law82]. These addressed the
absence of precise definitions or statements of assumptions, their being based on data from a single,
atypical, source (OS/360), the fact that OS/360 represented an outmoded software technology and the use of
the term laws in relation to observations about phenomena directed, managed and reflecting human activity.
This criticism was countered by the present author who noted that it was precisely such human involvement
that justified use of the term, though the demand (when first formulated) for more wide spread evidence of
their validity was fully justified. The term law was deliberately selected just because each encapsulates
organisational and sociological factors that lie outside the realm of software engineering and the scope of
software developers. From the perspective of the latter they must be accepted as laws.

29/11/00 15:45 a45/p45 - 3 - mml611/F[papers]

Note that the laws apply, in the first instance, to E-type programs that is, for systems actively used and
embedded in a real world domain [leh85]. Once such systems are operational, they are judged by the results
they deliver. Their properties include loosely expressed expectations that, at least for the moment,
stakeholders are satisfied with the system as is. In addition to functionality, factors such as quality (however
defined), behaviour in execution, performance, ease of use, changeability and so on will be of concern. In
this they differ from S-type programs where the sole criterion of acceptability is correctness, in the
mathematical sense. Only that which is explicitly included in the specification or follows from what is so
included is of concern in assessing (and accepting) the program and the results of its execution. An S-type
program is completely defined by and is required to be correct with respect to a fixed and consistent
specification [tur00]. A property not so included may be present or absent, deliberately, by oversight or at
the programmer’s whim.

The importance of S-type programs lies in their being, by definition, mathematical objects about which one
may reason. Thus they can be verified, i.e., proven correct. A correct program possesses all the properties
required to satisfy its specification. Other properties are implicitly declared “don’t cares” by their omission
from the specification. Once the specification has been fixed and verified, acceptance of the program is
independent of any assumptions by the implementers; entirely determined by the specification. At some
later time the program may require fixing or enhancement as a result of an oversight in its preparation,
changes in the purpose for which it is being executed, changes in the operational domain or some other
reason. An updated specification, including changes to an explicit or implicit assumption set can then be
prepared and a new program derived, probably by modification of the old.

The role of S-type programs in the programming process follow from these properties. Now, the minds of
individual programmers cannot be read and one cannot therefore, know what assumptions are made during
the course of their work. Any such assumptions become a part of the program properties even though not a
part of the original specification. As the operational domain or other circumstances change some
assumptions will become invalid and affect program behaviour in unpredictable and/or unacceptable
fashion. It is therefore important to prevent individuals or small groups from unconsciously incorporating
assumptions into a program or its documentation. It is equally important to support the process of making
and documenting conscious assumptions and to adapt the system as this become necessary.

The unconsidered injection of assumptions into both S- and E-type programs may be minimised by
providing a precise and complete specification for each individually assigned task, that is, giving
implementers only S-type assignments. With this approach, S-type programs constitute the essential bricks
from which larger programs and complex systems are built. The main body of assumptions will then be
explicit in the specification or implied by omissions from the specification. Thus the elemental parts of
individual products can be assessed objectively by verification against their specification. However, the
detection of implied assumptions is difficult, often happens unconsciously. Moreover, situation requiring the
de facto introduction of new assumptions cannot be avoided. When this occurs, they must, as far as possible,
be detected, captured, validated, formally approved and added to the specification. But some assumptions
will slip through the net. The better the record of assumptions, the more it is reviewed, the simpler will it be
to maintain the programs valid in a changing world. The less likely it is to experience unexpected or strange
behaviour in execution, the more confidence one can have in the operation of the program when integrated
into a host system and later when operational in the real world. But as the system evolves, the specifications
from which the S-type programs are derived, will inevitably have to be changed to satisfy the changing
domains within which they work and to fulfil the current needs of the application they are serving1.

Once integrated into a larger system, and when that system is operational, the bricks operate in the real
world. In that context they display E-type characteristics. This is, of course, fine provided that records of
changes to individual specifications record additions and changes to the assumption set that underlie them.
The restriction of the laws to E-type systems, therefore, in no way decreases their practical significance.
Both S- and E-type programs have a role to play in system development and evolution.

We now proceed to outline some of the practical implications of the laws and the tools that are suggested by
them. Many of the items on the lists that follow will appear intuitively self-evident. What is new is the
unifying conceptual framework on which they are based. This framework follows from observed behaviour,
interpretation, inference and so on as discussed in greater detail in the FEAST literature [fea00]. Together
these provide the basis for a comprehensive theory of software evolution and since evolution is intrinsic to
all practical software, also to a theory of the software process such as that now being developed [leh00b].

1 This is becoming more widely recognised and addressed, e.g., in the context of component-based software [gen00].

29/11/00 15:45 a45/p45 - 4 - mml611/F[papers]

3 E- and S-type Program Classification
A full analysis of the meaning and implications of this classification requires more discussion than can be
provided here but guidelines that follow from the preceding discussion are listed in this section, others under
the headings that follow. It is appreciated that some of these recommendations may be difficult to
implement but the potential long-term benefit of their implementation in terms of productivity, process
effectiveness, with system predictability, maintainability, changeability makes their pursuit worthwhile.
Note that this list (and all others that follow) is to be considered randomly ordered. No implications, for
example in terms of relative importance, are to be drawn from the position of any item.

• a. All properties and attributes required to be possessed by software products created or modified by
individual developers should be explicitly identified in a specification that then serves as the task
definition.

• b. The (long-term) goal should be to express specifications formally.
• c. It must be a goal of every process to capture and retain assumptions underlying the specification,

both those that form part of its inputs and those arising during the subsequent development process.
• d. When verifying the completed specification a conscious effort must be made to identify and

document all assumptions implied by individual or combinations of statements.
• e. It must be recognised and agreed by the assignor that whatever is not so included is left to the

assignee who must ensure that the decision is not inconsistent with the specification and is either:
- 1. documented in an exclusion document or
- 2. formally approved and added to the specification and to all supporting and appropriate user

documentation.
• f. Tools to assist in the implementation of these recommendations and to support their systematic

application should be developed and introduced into practice.

4 First Law: Continuing Change - E-type systems must be continually adapted else they become
progressively less satisfactory in use

It has already been observed that every E-type system is a model of the application in its operational
domain. Both the real world and every application have, potentially, an infinite number of attributes. Being
part of the real world, the operational domain in which the system operates is initially undefined and is,
therefore, also intrinsically unbounded. On the other hand, the software system and, for that matter, the
entire application system, are essentially finite. Therefore, the process of abstraction and transformation to
define and develop the application system and its software involves, inter alia , assumptions about what is to
be included in the final program. This process of finitisation excludes perforce all other elements/attributes
of the operational domain and the application. As a model of the real world, the system is incomplete
[leh77,85,89,90]. As briefly discussed above, some of the assumptions will be explicit, others implicit, some
by inclusion, others by exclusion. They will be reflected in the system, by choice of theories and algorithms,
code, lists, parameters, code, call sequencing, documentation and so on. Exclusions may be explicit or by
omission and omissions are as real in impacting system operation as are inclusions. Thus every E-type
system has embedded in it an infinite assumption set whose composition will determine the domain of valid
application in terms of execution environments, time, function, geography, the detail of many levels of the
implementation and so on.

It may be that the initial set of assumptions was complete and valid in the sense that its effect on system
behaviour did not render the system unacceptable in operation at the time of its introduction. However, with
the passage of time user experience increases, user needs and expectation change, new opportunities arise,
system application expands in terms of numbers of users or details of usage and so on. Thus, a growing
number of assumptions become invalid. This is likely to lead to less than acceptably satisfactory
performance in some sense and hence to change requests. On top of that there will be changes in the real
world that impact the operational domain so requiring changes to the system to restore it to being an
acceptable model of the operational domain. Taken together, these facts lead to the unending maintenance
that has been the universal experience of computer users since the start of serious computer application by
commerce, industry and government, in fact all regular computer users.

There follows a partial listing of practical consequences of this unending need for change to every E-type
system in continuing use to, inter alia , adapt it to changing operational domains.

• a. Comprehensive documentation must be created and updated to minimise the impact of growing
complexity as changes are applied over the system lifetime, change upon change (see next section).

• b. There must be a conscious effort to control, and reduce complexity and its growth, wherever,
possible, as modifications are made locally and in interfaces with the remainder of the system.

29/11/00 15:45 a45/p45 - 5 - mml611/F[papers]

• c. As the design of change proceeds, all aspects including, for example, the issue being addressed, the
reasons why a particular implementation design/algorithm is being used, details of assumptions, explicit
and implicit, adopted and so on must be recorded in a way that will facilitate regular subsequent review.

• d. The assumption set must be reviewed as an integral part of release planning and periodically to
detect domain and other changes that conflict with the existing set, or violate constraints.

• e. The safe rate of change per release is constrained by the process dynamics. As the number,
magnitude and orthogonality to system architecture of changes in a release increases, complexity and
fault rate grow more than linearly. Successor releases focussing on fault fixing, performance
enhancement and structural clean up will be necessary to maintain system viability. Models of, for
example, patterns of incremental growth (see next bullet) and of numbers of changes per release over a
sequence of releases, can provide an indication of limits to safe change rates. Another useful metric is
the numbers of elements changed (i.e. handled) per release or over a given time period. Other change
metrics have also been discussed [fea00].

• f. FEAST/1 and earlier incremental growth models (section 8), suggest that an excessive number of
changes in a release has an adverse impact on release schedule, quality, and freedom of action for
following releases. A more precise statement of the consequences remains to be determined.

• g. It appears, in general, to be a sound strategy to alternate releases between those concentrating
primarily on fault fixes, complexity reduction and minor enhancements and those that implement
performance improvement, provide functional extension or add new function [woo79]. Incremental
growth and other models provide indicators to help determine if and when this is appropriate.

• h. Change validation must address the change itself, actual and potential interaction with the remainder
of the system and impact on the remainder of the system.

• i. It is beneficial to determine the number of distinct additions and changes to requirements over
constituent parts of the system per release or over some fixed time period to assess domain and system
volatility. This can assist evolution release planning in a number of ways, for example by pointing to
system areas that are ripe for restructuring because of high fault rates or high functional volatility or
where, to facilitate future change, extra care should be taken in change architecture and implementation.

5 Second Law: Growing Complexity - As an E-type system is evolved its complexity increases
unless work is done to maintain or reduce it

One reason for complexity growth as a system evolves, the imposition of change upon change upon change,
has been mentioned in the previous section. There are others. For example, the number of potential
connections and interactions between elements (objects, modules, holons, sub-systems, etc.) is proportional
to the square of the number n of elements. Thus, as a system evolves, and with it the number of elements,
the work required to ensure a correct and adequate interface between the new and the old, the potential for
error and omission, the likelihood of incompatibility between assumptions, all tend to increase as n2.
Moreover, with the passage of time, changes and additions that are made are likely to be ever more remote
from the initial design concepts and architecture, so further increasing the inter-connectivity. Even if
carefully controlled all these contribute to an increase in system complexity.

The growth in the difficulty of design, change and system validation, and hence in the effort and time
required for system evolution, tends to cause a growth in the need for user support and in costs. Such
increases will, in general, tend to be accompanied by a decline in product quality and in the rate of
evolution, however defined and measured, unless additional work is undertaken to compensate for this.
FEAST/1 observations indicate directly that the average software growth rate measured in modules or their
equivalent tends to decline as a function of the release sequence number as the system ages. The long term
trend tends to follow an inverse square trajectory [tur96] with the mae (mean absolute error), that is the
mean absolute difference, between the sizes of releases as predicted by the model and their actual size of
order 6% (see section 6 and [fea00]).

Based on this law which reflects the observations, measurement, modelling, analysis and other supporting
evidence obtained over the last thirty years, and most recently, in the FEAST/1 project, the following
observations and guidelines may be identified:

• a. System complexity has many aspects. They include but are not limited to
- 1. Application and functional complexity – including that of the operational domain
- 2. Specification and requirements complexity
- 3. Architectural complexity
- 4. Design and implementation complexity
- 5. Structural complexity at many levels (subsystems, modules, objects, calling sequences, object

usage, code, documentation, etc.)

29/11/00 15:45 a45/p45 - 6 - mml611/F[papers]

• b. Complexity control is an integral part of the development and maintenance responsibility. Such
effort is largely anti-regressive [leh74]; immediate benefits are generally relatively small. Its long-term
impact is, however, likely to be significant; may indeed, at some stage, make the difference between
survival of the system and its replacement or demise. In planning release content for one or a series of
releases the timing, degree and distribution of complexity control activity must be carefully considered.

• c. Determining the level of effort for anti-regressive activity such as complexity control in a release or
sequence of releases and what effort is to be applied, presents a major paradox. If the level is reduced or
even abandoned to free resources for progressive [bau67] activity such as system enhancement and
extension, system complexity is likely to increase, productivity and evolution rates to decline. This is
likely to lead to stakeholder dissatisfaction, increases in future effort and cost and declines in system
quality (see law VII). If, on the other hand, additional resources are provided for complexity control,
resources for system enhancement and growth are likely to be reduced. Once again the system evolution
rate will decline. In the absence of process improvement that is based on the principles examined in this
paper, decline of evolution rate appears inevitable. Hence, one must evaluate alternatives and select the
strategy most likely to help achieve corporate business goals or whatever else requires to be optimised.

• d. In general, it appears to be a sound strategy to alternate releases between those focussing primarily
on complexity reduction and restructuring and those implementing major enhancement and adding new
function or significant functional extension [woo79].

6 Third Law: Self Regulation - Global E-type system evolution processes are self regulating
This law was first suggested by the growth patterns of OS/360 [leh74], confirmed by observations on three
other systems in the 70’s and most recently reconfirmed for the release-based systems studied in FEAST/1.
The detailed growth patterns of the different systems differ but the gross trends are strikingly similar. In
particular, inverse square models have yielded unexpectedly good fits to plots of system size Si, (generally
measured in modules or their equivalent) against release sequence number (rsn) i in all the release based
systems studied under the FEAST projects [tur96, fea00]. The model takes the form Si+1=Si+ ê/Si

2, where ê
can be calculated, for example, as the mean of a sequence of ei calculated from pairs of neighbouring size
measures Si and Si+1. The predictive accuracy of the models, as measured by the mae, are of order 6%. This
is a remarkable result considering that the size of individual releases is mainly determined by management
focus on functional needs, since with the declining cost of storage, overall system growth is not, in general,
consciously managed or constrained. An exception to that observation is illustrated by certain embedded
systems where storage is limited physical considerations.

The FEAST projects have identified two exceptions to this surprisingly simple model. In the case of VME
Kernel, the least square model can be fitted directly to the growth data as for the other systems studied. An
improved fit is, however, obtained when the model is fitted separate segments spanning rsn 1 to 14 and rsn
15 to 29 respectively. The second exception is OS/360 where a linear model over rsn 1 to 19 gives a lower
mae than an inverse square model. In that case, however, the system growth rate fluctuates wildly for a
further 6 releases beyond rsn 19 before fission into VS1, VS2. In that region the inverse square growth
model is totally inappropriate. Explanations of these exceptions have been proposed but confirmation and
with it, determination of their wider implications, is now difficult to come by.

A common feature of the growth patterns of all the release based systems observed is a superimposed ripple
[bel72,leh78,fea00]. These ripples are believed to reflect the action of stabilising mechanisms that yield the
regulation referred too in the law. Feedback mechanisms that achieve such stabilisation have been proposed.
Their identification in real industrial processes, exploration of the manner in which they achieve control
such as process stabilisation and the behavioural implication on system evolution, was initiated in FEAST/1
and is being continued in FEAST/2 by means of system dynamics models [cha99]. Attempts to improve,
even optimise, such mechanisms can follow.

The conclusion that feedback is a major source of the behaviour described by the third law is supported by
the following reasoning. As for many business processes, one of the goals of outer loop mechanisms in the
software process is stability2 in technical, financial, organisational and sales terms. To achieve this goal
technical, management, organisational, marketing, business, support and user processes and the humans who
work in or influence or control them, apply negative (constraining) and positive (reinforcing) information
controls guided by indicators of past and present performance, data for future direction and control. Their

2 Stability, as used here, means planned and controlled change, not constancy. Managers, including software managers,
in general, abhor surprises or unexpected changes. They all desire, for example, constant workloads and increases in
productivity; software managers, a steady decline in bugs; senior management, a decline in costs and growth in sales.

29/11/00 15:45 a45/p45 - 7 - mml611/F[papers]

actions are exemplified by, for example, progress and quality monitoring and control, checks, balances and
control on resource usage. All these represent, primarily, feedback based mechanisms as described by the
third law. The resultant information loops tend to be nested and intuition suggests that the outer ones will
exert a major, possibly dominant, influence on the behaviour of the process as measured from outside the
loop structure. Preliminary evidence from FEAST/1 supports this assertion [cha99]. Thus in describing
global process behaviour (and, by implication, that of the system) as observed from the outside, the law is
entirely compatible with the realities of the real world of business. It may be concluded that the mechanisms
underlying the third law are strongly feedback related and the law is likely to be closely related to the eighth
- Feedback - law (sects. 11 and A.11 [leh00b]).

In a complex, multi loop, system such as the software process, it is difficult to identify the sources of the
feedback forces that influence individual behavioural characteristics [leh96a]. Thus, for example,
stabilisation forces and mechanisms in software evolution planning and execution are not explicit, will often
be unrecognised, may not be manageable. Many will arise from outside the process, from organisational,
competitive or marketplace pressures, for example. Each may work for or against deviations from
established levels, patterns and trajectories and lead to consequences that may well be counter-intuitive,
particularly when decisions are taken in the absence of a global picture. Process changes may well have the
intended local impact but a global consequence that is unexpected. In feedback systems, correct decisions
can generally only be taken in the context of an understanding of the system as a whole. In the absence of
appropriate global models provision must be made for the unexpected.

As discussed above, important process and product behavioural characteristics are probably determined to a
significant degree by feedback mechanisms that are themselves not consciously controlled by management
or otherwise. As a first step to their identification one should search for properties common to several
projects or groups or for correlations between project or group characteristics such as size, age, application
area, team size, organisational experience or behavioural patterns. One then may seek quantitative or
behavioural invariants associated with each characteristic. To identify the feedback mechanisms and
controls that play a role in self-stabilisation and to exploit them in future planning, management and process
improvement the following steps should be helpful:

• a. Using measurement and modelling techniques as used, for example, in FEAST/1 [leh00a], determine
typical patterns, trends, rates and rates of change of a number of projects within the organisation. To
obtain meaningful results, systems that have had at least eight to ten releases are likely to be required.

• b. Establish baselines, that is, typical values for process rates such as growth, faults, changes over the
entire system, units changed, units added, units removed and so on. These may be counted per release or
per unit time. Our experience has been that, for reasons well understood, the former yields results that
are more regular and interpretable. Initially however, and occasionally thereafter, results over real time
and over release sequence number must be compared and appropriate conclusions drawn. Incremental
values, that is the difference between values for successive time intervals should also be determined, as
should numbers of people working with the system in various capacities, person days in categories such
as specification, design, implementation, testing, integration, customer support and costs related to these
activities. A third group of measures relates to quality factors. These can be expressed, for example, in
pre-release and user reported faults, user take-up rates, installation time and effort, support effort, etc.

• c. New data that becomes available as time passes and as more releases are added, should be used to
recalibrate and improve the models or to revalidate them and test their predictive power.

• d. Analysis of FEAST/1 data, models and data patterns suggests that, in planning a new release or the
content of a sequence of releases, the first step must be to determine which of three possible scenarios
exists. Let m be the mean of the incremental growth mi of the system in going from release i to release
i+1 and s the standard deviation of the incremental growth both over a series of some five or so releases
or time intervals. The scenarios may, for example, be differentiated by an indicator m+2s that identifies
a release plan as safe, risky or unsafe according to the conditions listed below. Note that the rules are
expressed for release based measures. For observations based on incremental growth per standard real
time unit, analogous safe limits are likely to exist but will be a function of the interval between
observations in a way that remains to be determined.

- 1. The FEAST studies suggest that a safe level for planned release content mi is that it be less than
or equal to m. If the condition is fulfilled growth at the desired rate may proceed.

- 2. The desired release content is greater than m but less than m+2s. The release is risky. It could
succeed in terms of achieved functional scope but serious delivery delays, quality or other problems
could arise. If pursued, it would be advisable to plan for a follow-on clean-up release. Even if not
planned, such a zero growth release is likely to be required. Note that m+2s has long been identified
as an alarm limit, for example, in statistical process control and monitoring [box97].

29/11/00 15:45 a45/p45 - 8 - mml611/F[papers]

- 3. The desired release content is close to or greater than m+2s. A release with incremental growth
of this magnitude is unsafe. It is likely to cause major problems and evolution instability over one or
more subsequent releases. At best, it is likely to require to be followed by a major clean up in which
the main emphasis is on fault fixing and anti-regressive work such as the elimination of so called
dead code, restructuring, documentation updating and so on.

• e. An appropriate evolutionary development strategy [gil81] should be considered whenever the
number of items on the "to be done" list for a release being planned would lead, if implemented in one
release, to incremental growth in excess of the levels indicated above. It should prove appropriate
whenever the size and/or complexity of the required addition is large. In that event, strategies to be
considered include spreading the work over two or more releases, the delivery of the new functionality
over two or more releases with mechanisms in place to return to older version if necessary, reinforcing
the support group, preparing for the release by means of one or more clean up releases or, if the latter is
not possible, preparing for a fast follow on release to rectify problems that are likely to appear. In either
of the last two instances provision must be made for additional user support.

7 Fourth Law: Conservation of Organisational Stability - Unless feedback mechanisms are
appropriately adjusted, average effective global activity rate in an evolving E-type system tends to
remain constant over product lifetime

The observations on which this law is based date back to the late seventies. Further data gathered in
FEAST/1 neither supports nor negates it. When first formulated, the feedback nature of the software process
had already been identified [bel72,leh78,85]. Insight into the underlying process mechanisms and related
phenomena supported the interpretation. Subsequent observations suggested, for example, that the average
activity rate measured by the change rate, is stationary3 but with changes of the mean and variance at a few
two points during the observed life time of the released-based systems. The wider influence of feedback on
the process was, however, not fully appreciated until recently. If further observations yield similar results
and when more understanding is achieved, refinement of the law may be indicated. Those aspects of the law
that relate to the role of feedback stabilisation and its implications are discussed below. Its management
implications are not considered further in the present report..

8 Fifth Law: Conservation of Familiarity - In general, the incremental growth and long term
growth rate of E-type systems tend to decline

With the exception of OS/360, the decline in incremental growth and growth rate has been observed in all
the systems whose evolution has been studied. It might be thought that this could be due to a reduction in
the demand for correction and change as the system ages but anecdotal evidence from the market place and
from developers, for example, indicates otherwise. In general, there is always more work in the “waiting
attention” queue than in progress or active planning.

Other potential sources of declining growth rate with age can be identified. Consider, for example, system
maintenance over a series of releases. This requires a split of resources between fixing, enhancement and
extension. For many reasons, as a system ages the need for fixes is likely to increase. If investment in
system maintenance remains constant, this implies a drop in resources available for system growth and,
hence, a possible source of a declining growth rate. Equally the budget allocation may be declining because
it has, for example, been decided that it is no longer in the organisation’s interest to expand the system or
because it is believed that increasing maintenance productivity, as personnel experience and system
familiarity increases, permits the reduction of maintenance funding. In the case of VME Kernel, for
example, it appears that over recent years a decrease in incremental growth has been accompanied by a
decrease in the size of the development team, that is in resource. But the reason for this reduction is not yet
known. In particular, it has not been possible to show that the decrease explains or even correlates to the
declining growth. In general, the nature of the relationship between the system evolution rate and resources
has not been systematically investigated, may well be counter-intuitive [bro75].4

It is not appropriate to here speculate further on the source of the behaviour described by the fifth law. We
restrict our comment to what has emerged so far from the FEAST study. That analysis has suggested that the

3 Loosely defined, stationarity is a property of stochastic processes that display a constant average and variance
[box97].
4 FEAST/2 is now directly addressing the topic of cost estimation in the context of software evolution [ram00b]. The
study should also advance understanding of the various drivers that, individually and jointly, influence growth and
change rates.

29/11/00 15:45 a45/p45 - 9 - mml611/F[papers]

most likely source of the declining incremental growth rates observed is, primarily, due to increasing
complexity as the system ages. This arises because of the injection and the super-positioning of changes to
achieve, for example, growth in functionality or satisfaction of the needs of changing operational domains.
This leads to increasing internal interconnectivity and, hence, to deteriorating system structure, increasing
disorder. Equally it results in increasing complexity of internal and external interfaces at all levels. These
effects are amplified because, as the system ages, changes are more likely to be orthogonal to existing
system structures. However, effective interaction with the system, whether as developer or user, requires
one to “understand” it in its entirety, to “be comfortable” with it. As the system ages, as changes and
additions to the system become ever more remote from the original concepts and structures, increasing
effort and time will be required to understand and implement the changes, to validate and use the system, to
ensure that the untouched portion of the system continues to operate as required. Changes and additions take
longer to design and to implement, errors and the need for subsequent repair are more likely, comprehensive
validation is more complex. These are some of the factors that may be causing the decline, identified by the
fifth law, in the rate of, for example, system growth.

Though the law refers primarily to long term behaviour, regular short-term variations in incremental growth
have also been observed. FEAST/2 is studying these. A related aspect of the investigation is the relationship
between incremental growth which tends to reflect the addition of new functionality, and modification of
existing software elements to reflect changes in the application, the domain or other parts of the system. In
the VME and Lucent data, an apparent decrease in incremental growth appears to be accompanied by an
increase in the number of elements changed per release and vice versa [leh98a]. This is probably due to the
fact that as more resources are applied to clean up, repair and adaptation less are likely to be available for
system extension. If confirmed, models derived from this relationship can provide additional planning aids.

In summary, both developers and users must be familiar with the system if they are to work on or use it
effectively. Given the growing complexity of the system, its workings and its functionality, achieving
renewed familiarity after numerous changes, additions and removals, restoration of pre-change familiarity
after change becomes increasingly difficult. Common sense, therefore, dictates that the rate of change and
growth of the system be slowed down as it ages and this trend has been observed in nearly all the data
studied to date. The only exception has been the original OS/360 study where the growth trend appeared to
remain constant to rsn 19. It is quite possible that the failure to slow down the growth rate led to the erratic
behaviour of OS/360 following release rsn 20 and its ultimate break-up.

The fact that a reduction in growth rate as a system ages is likely to be beneficial has not, to date, been
widely appreciated. Its widespread occurrence is, therefore, unlikely to be the result of deliberate
management control. It is, rather, feedback from locally focussed validation and correction activities that are
the likely causes. Nevertheless, since such behaviour results from local and sequential control, from
correction not specifically aimed at managing growth, short term, incremental growth fluctuates. Such
fluctuations reflect, for example, ambitious high content releases with significant (much larger than average)
growth. The inevitable clean up and re-structuring has to follow. The overall result is stabilisation.

Further analysis, in phenomenological terms, of distributed mechanisms that control evolution rate together
with models of related data, suggest the following guidelines for determining release content:

• a. Collect plot and model growth and change data as a function of real time or rsn to determine system
evolution trends. The choice includes objects, lines of code (locs), modules (holons), inputs and outputs,
subsystems, features, requirements, etc. As a start it is desirable to record several or even all of these
measures so as to detect similarities and differences between the results obtained from the various
measures and to identify those from which the clearest indications of evolutionary trends can be
obtained. Once set up, further collection of such data is trivial. Procedures for their capture may already
be a part of configuration management or other procedures.

• b. Develop automatic tools to interpret the data as it builds up over a period of time to derive, for
example, the dynamic trend patterns. In FEAST/1 it has been shown how, using a scripting language
such as Perl [wal96], unplanned records, such as change-logs, can be used as data sources to estimate,
inter alia , element growth and change rate. A degree of discipline, such as the adoption of a fixed
standard pattern for change-log data added to change-log preparation, should facilitate data extraction.
Once data is available, derive models that reflect historical growth trends. Indicators may be computed
by, for example fitting an inverse square trend line or some other appropriate curve.

• c. Once the models have stabilised (after perhaps some six or so releases of a system) the models
should provide first estimates of the trends and patterns of growth and changes per release or time unit
as determined by the system dynamics. These measures must be updated and the trend indicator
recomputed or redisplayed at regular time intervals and/or for each subsequent release.

29/11/00 15:45 a45/p45 - 10 - mml611/F[papers]

• d. On the basis of the observations reported above in section 6d, in planning further releases the
following guide lines should be followed:

- 1 seek to maintain incremental growth per release or the growth rate in real time at or about the
level m suggested by the trend model(s).

- 2 when the need for growth per release needs to be significantly greater than m, seek to reduce it
by, for example, spreading it over two or more releases.

- 3 plan and implement a ‘preparation release’ that pre-cleans the system, if limiting growth to
around m is difficult or not possible.

- 4 alternatively, allow for a longer release period to prepare to handle problems at integration, a
higher that normal fault report rate, some user discontent.

- 5 if the required release increment is near to or above m+2s the steps in 2 - 4 must be even more
rigorously pursued. Prepare to cope with and control a period of system instability, provide for a
possible need for more than average customer support and accept that, as outlined above, a major
recovery release may be required.

9 Sixth Law: Continuing Growth - The functional capability of E-type systems must be
continually increased to maintain user satisfaction over the system lifetime

This law must be distinguished from the first law which asserts ‘Continuing Change’. The need for change
reflects a need to adapt the system as the outside world, the domain being covered and the application
and/or activity being supported or pursued change. Such exogenous changes are likely to invalidate
assumptions made during system definition, development, validation, installation and application or render
them unsatisfactory. The software reflecting such assumptions must then be adapted to restore their validity.

The sixth law reflects the fact that all software, being finite, limits the functionality and other characteristics
of the system (in extent and in detail) to a finite selection from a potentially infinite set. The domain of
operation is also potentially infinite, but the system can only be designed and validated, explicitly or
implicitly, for satisfactory operation in some finite part of it. Sooner or later, excluded features, facilities and
domain areas become bottlenecks or irritants in use. They need to be extended to fill the gap. The system
needs to be evolved to satisfactorily support new situations and circumstances.

Though they have different causes and represent, in many ways, different circumstances, the steps to be
taken so as to take cognisance of the sixth law do not, in principle, differ radically from those listed for the
first law. There are, however, some differences due to the fact that the former is, primarily, concerned with
functional and behavioural change whereas the latter leads, in general, directly to additions to the existing
system and therefore to its growth. In practice, it may be difficult or inappropriate to associate a given
change with either law. Nevertheless, since the two laws are due to different phenomena they also are likely
to lead different, though overlapping, recommendations. These are therefore listed together in section 4.

In general, the cleaner the architecture and structure of the system to be evolved the more likely is it that
additions may be cleanly added with firewalls that permit only the exchange of appropriate information
between old and new parts of the system. There must, however, be some penetration from the additions to
the existing system. This will, in particular, be so when one considers the continued evolution of systems
that were not, in the first instance, designed or structured for dynamic growth by the addition of new
components. Sadly, the same remarks, limitations and consequent precautions, apply when one is dealing
with systems that were component based or that made widespread use of COTS [hyb97, leh98a] from the
start. Future growth is inevitable and a sound architectural and structural base will reduce the effort that will
inevitably be required when extending or re-engineering the system. Careful attention must be paid at all
times, to the points made in section 4.

10 Seventh Law: Declining Quality - The quality of E-type systems will appear to be declining
unless they are rigorously adapted, as required, to take into account changes in the operational
environment

This law follows directly from the first and sixth laws. As briefly discussed in the previous section, to
remain satisfactory in use in a changing operational domain, an E-type system must undergo changes and
additions to adapt and extend it. Functionality must be changed and extended. To achieve this, new blocks
of code are attached, new interactions and interfaces are created, one on top of the other. If such changes are
not made, embedded assumptions become falsified, mismatch with the operational domains increases.
Additions will tend to be increasingly remote from the established architecture, function and structure. All in
all the complexity of the system in terms of the interactions between its parts, and the potential for such
interaction, all increase. Performance is likely to decline and the potential for faults will increase as earlier
embedded assumptions are inadvertently violated and the potential for undesired interactions created. From
the point of view of performance, behaviour and future system evolution, adaptation and growth effort

29/11/00 15:45 a45/p45 - 11 - mml611/F[papers]

increase. Growing complexity and mismatch with operational domains, declining performance, increasing
numbers of faults, increasing difficulty of adaptation and growth will all cause stakeholder satisfaction to
decline. Each represents a factor in declining system quality.

There are many approaches to defining software quality. The above lists causes of decline in terms of some
of the more obvious sources and causes. There are many others. It is not proposed to discuss here possible
viewpoints, the impact of circumstances or more formal definitions. To do so involves issues more
adequately discussed and examined when a theory of software evolution [leh00b] is available. The bottom
line is that quality is a function of many factors whose relative significance will vary with circumstances.
Users in the field will think of it in such terms as performance, reliability, functionality, adaptability. A
CEO, at the other extreme, will be concerned with the contribution the system is making to corporate
profitability, its market share, the corporate image, resources required to support it, the support provided to
the organisation in pursuing its business and so on.

Once identified as being of concern in relation to the business or task being addressed, aspects of quality
must be quantified to be adequately controllable. Subject to being observed and measured in a consistent
way, associated measures of quality can be defined for a system, project or organisation. Their value,
preferably normalised, may then be tracked over releases or units of time and analysed to determine whether
levels and trends are as required or desired. One may, for example, monitor the number of user generated
fault reports per release to obtain a display of the fault rate trend with time. A fitted trend line (or other
model) can then indicate whether the rate is increasing, declining or remaining steady. One may also
observe oscillatory behaviour and test this to determine whether sequences are regular, randomly distributed
or correlated to internal or external events. Time series modelling may be applicable to extract and
encapsulate serial correlations [hum91]. One may also seek relationships with other process and product
measures such as the size of or the number of fixes in previous releases, sub-system or module size, testing
effort and so on. When enough metric data is available, and the process is sufficiently mature, models such
as Bayesian nets may be useful to predict defect rates [fen99]. The above examples all relate to fault related
aspects of quality. Other measures may be defined, collected and analysed in an analogous manner.

In summary we observe that the underlying cause of the seventh law, the decline of software quality with
age, appears to relate to a growth in complexity which must be associated with ageing. It follows that in
addition to undertaking activity from time to time to reduce complexity, practices in architecture, design and
implementation that reduce complexity or limit its growth should be pursued, i.e:

• a. Design changes and additions to the system in accordance with established principles such as
information hiding, structured programming, elimination of pointers and GOTOs, and so on, to limit
unwanted interactions between code sections and control those that are essential.

• b. Devote some portion of evolution resources to complexity reduction of all sorts, restructuring and
the removal of “dead” system elements. Though primarily antiregressive, without immediate revenue
benefit, they help ensure future changeability, potential for future reliable and cost effective evolution.
Hence, in the long run, they are profitable.

• c. Train personnel to seek to capture and record assumptions, whether explicit or implicit, at all stages
of the process in standard form and in a structure that will facilitate their being reviewed.

• d. Review relevant portions of the assumption set at all stages of the evolution process to avoid design
or implementation action that invalidates even one of them. Methods and tools to capture, store, retrieve
and review them and their realisation, a non-trivial action, must be developed.

• e. Monitor appropriate system attributes to predict the need for cleanup, restructuring or replacement
of parts or the whole.

As already indicated, the definition, measurement, modelling and monitoring of software quality related
characteristics is very dependent on application, organisation, product and process characteristics and goals.
Interested readers that seek details of the various aspects of quality monitoring, modelling and control
beyond those discussed in the present paper, are referred to the vast literature in this field [e.g. boe78].

11 Eighth Law: Feedback System - E-type evolution processes are multi-level, multi-loop, multi-
agent feedback systems.

This is the key law of the eight and underlies the behaviour encapsulated by the other seven. The
relationships between them are currently being investigated. It is hoped to describe them in a formal theory
that covers the observed phenomenology [leh00b].

The behaviour of feedback systems is not and cannot, in general, be described directly in terms of the
aggregate behaviour of its forward path activities and mechanisms. Feedback will constrain the ways that

29/11/00 15:45 a45/p45 - 12 - mml611/F[papers]

the process constituents interact with one another and will modify their individual, local, and collective,
global, behaviour. According to the eighth law the software process is such a system. This observation must,
therefore, be expected to apply. Thus, the contribution of any activity to the global process5 may be quite
different from that suggested by its open loop characteristics. If the feedback nature of the software process
is not taken into account when predicting its behaviour, unexpected, even counter-intuitive, results must be
expected both locally and globally.

Consider, for example, the growth and stabilisation processes described by the first and third laws (sects. 4
& 6). Positive feedback conveys the desire for functional extension leading to pressure for growth and a
need for continuing adaptation to exogenous changes. If the resultant pressure is excessive it may lead to
instability as illustrated by the end life of OS/360-70 [leh85,98c]. The observed instability and final break
up of that system was attributed to excessive positive feedback, arising from competitive market and user
pressure for virtual memory and interactive operation. In any event management, exercising its
responsibility to manage change and the rate of change will, in response to information received about
progress, system quality and so on, induce negative feedback, in the form of directives and controls to limit
change, contain its side effects and drive it in the desired direction. Stabilisation results. The FEAST/1 and
earlier studies have provided behavioural evidence to support this analysis and the eighth law. FEAST/2 is
continuing the investigations.

The positive and negative feedback loops and control mechanisms of the global E-type process involve
activities in the many domains, organisational, marketing, business, usage and so on, within which the
process is embedded and evolution is pursued. It develops a dynamics that drives and constrains it. Many of
the characteristics of this dynamics are rooted in and will be inherited from its history and the wider, global,
domains. As a result there are significant limitations to the control that management can exert on the
process. The basic message of the eighth law is, therefore, that in the long term managers are not absolutely
free to adopt any action considered appropriate from some specific business or other point of view.
Reasonable decision can, generally, be locally implemented. The long-term, global, consequences that
follow, may not be what was intended or anticipated.

It follows that fully effective planning and management requires that one takes into account the dynamic
characteristics of the process; the limitations and constraints it imposes, as outlined above and in FEAST
publications [fea00]. To achieve this requires models that reflect the dynamic forces and behaviour. The
FEAST project and other sources6 have made progress in such modelling but more, much of it
interdisciplinary, is required to achieve a systematic, controlled and usable discipline for the design and
management of global software processes. From the FEAST work it appears that feedback loops involving
personnel outside the direct technical process may have a major impact on the process dynamics and,
therefore, on the behaviour of the software evolution process. The interactions of, for example, maintenance,
planning, user support, marketing and corporate personnel needs at least as much thought and planning as
do technical software engineering and other low level issues and activities.

These observations lead to the following recommendations:

• a Determine the organisational structures and domains within which the technical software
development process operates including information, work flow and management control, both forward
and feedback and monitor changes.

• b In particular seek to identify the many informal communication links that are not a part of the
formal management structure but play a continuing role in driving and directing the system evolution
trajectory, and seek to establish their impact.

• c Model the global structure using, for example, system dynamics approaches [for61], calibrate and
apply sensitivity analysis to determine the influence and relative importance of the paths and controls.

• d In planning and managing further work, use the models as simulators to help determine the
implications of the influences that are implied by the analysis.

• e In assessing process effectiveness, use the models as outlined in c above to guide to identify
interactions, improve planning and control strategies, evaluate alternatives and focus process changes on
those activities likely to prove the most beneficial in terms of the organisational goals.

5 The global process includes all activities that impact system evolution including but not limited to those undertaken
by technical, management, marketing, user support personnel and users, etc.)
6 See, for example, the work done in the context of software process simulation [jss99,pro00].

29/11/00 15:45 a45/p45 - 13 - mml611/F[papers]

12 The FEAST Hypothesis7 - To achieve major process improvement of E-type processes other than
the most primitive, their global dynamics must be taken into account.
The FEAST hypothesis extends the eighth law by drawing explicit attention to the fact that one must take
the feedback system properties of the complex global software process into account when seeking effective
process improvement. The description of the process as complex is an understatement. It is a multi-level,
multi-loop, multi-agent system. The loops may not even be fixed and need not be hierarchically structured.
The implied level of complexity is compounded by the fact that the feedback mechanisms involve humans
whose actions cannot be predicted with certainty. Thus analysis of the global process, prediction of its
behaviour and determination of the impact of feedback, are clearly not straightforward. One approach to
such investigation, uses simulation models. The consequences of human decision and action, of variable
forces and of flow levels may be described by statistical distributions. It is an open question whether such
quantitative models must be specific to each system, or can be generic, constructed and calibrated to be
valid over a number of systems or organisations.

FEAST/1 has made some progress in this regard and FEAST/2 is continuing this line of work [fea00]. A
number of system dynamics models [for61] using the Vensim tool [ven95] are now being calibrated and
investigated [wer98,cha99]. Many of their variables reflect organisational characteristics and it may be
possible to derive generic versions. Generic modelling and analysis methods are already emerging [ram00a].
Available evidence indicates the validity of the hypothesis. Much effort must, however, still be applied if
full understanding of the role of feedback in software development and maintenance is to be achieved and
fully exploited. In any event the recommendations made in the previous section may be extended as follows:

• a When seeking disciplined process improvement, use models as outlined in 11b to guide the analysis
of the global process, investigation of potential changes and evaluation of alternatives, focusing
implementation on those changes likely to prove the most beneficial in terms of the organisational goals.

13 The Uncertainty Principle – The real world outcome of any E-type software execution is
inherently uncertain with the precise area of uncertainty also not knowable

This principle, first formulated in the late 80s [leh89,90] as a stand alone observation, is now regarded as a
direct consequence of the laws [leh00b]. It asserts that the outcome of the execution of an E-type program is
not absolutely predictable. The likelihood of unsatisfactory execution may be small but a guarantee of
satisfactory results can never be given no matter how impeccable previous operation has been. This
statement may sound alarmist or trivial (after all there can always be unpredictable hardware failure) but
that is not the issue. A proven fact is a fact and by accepting this and taking appropriate steps even a small
likelihood may be further reduced.

 There are several sources of software uncertainty [leh89,90]. The most immediate and one that can be at
least partially addressed in process design and management (sect. 3, 4, 9, 10), relates to the assumptions
reflected in every E-type program. Some will have been taken consciously and deliberately, for example to
limit the geographical range of the operational domain to a specific region or to limit the scope of a traffic
control system. Others may be unconscious, for example to ignore the gravitational pull of the moon in
setting up control software for a particle accelerator8. Others may follow from implementation decisions
taken without sufficient foresight such as adopting a two-digit representation for years in dates. These
examples illustrate circumstances where errors can eventually arise when changes in the user or machine
world, or in associated systems, invalidates assumptions and their reflection in code or documentation.

As indicated in section 3 the real world domain is infinite. Once any part of that real world is excluded from
the system specification or its implementation the number of assumptions also becomes infinite. Any one of
this infinite set can become invalid, for example, by extension of the operational domain, by changes to the
problem being solved or to the activity that the system implements or supports or by changes in the system
domain under and with which the program operates. Uncertainty is therefore intrinsic since an invalid
assumption can lead to behavioural change in the program. Awareness of that uncertainty can, however,
reduce the threat of error or failure if it leads to systematic search for and early detection of invalidity
through regular checking of the assumption set. The better the records of assumptions, the simpler they are
to review and the greater the frequency with which they are reviewed the smaller the threat. Hence the
recommendation in earlier sections to incorporate conscious capture, recording and review of assumptions
of all types into the software and documentation processes.

7 One of a number of alternative statements formulated over the years.
8 A major oversight in one of the world’s most prestigious nuclear physics research centres.

29/11/00 15:45 a45/p45 - 14 - mml611/F[papers]

The discussion on software uncertainty has focussed on assumptions. There are also other sources of
uncertainty in system behaviour on execution but the likelihood of their contributing to system failure is
small in relation to that stemming from invalid assumptions embedded in the code or documentation. They
are, therefore, not further considered here.

As also implied in earlier recommendations, it follows that:

• a. When developing a computer application and associated systems, estimate and document the
likelihood of change in the various areas of the application domains and their spread through the system
to simplify subsequent detection of assumptions that may have become invalid as a result of changes.

• b. Seek to capture by all means, assumptions made in the course of program development or change.
• c. Store the appropriate information in a structured form, related possibly to the likelihood of change

as in a, to facilitate to detect any that have become invalid in periodic review.
• d. Assess the likelihood or expectation of change in the various categories of catalogued assumptions,

and as reflected in the database structure to facilitate such review.
• e. Review the assumptions database by categories as identified in c, and as reflected in the database

structure, at intervals guided by the expectation or likelihood of change or as triggered by events.
• f. Develop and provide methods and tools to facilitate all of the above.

• g. Separate validation and implementation teams to improve questioning and control of assumptions

• h Provide for ready access by the evolution teams to all appropriate domain specialists

Finally, and as already noted, the Uncertainty Principle is a consequence of the unboundedness of the
operational and application domains of E-type systems and the fact that the totality of known assumptions
embedded in it must be finite. However much understanding is achieved, however faithfully and completely
the recommendations listed in the previous sections are followed, the results of execution of an E-type
system must always be uncertain. There is no escaping. Adherence to the recommendations will, however,
ensure that unexpected behaviour and surprise failures can be reduced, if not completely avoided. In view of
the increasing penetration of computers into all facets of human activity, organisational and individual, often
in life, societal or economically critical applications, any reduction in the likelihood of failure is important.

14 Conclusions
Determination of a product evolution strategy is a management responsibility [sta97] that must take into
account many business related factors. Circumstances may, for example, arise where business or technical
considerations suggest a release policy in the interests of the business as a whole that may have undesirable
consequences for the system whose evolution is being planned. Global and local black and white box
(system dynamics) models [ram00a] reflect, inter alia, the role and mutual impact on one another of the
evolving system, the organisation, the system evolution and usage domains and the actors and activities in
all these domains. Their systematic use, together with full understanding of the technical alternatives and
their likely consequence in the short, medium and long term, will facilitate a well founded decision that
optimises the overall organisational benefit, reducing risk and increasing the long term aggregate benefit.

Over recent years there has been a move towards component-based software development and the use of
COTS [hyb97]. Thus activities such as integration are becoming ever more important in terms of, for
example, the effort they absorb or their frequency as a source of faults. Does this trend invalidate the laws,
conclusions and rules summarised in this paper? It is still too early for a definitive answer though much will
depend on the thoroughness, accuracy and completeness with which developers of such components
document their assumptions, the various bounds of the operational validity [leh98a]. Preliminary assessment
[leh98a] suggests that the laws will continue to be important in the context of component-intensive
processes and products. Definitive conclusions must await a study of their evolutionary behaviour.

Lengthy though it is, this paper gives at best an overview of the topic. The reader is advised not to apply the
recommendations blindly. To appreciate, and apply them fully, requires understanding of the human and
technical, usage and organisational, backgrounds that underlie the observations from which the conclusions
were derived. For real progress, some understanding of the phenomenology is necessary. Extensive
references have been provided and the reader is encouraged to explore these and to seek to understand the
models and the reasoning that underlies them. Above all, note that this paper is based primarily on an
ongoing investigation by a single group. For further advances, many more people must become involved in
the search for ever more effective approaches to software process management and, more generally, to the
development and evolution of computerised systems and the software that is crucial to their satisfactory and
safe performance. Moreover, many of the conclusions relate directly to the behaviour of people (technical
and non-technical), management and organisations, such studies demand interdisciplinary collaboration.

29/11/00 15:45 a45/p45 - 15 - mml611/F[papers]

Finally, it must be stressed that the study has been based on the well-tested scientific method. The real world
has been observed, patterns of behaviour identified, measured and quantified, observations modelled,
hypotheses formulated and support sought. A theoretical framework is being developed [leh00b]. It is hoped
that this effort will provide significant benefit to a world and a society relying ever more on computers.

15 Acknowledgements
My sincere thanks are due to my colleagues Juan F. Ramil, Dr Goel Kahen and Siew Lim for their
continuing support, questioning and constructive criticism. Equally to Professors Perry and Turski, to our
collaborators at BT Labs, DERA-MOD, ICL, Logica, Lucent and Matra-BAe and to their respective staffs
who have provided the data, process insight and constructive criticism that has made the recent advances
possible. Finally to EPSRC and its reviewers, for funding FEAST/1 (grant no. GR/K86008), FEAST/2
(grant no. GR/M44101) and the Senior Visiting Fellowships (GR/L07437 and GR/L96561).

16 References9

[bau67] Baumol WJ, Macro-Economics of Unbalanced Growth - The Anatomy of Urban Cities, Am.
Econ. Rev. June 1967, pp. 415 - 426

[bel72] Belady LA and Lehman MM, An Introduction to Program Growth Dynamics, in Statistical
Computer Performance Evaluation, W. Freiburger (ed.), Acad. Press, NY, 1972, pp. 503 - 511

[boe78] Boehm B, Brown JR, Kaspar JR, Lipow M, MacCleod CJ and Merritt MJ, Characteristics of
Software Quality, North Holland, 1978

[box97] Box G and Luceño A, Statistical Control by Monitoring and Feedback Adjustment, Wiley, New
York, 1997, 327p.

[bro75] Brooks FP, The Mythical Man-Month , Addison-Wesley, Reading, MA, first edition 1975, 20th

Aniv. Edition 1995, 322p.(20th aniv. Ed. 1995)
[cha99] Chatters BW et al., Modelling a Software Evolution Process, in Proc. of ProSim’99, Softw. Proc.

Modelling and Simulation Worksh., Silver Falls, OR, June 28−30, 1999. To appear as Modelling
a Long Term Software Evolution Process, in Software Process - Improvement and Practice in
2000.

[fea00] FEAST Projects Web Site , Department of Computing, Imperial College, London, UK,
http://www-dse.doc.ic.ac.uk/~mml/feast/.

[fen99] Fenton NE and Neil M, A Critique of Software Defect Prediction Models, 25(3) IEEE Trans. on
Softw. Eng., 1999

[for61] Forrester JW, Industrial Dynamics, MIT Press, Cambridge, Mass., 1961
[gen00] Call for Papers, GCSE ‘2000, Int. Symp. on Generative and Component Based Softw. Eng, 9 –

12 Oct. 2000, Erfurt, Germany http://www.netobjectdays.org/node00/en/Authors/cfp-gcse.html
[gil81] Gilb T, Evolutionary Development, ACM Softw. Eng. Notes, April 1981
[hum91] Humphrey WS and Singpurwalla ND, Predicting (Individual) Software Productivity, IEEE Trans.

on Softw. Eng., Vol. 17, No. 2, February 1991, pp. 196 - 207
[hyb97] Hybertson, DW, Anh DT and Thomas WM, Maintenance of COTS-intensive Software Systems,

Softw. Maintenance: Res. and Pract., Vol. 9, 1997, 203 - 216
[jss99] The Journal of Systems and Software, Special Issue on Software Process Simulation Modelling,

Vol. 46, No. 2/3, April 1999
[kit82] Kitchenham B, System Evolution Dynamics of VME/B, ICL Tech. J., May 1982, pp. 42-57
[law82] Lawrence MJ, An Examination of Evolution Dynamics, Proc. 6th Int. Conf. on Softw. Eng.,

Tokyo, Japan, 13 - 16 Sep. 1982., IEEE Comp. Soc. ord. n. 422, IEEE cat. n. 81CH1795-4, pp.
188 - 196

[leh69]* Lehman MM, The Programming Process, IBM Research Report RC 2722, IBM Research Centre,
Yorktown Heights, NY, Sept. 1969

[leh74]* id, Programs, Cities, Students, Limits to Growth?, Inaugural Lecture, in Imperial College of
Science and Technology Inaugural Lecture Series, Vol. 9, 1970, 1974, pp. 211-229. Also in
Programming Methodology, (D. Gries. ed.), Springer Verlag, 1978, pp. 42-62.

[leh77] id, Human Thought and Action as an Ingredient of System Behaviour, Contribution to the
Encyclopaedia of Ignorance, July 1976, Imp. Col of Sc. Tech., CCD Research Report 76/12
(Pergamon Press 1977) pp. 397-354

[leh78]* id, Laws of Program Evolution—Rules and Tools for Programming Management, Proc. Infotech
State of the Art Conf., Why Software Projects Fail?, Apr. 1978, pp. 11/1-11/25.

9 Papers identified with a "*" may be found in [leh85].

29/11/00 15:45 a45/p45 - 16 - mml611/F[papers]

[leh80]* id, On Understanding Laws, Evolution, and Conservation in the Large Program Life Cycle , J. of
Sys. and Softw., v. 1, n. 3, 1980, pp. 213-221.

[leh85] Lehman MM, and Belady LA, Program Evolution—Processes of Software Change, Academic
Press, London, 1985.

[leh89] Lehman MM, Uncertainty in Computer Application and its Control through the Engineering of
Software, J. of Softw. Maint., Res. and Pract., vol. 1, 1 Sept. 1989, pp. 3 - 27

[leh90] id, Uncertainty in Computer Application, Tech. Letter, CACM, vol. 33, n. 5, pp. 584, May 1990
[leh94] id, Feedback in the Software Evolution Process, Keynote Address, CSR Eleventh Annual

Workshop on Software Evolution: Models and Metrics, Dublin, Ireland, Sept. 7-9, 1994, and in
Information and Software Technology, special issue on Software Maintenance, Vol. 38, No. 11,
1996, Elsevier, 1996, pp. 681-686.

[leh96a] Lehman MM, Perry DE and Turski WM, Why is it so Hard to Find Feedback Control in Software
Processes? Invited Talk, Proc. of the 19th Australasian Comp. Sc. Conf., Melbourne, Australia,
Jan 31 - Feb 2 1996, pp. 107-115

[leh96b] Lehman MM, and Stenning V, FEAST/1: Case for Support, Department of Computing, Imperial
College, London, UK, Mar. 1996. Available from links at the FEAST project web site [fea00].

[leh97] Lehman MM, Laws of Software Evolution Revisited, Proceedings of EWSPT’96, Nancy, LNCS
1149, Springer Verlag, 1997, pp. 108−124.

[leh98a] Lehman MM and Ramil JF, Implications of Laws of Software Evolution on Continuing Successful
Use of COTS Software, ICSTM, Dept. of Comp., Tech. Rep. 98/8, incl. panel pos. statement.,
ICSM '98, Washington DC, 16 - 18 Nov. 1998

[leh98b] Lehman MM, FEAST/2: Case for Support, Department of Computing, Imperial College, London,
UK, Jul. 1998. Available from links at the FEAST project web site [fea00].

[leh98c] Lehman MM, Perry DE, and Ramil JF, On Evidence Supporting the FEAST Hypothesis and the
Laws of Software Evolution, in Proceedings of the Fifth International Metrics Symposium,
Metrics ’98, Bethesda, Maryland, Nov. 20-21, 1998.

[leh98d] Lehman MM, The Future of Software - Managing Evolution, inv. contr., v.15, n.1, IEEE Softw.,
Jan-Feb 1998, pp. 40-44

[leh00a] Lehman MM, Ramil JF and Wernick PD, Metrics-Based Process Modelling With Illustrations
From The FEAST/1 Project, to appear as chapter 10 in Bustard D, Kawalek P and Norris M (eds.).
Systems Modelling for Business Process Improvement, Artech House, April 2000

[leh00b] Lehman MM, Approach to a Theory of Software Process and Software Evolution, Position Paper,
FEAST 2000 Workshop, Imp. Col., 10 - 12 July 2000

[pfl98] Pfleeger SL, The Nature of System Change, IEEE-Softw. v.15, n.3; May-June 1998; pp. 87-90.
[pro00] Call for Papers and Participation, ProSim'2000, Software Process Simulation and Modelling,

July 12 - 14, Imperial College, London, http://www.prosim.org
[ram00a] Ramil JF, Lehman MM and Kahen G, The FEAST Approach to Quantitative Process Modelling

of Software Evolution Processes, to appear in Proc. PROFES'2000 2nd Int. Conf.. on Product
Focused Softw. Proc. Impr., Oulu, Finland, June 20 - 22, 2000, LNCS Springer.

[ram00b] Ramil JF and Lehman MM, Metrics of Software Evolution as Effort Predictors - A Case Study,
Proc. Int. Conf. on Software Maintenance, October 11-14, 2000, San Jose, CA

[tur96] Turski WM, Reference Model for Smooth Growth of Software Systems, IEEE Transactions on
Software Engineering, Vol. 22, No. 8, Aug. 1996.

[tur00] Turski WM, An Essay on Software Engineering at the Turn of the Century, Proc. ETAPS 2000,
Lect. Notes on Comp. Science, Mar. 2000

[ven95] Vensim Reference Manual, Ver. 1.62, Ventana Systems Inc., Belmont, MA, 1995.
[wal96] Wall L, et al, Programming Perl, O'Reilly & Associates, Sebastopol, CA, 645 pps. 1996
[wer98] Wernick P and Lehman MM, Software Process Dynamic Modelling for FEAST/1 , Journal of

Systems and Software, 46, 1999: 193 - 201.
[woo79]* Woodside CM, A Mathematical Model for the Evolution of Software, J. of Sys. and Softw. vol. 1,

no. 4, Oct. 1980, pp. 337 - 345 and in [leh85], pp. 339 - 354

