
A Brief Review of Feedback Dimensions in the Global Software Process

Goel Kahen M M Lehman
Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

Tel +44 20 7 594 8214; +44 20 7 594 8216
Fax +44 20 7 594 8215

{gk, mml}@doc.ic.ac.uk

Abstract

FEAST, an ongoing study of the role of feedback in the
software process, was prompted by various factors
including the need to identify the mechanisms
underpinning observed phenomena in a series of
metrics-based studies of evolving software systems
conducted during the seventies and eighties. Evidence
to date indicates that feedback loop mechanisms play
significant role in determining the performance and
dynamics of software processes. To improve
understanding of the evolutionary behaviour of software
systems and to exploit feedback in the context of
process improvement it is necessray to improve
knowledge of the origin and sources of feedback
phenomenon. This is also a prerequisite for a systematic
definition of control and policy mechanisms for the
management of such processes. This paper refers to
some of the many dimensions that appear to relate to
the issue of feedback in the global software process. It
is argued that empirically assessing and modelling the
presence and importance of those different dimensions
in industrial software processes can bring significant
progress to the FEAST investigation.

Keywords: Feedback, Management Control, Software
Evolution, Software Process, Process Improvement

Introduction

Feedback is one of the fundamental processes that is
contained in almost all manageable models. Feedback
mechanisms and interactions are now conceptualised
and considered one of the major influences
underpinning software evolution phenomena. Prompted
in the first [5] by observations and interpretation of

software growth dynamics and at the early stage of this
new conceptualisation, it was suggested that an
organisation is developing and maintaining a large
program should be regarded as a system in the ‘system
theoretic sense’ [6]. It was argued that the “system
behaves as a self stabilising feedback system… The
process leads to a process dominated by feedback….
with long range trends…. and invariances” [14]. This
implied that software processes constitute feedback
systems [15, 18, 20, 21]. Studies of the evolution of a
number of software systems during the seventies and
eighties led to the recognition of patterns and
similarities which were encapsulated in a set of laws of
E-type1 software evolution [13, 14, 15, 16, 17, 19, 23].
This work led to a recognition of, inter alia, the
important role of the global software process and of
user satisfaction [18]. It also led to the observation that
visible improvement of software process has to be
assessed at the global system level. The most recent of
the eight laws so far identified is termed feedback

1 E -type systems that is systems that support
applications operating in the real world [17]. The
common properties of such systems include intrinsic
need for continuing evolution, a loosely defined
requirement or expectation that users are satisfied with
the system as is. An E-type system is judged by the
results it delivers as it executes in the real world, its
performance, its behaviour in execution, the
functionality it delivers, its ease of use and so on. In this
they differ from S-type systems where the criterion of
acceptability is that of mathematical correctness,
relative to an absolute specification.

system. It was restated and extended as the FEAST,
F eedback, E volution A nd S oftware T echnology,
hypothesis [18]. It states that "E-type evolution
processes are multi level, multi loop, multi agent
feedback systems and must, in general, be treated as
such to achieve major process improvement for other
than the most primitive processes." The initial
examination of the hypothesis was undertaken by a
series of international workshops [18, 21]. Most
recently it has been investigated by the EPSRC funded
FEAST/1 project (1996-1998) [19]. It has been
followed by the on-going FEAST/2 (1999-2001) project
[22].

The FEAST studies were prompted by the need to
identify the mechanisms underpinning observed
phenomena. Evidence to date indicates that feedback
loop mechanisms play an important role in determining
the performance and dynamics of software processes.
Much is still to be done to systematically exploit
understanding of such mechanisms and applying it, for
example, in process design. Up to the present, the study
has not identified the many dimensions that affect
feedback in the global process. This paper is an initial
attempt to examine some of these to permit their
systematic investigation. Such dimensions are derived,
at least in part, from the management science view of
feedback in management control.

The Proposed vs the Actual Software
Process

Apart from, perhaps the individual programming
process smallest or most primitive, software processes
are complex systems in their own right. Our ability to
define, understand and manage them without proper
concepts, rules and tools is limited. Current software
process knowledge is mostly of a technical nature,
based, for example, on the abstract world of computer
science and computer science-based software
engineering techniques. The latter tends to restrict what
in some software improvement models has been termed
the key process areas (KPA) [25]. Beyond the KPA
towards, for example, software process management
issues, there is a need for appropriate concepts, rules
and tools. Progress in this area is hampered by many
challenges such as that like many other industrial
processes involve, and to some extent are determined
by human, organisational and other factors. How to
conceptualise and abstract the influences of the latter
poses major challenges.

In the conceptual world, ideas can be interpreted as
mental models that reflect human understanding. One
here must distinguish two categories: models related to
the proposed or desired system behaviour and models
related to the actual or practical situation. In mental
models, the first category appears to dominate the
second. Thus, it is not surprising that the investigations,

for example, in software process description languages
have found so little application in practice [24]. In order
to understand and master software processes it is
necessary to consider both categories of models. The
degree of mastery of software processes will relate to
progress in both areas.

System behaviour can be examined, for example, from
the perspective of system dynamics [9], as in the
FEAST projects. Other methodologies, such as soft
s y s t e m s [7, 8] can also contribute to a better
understanding of the real software process phenomena.
When investigating the real world, measurement and
systematic empirical study must play a major role. One
must also consider that the real world also involves the
views, desires, expertise, goals, criteria and plans that
exist in the conceptual world, the mental models, of
those involved, such as developers, users, supporters,
managers and others. Furthermore, one must consider
the role of factors, such as, for example, the
organisational and managerial policies, strategies and so
on, the forces and constraints placed on the process by
its environment. In sum, many factors, both within and
external to the software process determine the
behaviour and performance of that process. To
conceptualise and identify the individual influences of
these may be challenging but appears to be necessary if
one is ever to achieve a discipline of feedback control
for software processes.

The Many Dimensions of Feedback in the
Global Process

In general, feedback loop mechanisms has been
classified into two different types: reinforcing or
positive (i.e. amplifying) and balancing or negative.
While the former is seen as a driver for change the latter
operates, inter alia, whenever there is goal-seeking
behaviour. The behaviour that results from a reinforcing
loop is either accelerating growth or accelerating
decline. Balancing feedback mechanisms on the other
hand, force the system in which they are located,
systems to seek stability in order to moderate or reduce
the discrepancy between desired and actual behaviour.

E-type software processes aim to maintain stakeholder
satisfaction with software behaviour in execution within
a changing real world domain. Many usage domains
involve a business (competitors, markets, regulations)
and rely on a set of technologies. As the business
environment accelerates its rate of change and
technology also changes [11], the software process must
react to accordingly to maintain stakeholder
satisfaction. In an ideal situation, the software system
would be immediately adapted to the changing
environment. In reality the software process is driven
by feedback loops which propagate, for example the
discomfort perceived by the stakeholders as a
consequence of the mismatch between software

capability and functionality and current business
demands. Such propagation of concerns involves many
reinforcing loop mechanisms in users' and developers'
organisations. But these are subject to the control of
balancing mechanisms. The latter are required to
guarantee organisational smooth operation and long
term survival.

Time

R
at

e
o
f

C
h
an

g
e

People

Organisation

Business Environment

Technology

Software System
(each slice represents a system release)

Figure 1: The major drivers of the software evolution
process

One may distinguish four role playing constituents:
people, organisational (managerial and structural
aspects), (business) environmental and, technological
(own and related aspects). In some circumstances these
are referred to the organisational, technological,
information and human aspects (see, for example, [10,
11, 12]). Figure 1 illustrate the process of such
dynamism. The systems viewpoint requires to recognise
that the human actors are an integral part of the
feedback process. They are not standing apart from it.
Impacts generated by changes in these four elements
provide different types of feedback that drive the
software evolution process. In this context, each
element (i.e. people, organisation, technology and
business environment) contributes its own weight and
impact to the entire process and contribute to the global
feedback. In order to understand and possibly manage
the software process one needs to define and
understand the potential effect of each type of feedback
and their interrelationships. One may start by looking
individually at each of these four elements within
software evolution historical data and trends.

We believe that in addition to the four elements
identified above as the sources of major feedback loops,
there are two other major sources. The latter exist as
inherent part of the software evolution process. One
feedback loop involves the usage domain and users'
reactions regarding the last and previous software
releases. Another (feedback) loop runs internally within
the technical software process and conveys internal
reactions to the last software release and to the work in

progress. While the latter addresses problems that arise,
for example from the appropriateness or otherwise of
software functionality by itself, the former ensures that
changes in the environment including both business or
technological environments have not rendered the
recommended or implemented software less than fully
adequate or even obsolete (see Figure 2). Note that such
changes may affect software already implemented,
software that is in process of being implemented or that
planned. Another point to make here is that the two
feedback loops of Figure 2 are essential to ensure an
adequate process in which, the external one being
considered part of the global software process. In other
words, the (feedback) loop from system output to
system input is part of the system and, must therefore
be included in the measurement of software system
effectiveness. As Beer [4] pointed out the first principle
of organisational control is that the controller is part of
the system under control. Regarding this point, some
cybernetic control mechanisms are already well
understood and their study may help to improve
software evolution management. Furthermore, the
controller grows with the system, and, if we look back
through time, we see that the controller itself evolved
with the system.

The software process can be studied in terms of the
proposed content of a release and its actual context. The
proposed content of a release relates to the question of
how well the needs are identified and defined. The
software context relates to the degree to which the tools,
techniques and approaches to meet those needs are
defined. The ‘needs’ factor is not stable (due to
reinforcing feedback); as the software system has to be
adapted to changing needs and changing environment.
Based on both of these changes, software content and
software context must also change leading to increasing
software and software process and product complexity.
In addition, uncertainty will bring more complexity to
the software process because of needs misunderstanding
(i.e. ill-defined feedback), and also because of ill-
defined tools and techniques. This is caused by the lack
of appropriate of control mechanisms or malfunction of
the latter.

A significant portion of the software process and
software metrics literature has focused on endogenous
mechanisms (i.e. internal to the technical software
process) formal and informal. These are devised and
established by software developers and managers
without the involvement of others. The control
variables, in particular, include endogenous technical
and financial software process properties. But the
importance of exogenous (i.e. external to the software
process) variables is undeniable. It is crucial to
recognise that the behaviour of any software, as an
organism, is regulated by a combination of both
exogenous and endogenous control mechanisms. In
fact, the behaviour of software process is function of
both environment-initiated (i.e. exogenous) control

mechanisms as well as self-initiated technical (i.e.
endogenous) control mechanisms. Thanks to the
cybernetic theory we now know that the behaviour of
many organisms depends first and foremost on its own
self-regulatory mechanisms and only indirectly upon
exogenous regulatory mechanisms [2]. One may
conclude that, the effectiveness and efficiency of
exogenous control mechanisms depends crucially on the
extent to which they are able to appropriately shape the
self-regulatory behaviour of the organism being
controlled. Exogenous control mechanisms, in and by
themselves, are almost always indirect and incomplete.
In order to understand the dynamics of a system one
must study the overall feedback loop structure with its
mechanism. This to a significant extent is believed
determine the overall process performance2.

Figure 2: Two major feedback loops in the software
process

Feedback as Reflected in Organisational
and Managerial Literature

The role of various forms of feedback in decision
making processes has been considered in organisational
and managerial literature in general and, in decision
making studies in particular (e.g. [1, 3, 26, 28]). The
provision of feedback in this respect is that it has the
potential to alleviate some of the difficulties associated
with the limited cognitive ability of decision makers
and over insights into the processes involved in their
decisions. In this context, feedback is defined as
information about the decision-making process or its
outcome [1]. This framework makes it possible to
analyse the components of judgmental accuracy in the
process of decision making. It involves three basic
elements: individual decision maker’s judgement
system, criteria and prediction by the individual

2 See, for example, a companion paper [27] that
discusses the potential impact of feedback control in
software cost estimation.

decision maker of the criteria variables. Accordingly,
four types of feedback are typically distinguished in this
framework:

1. Outcome feedback: involves informing the individual
decision maker about actual values of the criterion
variable.

2. Cognitive feedback: provides information about the
individual decision maker’s judgement policy [e.g.
information about the weights and functional forms
relating task cues to one’s (i.e. software developer of
manager) actual predictions of the environmental
variables].

3. Task properties feedback: provides the individual
decision maker with information about statistical
properties of the prediction task, typically information
about judgement policies required to make optimal
predictions, in some sense

4. Model predictions feedback: arises from the decision
maker’s stated judgement model and actual predictions
to provide the decision maker (i.e. software developer
or manager) with insight into his or her own judgement
model. This type of feedback has been practically
ignored in prior research.

These four forms of feedback in decision making
process may enable the agents involved in the software
process to combine quantitative data in ways that
enhance their decision making ability in control
development of comprehensive metrics.

In brief, we believe that in the study of feedback
mechanisms, the following two questions need also to
be addressed:

1. Does an adequate, in some sense, monitoring system
for the global process exist? Can it be defined?

2. Would such a monitoring system be part of a
discipline of feedback control that may improve
software evolution process performance by means of,
for example, improve responsiveness to changes in the
business environment and in the technological
elements?

It is now clear that further research is needed. In this
respect, an exploratory study should be conducted in
order to provide the empirical basis. It is hoped that the
discussion in this paper was able to reflect some of the
challenges and elements to be considered in advancing
the study of the feedback phenomenon.

Input OutputProcess

Environment (ie Context)

Software process

Internal Feedback (ie arising as development procedes)

External Feedback (ie reflects the software in its operational environment)

Closing Remarks

Feedback loop mechanisms play a major role in
software evolution. Feedbacks are either positive or
negative. The degree to which a feedback relation is
positive or negative depends on the function and
parameters. Depending on the related elements
(business environment, technological, organisational
and humans) feedback mechanisms vary.
Understanding these forces will open the way to
practical model-based software evolution management,
control and support for process improvement. Previous
research within the FEAST/1 and FEAST/2 projects has
focused on the general concept of feedback dynamics.
However, major elements responsible for the feedback
phenomenon and their different impacts in the software
process must be identified, and quantified. In the light
of such understanding, then, one can define appropriate
feedback-system based metrics, an essential tool to
improve software process management. Such metrics
could be use to monitor and ultimately manage the
software evolution process and also could provide the
basis for strategy definition and corrective local action
for such process. It is argued that empirical assessment
and modelling of the presence and importance of those
different dimensions in industrial software processes
can lead to significant progress in the FEAST
investigation.

Acknowledgements

Financial support from the UK EPSRC, grant
number GR/M44101 (FEAST/2 Project), is
gratefully acknowledged.

References

[1] Arunachalam, V. & Daly, B. An Empirical Investigation
of Judgment Feedback and Computerized Decision
Support in a Prediction Task, Accounting Management
and Information Technology, Vol. 6, No. 3, 1996, pp.
139-56.

[2] Ashby, W. R. An Introduction to Cybernetics, Chapman
& Hall, London, 1956.

[3] Ahton, R. H. Effects of Justification and a Mechanical
Aid on Judgment Performance, Organisational Behavior
and Human Decision Processes, Vol. 52, 1992, pp. 292-
306.

[4] Beer, S. The Brain of Firm: The Managerial Cybernetics
of Organisation…, John Wiley & Sons, Chichester,
1981.

[5] Belady, L. A. and Lehman, M. M. An Introduction to
Program Growth Dynamics, in Statistical Computer
Performance Evaluation, in: W. Freiburger (ed.), New
York, 1972, Acad. Press, pp. 503 – 511 [Reprinted as
chapter 6 in Lehman, M. M. and Belady, L. A. (eds.),
Program Evolution - Process of Software Change,
Academic Press, London, 1985].

[6] Boulding, K. E. General Systems Theory: The Skeleton of
Science, Management Science, Vol. 2, No. 3, 1956, pp.
197-208.

[7] Checkland, P. Systems Thinking, Systems Practice, J
Wiley, London, 1981.

[8] Checkland, P. & Scholes, J. Soft Systems Methodology in
Action, J Wiley, London, 1990.

[9] Forrester, J.W. Industrial Dynamics, MIT Press,
Cambridge, Mass, 1961.

[10] Kahen, G. Assessment of Information Technology…:
Appropriateness, Economic and Local Constraints, IT
Characteristics and Impacts, Int. Journal of Computer
Applications in Technologies, Vol. 5, Nos. 5/6, 1995,
pp. 325-33.

[11] Kahen, G. Strategic Development, Technology Transfer
and Strategic Technology Assessment in Changing
Environments, Proceeding of the First International
Conference on Dynamics of Strategy, Surrey, UK,
1996, pp. 366-84.

[12] Kahen, G. Devising the Convergence Strategy for
Productivity Improvement: Effectiveness based on the
Human Element, Int. Journal of Materials and Product
Technology, Vol. 12, No. 1, 1997, pp. 18-26.

[13] Lehman, M.M. Programs, Cities, Students, Limits to
Growth?, Inaugural Lecture, in Imperial College of
Science and Technology Inaugural Lecture Series, Vol.
9, 1970, 1974, pp. 211-229. Also in Programming
Methodology, (D. Gries. ed.), Springer Verlag, 1978,
pp. 42-62.

[14] Lehman M. M. Laws of Program Evolution—Rules and
Tools for Programming Management, Proceedings of
the Infotech State of the Art Conference, Why Software
Projects Fail, 1978, pp. 11/1-11/25.

[15] Lehman M.M. On Understanding Laws, Evolution, and
Conservation in the Large Program Life Cycle, Journal
of Systems and Software, Vol. 1, No. 3, 1980, pp. 213-
221.

[16] Lehman M.M. Life Cycles and Laws of Software
Evolution, The Proceedings of IEEE Special Issue on
Software Engineering, Vol. 68, No. 9, 1980, pp. 1060-
76.

[17] Lehman, M. M. & Belady, L. A. Program Evolution:
Processes of Software Change, Academic Press,
London, 1985.

[18] Lehman, M.M. Feedback in the Software Evolution
Process, keynote address, CSR Eleventh Annual
Workshop on Software Evolution: Models and Metrics,
Dublin, Ireland, Sept. 7-9, 1994, and in Information and
Software Technology, special issue on Software
Maintenance, Vol. 38, No. 11, 1996, Elsevier, 1996, pp.
681-686.

[19] Lehman, M. M. and Stenning, V. FEAST/1: Case for
Support, Department of Computing, Imperial College,
London, UK, 1996, Available from links at the FEAST
p r o j e c t w e b s i t e h t t p : / / w w w -
dse.doc.ic.ac.uk/~mml/feast

[20] Lehman M.M. Laws of Software Evolution Revisited,
Proceedings of EWSPT’96, Nancy, LNCS 1149,
Springer Verlag, 1997, pp. 108-124.

[21] Lehman, M. M. Feedback in the Software Process,
Position Paper, SEA Workshop: Research Directions in
Software Engineering, Imperial College, London, 1997,
April 14 – 15th.

[22] Lehman M. M. FEAST/2: Case for Support, Department
of Computing, Imperial College, London, UK, 1998,
Available from links at the FEAST project web site
http://www-dse.doc.ic.ac.uk/~mml/feast

[23] Lehman M. M., Perry, D.E. and Ramil, J.F. On
Evidence Supporting the FEAST Hypothesis and the
Laws of Software Evolution, 1998, in Proceedings of the
Fifth International Metrics Symposium, Metrics’98,
Bethesda, Maryland, Nov. 20-21.

[24] Osterweil, L. Software Processes Are Software Too,
Proceedings of the 9th International Conference on
Software Engineering, 1987, pp. 2 - 12

[25] Paulk, M. C. et al Capability Maturity Model for
Software, Version 1.1, Software Engineering Institute
Report CMU/SEI-93-TR-24, 1993.

[26] Raffia, H. The Art and Science of Negotiation, Harvard
University Press, Cambridge, 1982.

[27] Ramil, J.F. (2000) “’Why COCOMO’ Works Revisited
or Feedback Control as a Cost Factor”, submitted to
FEAST 2000 International Workshop on Feedback in
Software and Business Processes, July 10-12, Imperial
College, London

[28] Te’eni, D. (1991) “Feedback in DSS as a Source of
Control: Experiments with the Timing of Feedback,
Decision Sciences, Vol. 22, pp. 644-55.

