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Abstract
An approach and basic concepts for the study of the system dynamics of long-term software evolution

processes is presented. The approach provides a generic context and framework that supports at least three
crucial process areas requiring management decision, resource allocation, release planning, and process
performance monitoring. The report exemplifies the approach with an executable model. The latter reflects the
global software process at a high level of abstraction and includes phenomenological observations derived
from the laws of software evolution and the behaviours thereby implied. It incorporates concepts such as
progressive (e.g., functional enhancement) and anti-regressive (e.g., complexity control) activities and enables
the study of policies of human resource allocation to classes of activities. The example shows how the model
permits assessment of the impact of alternative policies on various evolutionary attributes. It is part of and
exemplifies the methods for software process modelling being developed and applied in the FEAST projects.
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1 Introduction

This report presents and discusses an
approach for the planning and management of
E-type (Lehman & Belady 1985) long-term
software evolution processes and exemplifies
it with a model that is used in the evaluation of
effort allocation policies. The approach
addresses two phenomena, the continuing
change and enhancement of functional content
and the growing complexity of the software
product, that are believed to be important in
the evolution context. The present approach
and model, together with earlier models
(Lehman & Wernick 1998; Wernick &
Lehman 1999; Chatters et al 2000; Kahen et al
2000) exemplify the FEAST white box
investigation into the dynamics of evolution
processes. With regards to the present model
the next step is to align it with actual industrial
processes. If successfully accomplished, the
result would be models calibrated to specific
processes to be used in their planning,
management and improvement. Once this is
achieved, a generic model may emerge. The
latter would be a useful tool for subsequent
tuning to specific systems and evolution
domains, and thereafter for direct use in the
context of industrial processes for process

improvement and software evolution planning
and management.

2 Evolution Planning and Management

The approach and the model presented here,
a refinement of our previous system dynamics
(Forrester 1961) modelling work (Lehman &
Wernick 1998; Wernick & Lehman 1999;
Chatters et al 2000; Kahen et al 2000), is
offered, inter alia, as a contribution to the
more general issue of software evolution
planning and management. This is an area that
poses a number of unanswered questions.
These include, for example:
• how, in general, should a software

organisation plan for the future by
exploiting past evolutionary experiences
and historical data on evolving software?

• how may the business knowledge and
understanding that developers and
managers acquire be used more effectively
in helping them perform and manage
software evolution processes?

• how can software managers cope with the
difficult strategic changes that must be
overcome in order to sustain software
system functional growth in changing
business environments?
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• how are limited resources (mainly, human
effort) best allocated to different types or
classes of activity?

Since in industrial settings the software
evolution process is embedded in various
socio-cultural, organisational, cognitive and
economic environments, a full answer to  the
above questions is not straightforward. The
difficulty is compounded by many factors.
One would expect that with, perhaps, the
exception of the less mature processes and of
software development in-the-small, software
evolution, like other complex processes, be
characterised by:
• process attributes that exhibiting non-

linear behaviour. Such behaviour tends to
be difficult to predict and control.

• tightly coupling between evolutionary
attributes. Everything appears to influence
everything else.

• presence of strong system dynamics.
Dynamic effects take place on different
time scales and at many levels of
aggregation.

• counter-intuitive behaviour. Cause and
effect are distant in time and space, and
effects may persist long after their causes
have ceased to operate. This makes
effective management very difficult
(Forrester 1971)

To the above challenges one may add at least
one more. The processes are performed and
managed by humans whose individual
decision-making behaviour is essentially
unpredictable. One would therefore expect it
to be unlikely for the process to display
regularities or invariants. That is, the process
will, at every instant in time, be the result of
and reflect local decision making in the
context of locally perceived circumstances.
Nevertheless, a series of empirical studies of
evolution processes over the years, most
recently as part of FEAST/1 and /2 (FEAST
2000), have assembled evidence that suggests
that evolution processes do tend to exhibit
regularities, invariants and, in addition,
commonalties. They are briefly referred to in
the next section. What is important here is that
they offer a basis to build models that can
facilitate long-term evolution planning and

management, as exemplified by the model
presented later in this report.

3 Software Process and Evolution Laws

A series of investigations into the
phenomenology of software1 evolution have
been carried out over a period of some 30
years or so (Lehman 1969; 1974; Chong-Hok-
Yuen 1981; Kitchenham 1982; Lehman &
Belady 1985; FEAST 2000). The studies have
resulted in the recognition of a set of
regularities that tend to emerge, with varying
emphasis and to a varying degree in
evolutionary attributes of E-type (Lehman &
Belady 1985) software and their  processes.
The type E refers to software being actively
used in solving a problem within a real world
domain2. Most systems upon which businesses
and organisations rely for their operations are
of this type.

Behavioural patterns and invariant behaviour
have been identified over the years by
observations derived from metric data of the
several systems studied and have been
encapsulated in eight laws of software
evolution (Lehman 1974; 1978; Lehman &
Belady 1985; Lehman 1989, FEAST 2000)
and a principle of software uncertainty
(Lehman 1989). More recent evidence
supporting them has been summarised in a
series of papers available from links at the
FEAST web page (FEAST 2000). Table 1
(next page) shows the laws as re-formulated in
August 2000. The laws are numbered and
presented in the order of their identification.
Column one indicates the year in which the
phenomenon was recognised. The eighth law
provides a formal statement of the feedback
system nature of E-type evolution processes.
The other seven encapsulate various aspects of
inter-acting feedback influences. That is, it
seems plausible to hypothesise that the eighth

                                                
1 The reference to software applies here to the product

of the software process as a whole, that is, it includes
programs (source code), development and usage
documentation and other documents such as
specifications, design, test plans and cases, etc.

2 All references to software and software process in
the remainder of this report are to this type.
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law is the source of mechanisms (or forces)
that underpin the other seven.

The laws offer an initial identification of
behavioural invariants and a statement of their
expected qualitative behaviour. The most
recent investigation of evolution
phenomenology, the FEAST/1 (1996-1998)
and FEAST/2 (1999-2001) projects was
motivated by the study of the FEAST
hypothesis, which includes the eight law as
one of its assertions. The hypothesis, in one of
its formulation is as follows: "E-type evolution
processes are multi level, multi loop, multi
agent feedback systems and must, in general,

,be treated as such to achieve major process
improvement for other than the most primitive
processes." (Lehman 1994).

The work and model presented in this report
form part of the FEAST/2 project and of the
investigation of the hypothesis. The model
encapsulates phenomena such as continuing
demand for change (first law) and continuing
growth (six law) implied by the laws. As will
be seen later in the report, the model portrays
the software evolution process as a feedback
system with a basic loop in which the process
output, the operational software, is fed back to
the process input.

No. Brief Name Law
I

1974
Continuing Change E-type systems must be continually adapted else they become

progressively less satisfactory in use
II

1974
Increasing

Complexity
As an E-type system is evolved its complexity increases unless work is

done to maintain or reduce it
III

1974
Self Regulation Global E-type system evolution processes are self-regulating

IV
1978

Conservation of
Organisational Stability

Average global activity rate in an E-type process tends to remain
constant over periods or segments of system evolution over its lifetime

V
1978

Conservation of
Familiarity

In general, the incremental growth and long term growth rate of E-type
systems tend to decline

VI
1991

Continuing Growth The functional capability of E-type systems must be continually
increased to maintain user satisfaction over the system lifetime

VII
1996

Declining Quality Unless rigorously adapted to take into account changes in the
operational environment, the quality of E-type systems will appear to be
declining

VIII
1996

Feedback System
(Recognised 1971,
formulated 1996)

E-type evolution processes are multi-level, multi-loop, multi-agent
feedback systems

Table 1: Current Statement of the Laws - Sept. 2000

4 Objectives of White Box Software
Modelling in FEAST

System dynamics (Forrester 1961) and soft
system methodology (Checkland 1981;
Checkland & Scholes 1990) represent two of
the techniques that have been proposed to
model real world complex processes.
Application of the system dynamics modelling
approach, in particular, enables one to explain
the behaviour of a complex system in terms of
its feedback loop structure, often called the
systemic structure. That is, system dynamics is
a powerful tool that, when properly applied,
can help software managers to deal with the
systemic properties of their decision

environments. Note that, from the start, the
field of system dynamics was conceived and
applied to examine the behaviour of complex
social and organisational systems through
computer modelling and simulation tools
(Meadows et al, 1972) such as the Vensim
tool (Vensim 1995) used to develop and
execute the model presented in this report.

The focus of the system dynamics field is on
the modelling of the feedback structure of the
system involved, and in doing so, to promote a
better understanding of the system and
improve decision making. The significance of
this observation is better recognised when one
takes into account, for example, the empirical
evidence from experiments with subjects in
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simulated environments. This seems to
indicate that failure to foresee, take into
account and effectively oversee feedback
effects is one of the sources of management
error or ineffectiveness. It is also evidenced,
for example, by studies which indicate that
management dysfunctional behaviour in
complex systems may be explained by
systematic errors made by the decision makers
in failing to account for feedback, time-delays
and non- linearities (Senge 1990; Kleinmuntz
1993; Sterman 1994; Langley 1998). Studies
conducted with students in the software
engineering field point towards overall similar
conclusions (e.g., Drappa & Ludewig 2000).

This report provides one answer to the
question of how to approach planning and
management of a software evolution process
by presenting a model that differentiates
between various classes of resources (i.e.,
effort) within the systemic structure of the
software process. This is explained later in this
report. By exploiting system dynamics
modelling technology the model described
seeks to reveal and explain the dynamics of
long-term software evolution within a model
of the process that articulates the evolutionary
behaviour of a software process as a function
of different resource allocation policies.

The basic model developed in this report
seems to be, in principle, applicable to
Waterfall-based (Royce 1970) traditional
single-team E-type evolution processes3. It has
been built with the following intentions in
mind:
• to capture relevant aspects common to all

such processes in the model
• to replicate these, at a high level of

aggregation, in the context of the
behaviour of software processes

• to avoid the inclusion of elements believed
not to be common to such software
processes.

                                                
3 Model adaptation to other evolution processes such

as build & fix (Schach 1990), multiple teams and
parallel work, distributed evolution teams, components-
intensive, etc. may be achieved at a later stage. Such
adaptation may be accomplished as part of the
confrontation of the model with industrial processes.

Development of the model has generally
followed a top-down successive refinement
process (Zurcher & Randell 1968; Wirth
1971) a key feature of the FEAST white box
modelling approach (Kahen et al 2000), as
exemplified in the earlier system dynamic
models (Lehman & Wernick 1998; Wernick &
Lehman 1999; Chatters et al 2000). In so
doing it has been necessary to exclude some of
the real world elements, particularly those
believed not to be common to all processes
considered. Other influences believed to yield
second-order effects have been also excluded.
The fine-grain detail of a given process can be
reflected in the model at a later stage, for
example, when a model is tailored to a
particular software process. That is, the model
offers a template that can be customised to
individual processes. In this context it should
be noted that the immediate focus of interest
of many of the existing system dynamics
studies of the software process (e.g., Abdel-
Hamid 1991) appear to have been based on
single step development of fine grained
models (e.g., a bottom-up approach). Such an
approach results in large models that, though
possibly of value within the context of the
individual process they reflect, tend to be
cumbersome. They also cannot be easily
ported from process to process, appear
difficult to calibrate, interpret and exploit, and
have not found widespread acceptance as
decision-making tools.

A system dynamics model can reflect a
system at many levels. It is important to
identify an appropriate level of abstraction or
aggregation that results in a model that is
appropriate for the purpose for which it is
being constructed. Within such a model, one
may proceed to identify the main feedback
loops relevant to the issue or problem of
interest. But, by and large and as recognised
by other workers in the field (Ruiz & Ramos
2000), modellers have chosen to represent the
systems at a too low level of abstraction.

It should also be noted that the vast majority
of software process simulation models have
had the individual ab initio project context as
their focus. Only a few exceptions,
exemplified by the model in Aranda et al 1993
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and the FEAST white box modelling work
(Lehman & Wernick 1998; Wernick &
Lehman 1999; Chatters et al 2000), has the
global process (Lehman 1994) and long-term
evolution as their focus.

5 The Approach

The determination of appropriate evolution
policies shares with the general optimisation
problem the following five classes of
attributes as illustrated in Figure 1:
• objectives, also termed goals, are the

variables or expressions to be optimised
• constraints are conditions, such as the

ranges within which some of the model
variables are forced to remain

• structure includes behavioural invariants,
causal mechanisms, feedback loops, built-
in process relationships that are perceived
as properties of the process

• a policy represents a "...guiding rule which
would be applied continually as time

passed and circumstances changed..."
(Coyle 1996, p. 222) and that need to be
formulated to achieve the objectives under
the constraints and under the behavioural
invariants. Coyle introduces a distinction
between policy and pressure point. The
latter imply "...a choice which is made
only once, after which the system will run
under the influence of that choice..."
(Coyle 1996, p. 222). Here both concepts
are considered under policy.

• Behaviour emerges from the interaction of
the above. Policies are satisfactory to the
extent that the model's behaviour is
consistent with organisational objectives

The figure illustrates this view of the
problem with examples of the individual
constituents. The solid-line boxes represent
the major constituents of the system dynamics
model described in this report. Possible
objectives of the modelling exercise are
indicated within the dashed-line box.

Policies
Work Acceptance
Work Submission
Effort Allocation to:

- Preparation
- Implementation
- Validation
- etc.

Release Policy
Others

Constraints
a < Total Effort < b
e < Release Interval < f
Total Budget = g
Defect density < h
Others

Structure
Qualitatitive  (e.g., laws of
software evolution)
Quantitative (e.g., formulae,
parameters):

-  Causal links
-  Loop structure

Deterministic vs  Stochastic
Others

Objectives
Viable Evolution
Maximisation of weighted
combinations of:

- Evolvability
- Functional Growth
- Cost Effectiveness
- Timeliness
- etc.

Others

Behaviour
Evolutionary Attributes:
- Functional Growth
- Cost Effectiveness
Others

Figure 1: Model constituents (solid-line boxes) and possible objectives to be achieved (dashed-line)

The goal of a modelling exercise involving
the elements in the figure would be to identify
policies that lead to viable evolution as
defined by organisational objectives and,
within this, to the comparison of the effects of
different policies. Other objective functions

are not examined, since it appears that they
would, to a large degree, be dependent on the
evolution domain.

It is, of course, not only objectives that vary
from organisation to organisation and from
process to process. How objectives are



30/11/00 17:57 6 mml663/2
© G Kahen, MM Lehman and J.F. Rami. All rights reserved.

promulgated, applied and enforced will also
vary. Thus, even placeholders appear
inappropriate in the present model. The
necessary additions have been left to
subsequent refinement and adaptation of the
model to a specific domain and process.

Note that in the figure viable evolution
serves to define a reasonable set of
evolutionary attributes within reasonable
boundaries as perceived by the various
evolution stakeholders. This includes, inter
alia, continuing process cost-effectiveness and
successive release of software version with
increased functional power. These must, at the
very least, satisfy the evolving needs and
desires of mandatory, essential or otherwise
selected stakeholders.

In figure 1, the arrows in the figure must be
interpreted as follows: the constituents in the
category being pointed to are generally a
function of the constituents in the category
from which the arrow originates. Arrows at
both ends indicates a two-way dependency.
Thus, for example, Behaviour must depend on
Policies, but equally Policies may have to be
adapted as a result of behaviour.

Examples of policies in the model are those
that regulate the progress of a process through
activities such as work acceptance,
implementation, validation and release
activities. The interrelations amongst model
constituents are governed by causal
relationships and by the effect of feedback
looks. Only influences that may change
significantly over system lifetime can be
considered in the model. Organisational,
social, economic, and other influences that do
not often vary significantly over the period
studied are considered constant and not
explicitly represented in the model. If and
when they change significantly, this could to
be treated as structural changes, and treated as
changes in model equations and parameters.

The system dynamics model in this report
presents the basis for the integration of the
above mentioned elements in a rational and
coherent way which is aimed at supporting
planning and management of long-term
evolution processes.

6 Change and Complexity in Evolving
Software and their Processes

The basic evolutionary feedback loop
operates as follows. Demand for change and
evolution are in a mutual relationship.
Evolution arises from the need to maintain
user satisfaction within a changing
(application, usage) domain. This is reflected
by such factors as changes in the application
domain, changes in user preferences, learning
and experience, human ambition and the
influence of agents and factors exogenous to
the application and system. The act of
releasing the operational software in the
application domain is likely to accelerate the
rate of change of the latter (Lehman & Belady
1985).

One aspect of this phenomenon is reflected
by the change of the application concept. The
latter represents the desires of users or
potential users and other stakeholders with
regards to the functional content at a given
moment in time. Evolution is viewed as the
process that changes the software by changing
existing functionality and adding new
capability, so that the former and the system as
a whole are adapted and enhanced to address
changes in the application concept. The
ultimate goal is to maintain or increase
stakeholder satisfaction within a changing
application domain, and changing viewpoints
and desires of the stakeholders. Some of the
changes will be triggered by previous changes.
For the reasons discussed in the previous
section, we do not comment here on such roles
and interests as those of the business and other
groupings within which the process is
embedded.

Within the situation depicted in the previous
paragraph, identification and timely
satisfaction of the demand is a major challenge
in the software evolution process. Overcoming
this challenge has at least three aspects.
Firstly, due to the consequences of adding
change upon change upon change, the
software becomes more and more complex
unless work is done to compensate for it (Law
II). Complexity also increases because of the
need to add functionality. The latter is
reflected in the increasing size of software
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(Law VI). Another source of complexity
growth is the orthogonality of new function to
system architecture. Secondly as, for example,
user integration with and dependence on the
system becomes ever greater, time constraints
on change implementation tend to become
increasingly tighter. Thirdly, each change
may, to certain extent, trigger more demand
for change. This leads to a positive loop that
may severely impact the implementation time
and completion delay.

A consequence of the above is the tendency
to perform parallel work This is likely to
increase process complexity per se and lead to
hidden decisions and other errors. All these
phenomena represent factors that lead to
product and process degradation, to excessive
expenditure or to all these. It may also result
in a need for additional effort to counteract or
control such effects, as explained below.
When such work is neglected, more time and
effort per change unit implemented is required
than would otherwise be needed. In principle,
any single change in one stage or in an
element of the software (or its process) may
cross-impact on other stages and elements,
creating multiple ripple or cascade effects
across the system. In the context of evolution,
with continuing change and increasing
functionality, these is likely to lead to
increased rework and delay, and hence to
declining productivity. This would explain, at
least in part, the decrease in evolution rate
over time observed in several systems and
captured by the inverse square model of
system growth proposed by Turski (1996) and
further explored in FEAST (2000).

Managers can take cognisance of the above
influences. By taking them into account, they
may then direct effort to specific activities that
otherwise would have been ignored or
neglected. They may be able to control key
evolutionary attributes. This would be part of
a discipline of long-term evolution planning
and management. The latter appears to be a
necessity in a world in which organisations
increasingly rely on growing (and aging)
inventories of evolving software for their
operation.

7 Progressive and Anti Regressive Work

In general, maintenance and evolution
activities have been classified as functional
fixing, adaptation, and enhancement of
existing functionality. Several classifications
of maintenance and evolution work have been
proposed over the years (Chapin et al 2000).
The idea is that improved understanding and
management of the process can be achieved by
classifying and measuring each of the activity
classes. We refer here to one that focuses on
the growing complexity phenomenon issue, as
suggested by one of the present authors
(Lehman 1974).

As discussed above one effect of change
upon change upon change is increasing
complexity of the software and other aging
effects (Lehman and Belady 1985, Parnas
1994). These must, if not adequately
compensated for, lead to a decrease in
evolution productivity. Following Baumol's
classification (Baumol 1967) of work effort
into progressive and anti-progressive types,
Lehman suggested a further category, anti-
regressive (Lehman 1974, 1985). Activities
that enhance (by addition or modification)
system functionality were termed progressive.
The new term anti-regressive was used to refer
to work effort intended to compensate for the
aging effects (Parnas 1994). Such work
consumes effort without any immediate visible
stakeholder return, for example, in system
value as reflected by system functional power
or performance. Instead, it facilitates further
evolution, enabling it to be achieved more
easily and requiring less effort. When a new
release of a software system is developed, it
improves previous releases and becomes
structurally more complex unless the anti-
regressive effort is sufficiently large to
compensate for such complexity growth.
There is, therefore, a need to allocate more
anti-regressive effort. Growing complexity is
reflected by increased size, more functionality,
a larger number of integrated components,
more control mechanisms, a higher level of
reciprocal interdependency and greater inter-
element connectivity. In this context, the
achievement of a minimum level of anti-
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regressive activity is seen as essential to
ensure further evolution.

The remainder of the report introduces a
model that exemplifies the approach and
incorporates the above concepts.

8 Influence Diagram

In order to understand the dynamics of the
situation and possibly overcome the challenge,
one needs to study the overall feedback loop
structure which, it is believed, determines to a
significant extent the overall process
performance. To do this, major process
constituents need to be reflected in a model in
which the individual forces are quantified and
the behaviour implied by their combined
effect can be derived and studied.

As for other systems, the structure of a
software evolution process can be sketched
using influence diagrams (Coyle, 1996).
Causal loops can be either balancing (i.e.,
negative feedback) or reinforcing (i.e.,
positive feedback). A balancing loop in
isolation exhibits goal-seeking behaviour. This
means that after a disturbance, the system
seeks to return to an equilibrium situation. A
reinforcing loop in isolation, on the other
hand, drives exponential growth or decay. An
initial disturbance leads to further change, and
may build up and result in instability.

The model of figures 2 to 4 has been
developed incrementally from the laws of
software evolution, analysis of previous
research (FEAST 2000), preliminary field
work with FEAST/2 collaborators and a study
of how others have approached the
development of system dynamics models of
the software process. Detailed analysis of all
these led to the high-level causal loop diagram
shown in Figure 2. In the diagram the solid
lines represent either positive '+' or negative '-'
influences between two of the attributes.
Dashed lines represent influences that, though
real, are considered more complex than simply
positive or negative. Figure 2 models a closed
loop process that is consistent with the
feedback system view studied in FEAST
(2000). Amongst the attributes indicated in the
figure there is a set of policies. One needs to
assess their individual role and to address how
to harmonise them to achieve process
understanding. This, however, requires a more
detailed executable model. That is, due to
difficulties of behavioural analysis and,
concurrently, reaching understanding of the
dynamic behaviour of feedback loops, we
need to move from causal loop diagrams to
more formal models which can be simulated.

Cumulative Anti
Regressive

Work

PREPARATION POLICY

INTEGRATION
POLICY

EFFORT
ALLOCATION

POLICY

SUBMISSION
POLICY

ACCEPTANCE
POLICY

Work in Progress

Preparation flow

Work Implemented

Team Size

IMPLEMENTATION
POLICY

Cumulative Progressive Work

RELEASE
POLICY

Productivity

Other Additions
and Changes

Identified

Changes to
Requirements

Work Accepted

Work Ready for
Implementation

Integration flow

Implementation flow

Work to be Released

Fielded Functionality
Satisfying Current Needs

Work Identified

+

-

+

+

+
+

+

+

+

+

+

+

Figure 2: Influence diagram of the software evolution process
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9 Full Model

As already indicated system dynamics
techniques provide one convenient approach.
In general, such models consist of two
components: the stock and flow network, and
the information network. The causal loop
diagram of Figure 2 has been operationalised
and has now been developed into a fully
specified and executable model. A portion of
the model diagram is shown in Figure 3. For
clarity and simplicity of presentation some
details of the structure have been omitted and

will be shown later in the report. Starting at a
high-level of abstraction, the figure presents a
simplifed view of the evolution process. The
latter is visualised as a process that addresses a
continuing flow of work. The simplified view
as generated by the Vensim tool is displayed
in Figure 3 (Vensim 1995). Levels or stocks
are indicated by variables within the
rectangles. The double-line arrows represent
flows or rates. The single lines indicate that
one variable has an influence in determining
the other.

Submision Flow

Preparation
flow

ACCEPTED
TARGET

SYSTEM TYPE
MULTIPLIER

Validation and Integration effortRELEASE
POLICY

Cumulative
Fielded

Functionality

Progressive effort

Acceptance Flow
Work

Accepted

Other additions and
changes identified

PREPARATION
PRODUCTIVITY FACTOR

TEAM SIZE

Software
release

Demand obsolescense

Implementation
flow

Requirement
Change flow

IN PROGRESS
TARGET

Work Prepared for
Implementation

Integration flow

VALIDATION AND
INTEGRATION

EFFORT
MULTIPLIER

PREPARATION EFFORT
MULTIPLIER

Work Ready
to Release

Work Implemented
Fielded Functionality

Satisfying Current
Needs

NORMAL
PRODUCTIVITY

TIME STEP

Work Identified

F
PROGRESSIVE

FRACTION

<Time>

Productivity
Change plus defect

discovery factor

Preparation effort

INTEGRATION
PRODUCTIVITY

FACTOR

In Progress

Figure 3: A simplified model diagram of the software process dynamics

In general, Work Identified (or work
demand) encompasses both, new functionality,
and fixing and modification of existing
functionality. For the sake of simplicity further
distinction between the last two categories is
not made here, though this may be necessary
as the model is further refined. The model
considers two classes of sources for work:
Requirement Change flow and Other Additions
and Changes identified. The first class stems
from functionality already in the field that
requires fixing, adaptation or amendment. The
latter class represents new functionality. A
demand obsolescence phenomenon,

represented by work requests that were not
accepted and are no longer needed, is also
included. Five different level variables
represent technical process: Work Accepted,
Work Prepared for Implementation, Work in
Progress, Work Implemented and Work Ready
to Release. An important policy parameter is
represented in figure 3 by the fraction of the
personnel dedicated to pursue progressive
activities, as represented in by the F
PROGRESSIVE FRACTION on the right-hand
side of the figure. This is reflected in the
model by the expression:

Progressive Effort = F PROGRESSIVE FRACTION * TEAM
SIZE
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Once the progressive effort has been selected
by means of the parameter F, the model
assigns a fixed proportion of such effort to
Preparation Effort and to Validation and
Integration Effort . That is, it is assumed that
per each unit of progressive work there is a
fixed amount of preparation and validation
work to be applied. Such policy is
implemented by the expressions:

Preparation effort = (Progressive effort
*PREPARATION EFFORT MULTIPLIER)

Validation and Integration effort = (Progressive effort
*VALIDATION AND INTEGRATION EFFORT MULTIPLIER)

10 Details View and an Example of Policy
Evaluation

The more comprehensive schematic of the
system dynamics model is displayed in Fig. 4.
This view includes all variables and
parameters within the current executable
Vensim model. Equations that form part of the
executable model are included in the
Appendix that presents the full model in
Vensim language (Vensim 1995).

Anti regressive work

Submision Flow

Preparation
Flow

ACCEPTED
TARGET

SYSTEM TYPE
MULTIPLIER

Validation and Integration effortRELEASE
POLICY

Cumulative
Fielded

Functionality

Progressive effort

INTEGRATION
SUCCESS
FACTOR

Acceptance Flow
Work

Accepted

Anti regressive effort

Additions and
Changes Identified

by Others

Rejected as
needing
rework

PREPARATION
PRODUCTIVITY FACTOR

TEAM SIZE

Software
release

Demand obsolescense

Implemented

Requirement
Change flow

IN PROGRESS
TARGET

Work Prepared for
Implementation
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VALIDATION AND
INTEGRATION

EFFORT
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PREPARATION EFFORT
MULTIPLIER

Work Ready
to Release
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Work
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INTEGRATION
PRODUCTIVITY

FACTOR

In Progress

Figure 4: Detailed view of the system dynamics model

A detailed explanation is left for a more
comprehensive report.

As an extension of figure 3, figure 4
incorporates additional elements, shown in
bold, such as the variables involved in the
application of effort to anti regressive activity.
It also includes a rework feedback loop
between Work Implemented and Work in
Progress. Such rework is considered here as
implemented work that has failed validation
testing, for example. The amount of rework in

the process is controlled by an INTEGRATION
SUCCESS FACTOR, between 0 and 1. Note
that for the sake of clarity and simplicity, other
such feedback 'rework' loops are left to be
considered and possibly included when the
model is applied to particular industrial
processes, after having found that such loops
are indeed significant. The remainder of the
discussion focuses on the issue of assignment
of effort to the different activity types
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considered and its effects on long-term
evolutionary attributes.

The model in figure 4 embeds the
assumption that once the progressive, the
preparation and the validation portions of the
available effort have been assigned (as
explained in the previous section), the
remaining effort (if any left) is allocated to
anti regressive effort. This is represented in
the model by the expression:

IF (TEAM SIZE-Preparation effort-Progressive effort -
Validation and Integration effort)>0

THEN
Anti regressive effort =(TEAM SIZE-Preparation effort

-Progressive effort-Validation and Integration effort
ELSE

Anti regressive effort=0)

Thus, when, for example F is 0.5 or 50
percent, and the Progressive Effort Multiplier

and the Validation and Integration Effort
Multiplier are also 0.5, no effort would be left
for anti-regressive activity. Thus, in this case
0.5 would be the maximum value for the
policy variable F.

One interesting investigation is to explore the
long-term consequences of different values of
F. Figure 5 show the results of model
execution in which three different values of
the parameter F are applied, keeping TEAM
SIZE and the Preparation and Validation and
Integration Effort Multipliers fixed (as 0.5). In
the figure, F05 indicates the parameter F equal
to 0.5, F03 indicates 0.3, and F02 indicates
0.2. The other parameter values remained
fixed during the particular set of runs
illustrated here.

.

Graph for Productivity
4
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Graph for Work Identified
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Figure 5a,b: Examples of Vensim model output

Graph for Cumulative Anti Regressive Work

8,000

6,000

4,000

2,000

0
0  20  40  60  80 100 120 140

Time (Month)

Cumulative Anti Regressive Work - F05
Cumulative Anti Regressive Work - F03
Cumulative Anti Regressive Work - F02

F05

F03F02

Graph for Cumulative Fielded Functionality

4,000

3,000

2,000

1,000

0

0  20  40  60  80 100 120 140
Time (Month)

Cumulative Fielded Functionality - F05
Cumulative Fielded Functionality - F03
Cumulative Fielded Functionality - F02

F05

F03

F02

Figure 5c,d: Example of Vensim model output

The figure shows how different allocation
policies yield different effects in attributes
such as Productivity, Work Identified,
Cumulative Anti Regressive Work and

Cumulative Fielded Functionality. Note that
the 0.3 and 0.2 values provide constant
productivity over the entire 150 one-month
periods included in the model run illustrated.
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This is due to the high level of anti-regressive
activity that this fraction permits. The overall
results of the runs illustrated by Figure 5a,b,c
and d suggest that the intermediate fraction
(0.3) yields the highest level of cost
effectiveness over the long term (i.e., highest
cumulative fielded functionality) and also
provides further potential for growth. A value
of F less than 0.3 or so, as shown in the F02
case, though leading to a worst performance is
still in some respects better over the long term
than F05. This exemplifies that anti regressive
activity, at least in the regime dictated by the
policies implemented in the present model,
leads to higher effective productivity despite
the fact that it takes resources away. One
could further address the split between the
other categories of effort, though in principle
it appears that anti regressive effort provides a
major element to sustain process effectiveness
over the entire system life cycle.

11 Discussion

The model presented here exemplifies the
results of the most recent FEAST/2 white-box
system dynamics process modelling. The next
step in this work is to ground the process
dynamics in a detailed case study of an
evolving software system and its process.
Fitting and calibration of the model to a
specific real process will help refine the
simulation of a dynamics process by guiding
clarification of variable interrelationships.

Validation (Forrester & Senge 1980) and
application of the model to a real-world
decision-making process needs, inter alia
calibration, against data obtained from
industrial software processes. Though the
model, as presented here, has not yet been
calibrated to industrial data, the behavioural
patterns it generates (e.g., F05 in Figure 5d)
are reminiscent of the long term growth rate
decay observed in the systems studied in
FEAST and modelled by means of an inverse
square model (Turski 1996, FEAST 2000).
Thus we deem it appropriate to offer the
model in its present state as a significant step
that includes the level of aggregation needed
(considered essential to produce relevant
models) and set of concepts needed to model

and support long-term software evolution
decision making.

Customisation of the model to a particular
process may have to include further aspects
not considered in the present model. These
could include, for example, measures of user
satisfaction and the impact of this on the
dynamics. A particular factor cannot be
achieved without a satisfactory definition that
is probably domain dependent. A simple initial
definition might, for example, be associated
with some function of the difference between
input and output work flows. This question
requires further exploration and may involve
the inclusion of a system value element,
another concept already being considered
elsewhere (Boehm & Sullivan 2000). Other
aspect that may have to be considered includes
the role of technology change as a driver of
software evolution, as considered in a previous
FEAST modelling exercises (Chatters et al
1999). Further aspect is concerned with the
role of discrete vs continuous activities, and in
particular, the role of field trial events
(Lehman & Wernick 1998; Wernick &
Lehman 1998) as opposed to the continuing
validation activity assumed in the present
model. Last, but not least, the consequences of
different release policies (e.g., Woodside )
may be an aspect that could be studied by
means of the model presented here.

The variables defined in the model represent
a set of evolution attributes from which a set
of metrics can be derived. Such metrics will
have a systemic character, analogous, to a
certain extent, to the concept of state in
control system theory. When applied to an
industrial process, the latter will enable
monitoring of productivity, process
performance and the effect of process changes
(e.g., improvements, new technology) at a
high level of abstraction or aggregation. In this
sense, the model complements metric
definition and use in the context of black-box
modelling of the process (FEAST 2000).

Note that information hiding (Parnas 1972),
and other good evolutionary practices
(Lehman 2000) may make a contribution to
complexity growth control, though mostly
through prevention rather than correction - a
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good thing of course. However, even under the
best of conditions and processes E-type
system, functional growth without a degree of
intrinsic system complexity growth does not
appear to be possible. This observation
follows from the fact that functional growth
implies complexity growth, however defined,
in the application itself and in the operational
domain. Developments in software
architecture, on the other hand, particularly
architectures that are component based, may
reduce such complexity growth or even
mitigate against it.

Further discussion of this issue requires,
inter alia, a formal definition of complexity
and is beyond the scope of the present study.
The present model is built upon the reasonable
observation that a degree of anti-regressive
activity may control the complexity as
perceived by the developers/evolvers of the
system so as to minimise its impact and permit
complexity growth to be effectively ignored as
a model parameter. This issue is hoped to be
further clarified when the model is aligned to a
real industrial process.

12 Final Remarks

Society relies increasingly on software at all
levels, as demonstrated by the role of software
in businesses and organisations. Management
of evolution processes is becoming an ever
more critical issue. Such processes are
complex and dynamic but our knowledge to
understand and manage them is limited.
However, by application of the scientific
method to their study, and in particular, by
building models in a step-wise top-down
procedure, one may provide useful tools and
answers to management challenges in specific
instances and also derive some more general,
even generic, tools.
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Appendix - The System Dynamic Model in Vensim
language (Vensim 1995)

Acceptance Flow =
IF THEN ELSE((Work Accepted<ACCEPTED TARGET)

:AND:(Work Identified>0),
300,0)
      ~
      ~       |

ACCEPTED TARGET = 100

      ~
      ~       |

Additions and Changes Identified by Others = (RANDOM
POISSON(60))

      ~ Changes/Month
      ~       |
Anti regressive effort =IF THEN ELSE (
(TEAM SIZE
-Preparation effort
-Progressive effort
-Validation and Integration effort)>0,
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(TEAM SIZE
-Preparation effort
-Progressive effort
-Validation and Integration effort),0)
      ~
      ~       |

Anti regressive work= Anti regressive effort * Productivity
      ~
      ~       |

Change plus defect discovery factor = 1/120
      ~
      ~       |

Cumulative Anti Regressive Work =INTEG(Anti regressive
work,0)

      ~
      ~       |

Cumulative Fielded Functionality = INTEG(Software
release,0)

      ~
      ~       |

Cumulative Progressive Work  = INTEG(Implemented,0)
      ~
      ~       |

Demand obsolescense = Work Identified * 0.05
      ~ Changes/Month
      ~       |

F PROGRESSIVE FRACTION = 0.3
      ~
      ~       |

Fielded Functionality Satisfying Current Needs =
INTEG(Software release

-Requirement Change flow
,150)
      ~  [0,?]
      ~       |

Implemented =
IF THEN ELSE(In Progress > 0,
Progressive effort*Productivity,0)
      ~
      ~       |

In Progress = INTEG(Submision Flow-
Implemented+Rejected as needing rework,100)
      ~  [0,?]
      ~       |

IN PROGRESS TARGET  =100
      ~
      ~       |

INTEGRATION PRODUCTIVITY FACTOR = 2
      ~
      ~       |

INTEGRATION SUCCESS FACTOR = 0.95
      ~
      ~       |

NORMAL PRODUCTIVITY = 2
      ~ Modules/Person Month
      ~       |

Preparation effort =Progressive effort *PREPARATION
EFFORT MULTIPLIER

      ~
      ~       |

PREPARATION EFFORT MULTIPLIER
= 0.5
      ~
      ~       |

Preparation Flow = Productivity*Preparation effort*
PREPARATION PRODUCTIVITY FACTOR
      ~
      ~       |

PREPARATION PRODUCTIVITY FACTOR = 2
      ~
      ~       |
 Productivity =NORMAL PRODUCTIVITY*
(  (TEAM SIZE^0.2) - (  (1/1800) *TEAM SIZE^2)   )  *
(1-MAX(0,
SYSTEM TYPE MULTIPLIER*
(Cumulative Progressive Work - Cumulative Anti Regressive

Work) ))
      ~ Modules/Person Month
      ~       |

Progressive effort = F PROGRESSIVE FRACTION*
TEAM SIZE
      ~
      ~       |

Rejected as needing rework  =
Productivity*Validation and Integration effort*
(1-INTEGRATION SUCCESS FACTOR)*INTEGRATION

PRODUCTIVITY FACTOR
      ~
      ~       |

RELEASE POLICY  ([(0,0)-(100,10)],(0,0),
(11,0),(12,1),(14,1),(15,0),
(23,0),(24,1),(26,1),(27,0),
(35,0),(36,1),(38,1),(39,0),
(47,0),(48,1),(50,1),(51,0),
(59,0),(60,1),(62,1),(63,0),
(71,0),(72,1),(74,1),(75,0),
(83,0),(84,1),(86,1),(87,0),
(95,0),(96,1),(98,1),(99,0),
(107,0),(108,1),(110,1),(111,0),
(119,0),(120,1),(122,1),(123,0),
(131,0),(132,1),(134,1),(135,0),
(143,0),(144,1),(146,1),(147,0))
      ~
      ~       |

Requirement Change flow =Fielded Functionality Satisfying
Current Needs*

Change plus defect discovery factor
      ~ Changes/Month
      ~       |

Software release =MAX(0,(Work Ready to Release/TIME
STEP)*

LOOKUP EXTRAPOLATE(RELEASE POLICY, Time))
      ~
      ~       |

Submision Flow = IF THEN ELSE((In Progress<IN
PROGRESS TARGET)

:AND:(Work Prepared for Implementation > 0),300,0)
      ~
      ~       |

Successfully integrated =
 IF THEN ELSE
(Work Implemented > 0,
Validation and Integration effort*Productivity* INTEGRATION

SUCCESS FACTOR * INTEGRATION PRODUCTIVITY
FACTOR

,0)
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      ~
      ~       |
SYSTEM TYPE MULTIPLIER =0.0005
      ~
      ~       |
TEAM SIZE = 30
      ~
      ~       |
TIME STEP = 0.125
      ~
      ~       |
Validation and Integration effort =
Progressive effort * VALIDATION AND INTEGRATION

EFFORT MULTIPLIER
      ~
      ~       |
VALIDATION AND INTEGRATION EFFORT MULTIPLIER =

0.5
      ~
      ~       |
Work Accepted = INTEG(Acceptance Flow-Preparation

Flow,100)
      ~
      ~       |
Work Identified=INTEG(Additions and Changes Identified by

Others+
Requirement Change flow
-Demand obsolescense-Acceptance Flow ,600)
      ~ Changes
      ~       |

Work Implemented = INTEG(Implemented-
Successfully integrated-
Rejected as needing rework,200)
      ~ Changes
      ~       |
Work Prepared for Implementation = INTEG(Preparation

Flow-Submision Flow,100)
      ~
      ~       |

Work Ready to Release = INTEG(Successfully integrated-
Software release,0)

      ~  [0,?]
      ~       |
********************************************************
      .Control
********************************************************~
Simulation Control Paramaters
       |
FINAL TIME  = 150
      ~ Month
      ~ The final time for the simulation.
      |
INITIAL TIME  = 0
      ~ Month
      ~ The initial time for the simulation.
      |
SAVEPER  = 1
      ~ Month
      ~ The frequency with which output is stored.|


