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Abstract. In order to make a decision in the face of multiple objectives it is necessary to 
know the relative importance of the different objectives. Yet, it is often very difficult to 
specify a set of precise weights before possible alternatives solutions are known. In this 
paper, we present an interactive, iterative method for arriving at an acceptable solution. 
The decision maker gradually discerns what is achievable and adjusts his aspirations and 
(implicitly) the specification of weights and trade-offs between his objectives, in the light 
of what he learns. To aid the decision maker’s cognition and to allow him to express his 
wishes in a natural way, we employ an intuitive interface, based on the parallel 
coordinates method of displaying and specifying points in multidimensional space. 
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1. Introduction 
 
This paper describes an algorithm for helping a decision maker uncover his preference 
structure in a multiple-objective decision problem. As weightings and trade-offs between 
objectives become available explicitly, both to the decision maker and to the system, a 
solution can be found that is both feasible, satisfying any constraints that had been 
stipulated, and satisfactory, from the decision maker’s point of view.  
 
The setting for this solution method is constrained optimisation - simultaneously attaining 
multiple goals while maintaining feasibility. We assume that the decision maker is able to 
express what a perfect solution would be in the form of a vector of bliss values nℜ∈dx . 
The attainment of each component of the bliss point dx  is a desired objective. We also 
assume that the set ℑ  of feasible solutions is specified by: 
 

}|{ T bxNx =ℜ∈≡ℑ n  
 

where coefficient matrix mn+ℜ∈N has linearly independent columns and vector 
mℜ∈b is the corresponding right-hand side of the model equations.  
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Clearly, if the bliss point is feasible, i.e., if ℑ∈dx , then the best decision would be to 
adopt dx . The multiple-objective decision problem arises when ℑ∉dx , and we need to 
consider decisions ℑ∈x  that are close to dx .  
 
Methods which employ measures of distance based on the weighted sum of absolute 
deviations along each dimension or the maximum weighted absolute deviation along the 
dimensions have linear programming formulations and have been treated elsewhere 
(Hillier and Lieberman, 1996; Pinto, 1995). We shall take the norm (or distance measure) 
to be the quadratic form: 
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where nn×ℜ∈Q  is a symmetric positive semi-definite weighting matrix. The diagonal 
elements of Q signify the relative importance of ix attaining i)( dx , and the off-diagonal 
elements measure the trade-offs between the achievement of one objective versus 
another. 
 
If the decision maker was absolutely sure about his weights and trade-offs, encapsulated 
in matrix Q, then the decision problem would amount to finding the solution to the 
quadratic programming problem: 
 

 }|{min
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 (1) 
 
 

In practice, the true value of Q will probably not be known and must be estimated, in the 
simplest case by the unit matrix nI . Because the estimate of Q is unlikely to reflect the 
real feelings of the decision maker accurately, a solution to (1) will very likely not be 
acceptable to him. However, given dx  and ℑ , the nearness of the solution of (1) to dx  
will depend only on Q. So the only way of producing a solution (1) that is acceptable is 
to re-specify Q.  
 
Let the set nℜ⊂Ω  denote the set of solutions x acceptable or admissible to the decision 
maker. Even though Ω  will not be known to the decision maker explicitly, but will exist 
only in an unexplored state in his mind, we still assume that ℑ∩Ω  is a non-empty 
convex set.  
 
In the algorithm described in this paper the decision maker does not re-specify Q directly, 
but rather proposes a solution point px  that is acceptable (but not necessarily feasible) 
and preferred to the latest optimal feasible solution kx  found by the system. The manner 
in which   px  differs from kx  is given by the displacement or correction vector: 
 

kk xxδ −= p  
 

In a sense, vector kδ  expresses the direction in which the decision maker wishes the 
system to search for the next solution, in the light of what has been achieved so far. The 
system does this by computing a new and refined weighting matrix based on the old 
value kQ  together with kδ . It then solves the quadratic programming problem (1) with 
the revised version of Q and presents a new solution 1+kx  to the user. If 1+kx  is 
satisfactory then a feasible, acceptable solution has been found and the algorithm 
terminates. Otherwise, the process is repeated through another iteration. 
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2. The Algorithm in Detail 
 
 

Step 0:  Start with  
• the bliss point dx ,  
• an initial positive, semi-definite weighting matrix 0Q , and 
• the set of linear constraints. 
 

Set k = 0. 
 
Step 1: Compute the solution to the quadratic programming problem  
 

}|)()min{(arg TdTd bxNxxQxxx =−−= kk  
 
Step 2: Interact with the decision maker.  

If kx  is acceptable to the decision maker then 
Stop.  

else  
Elicit a preferred point px from the decision maker.  
Calculate displacement or correction vector kk xxδ −= p . 

 
Step 3: Choose a positive scalar value kη  to reflect the degree to which the 

weighting matrix should be modified during this iteration. (If in doubt, 
set kη equal to 1.)  
Calculate a new weighting matrix 

kkk

kkkk
kkk δQδ

QδδQ
QQ T

T
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 To ensure that the denominator kkk δQδT  is non-zero, make a small 
change to kδ , if necessary.  
Set k = k+1 

  Go to Step 1. 
 
 
As is shown in (Rustem, 1998, chapter 3), 1+kQ  will be positive (semi-) definite, 
provided kQ  is.  
 
It is also shown in (Rustem, 1998, chapter 3) that the iterates }{ kx  generally obey the 
wishes of the decision maker, in that kk xx −+1  is the feasible alternative closest to the 
specified direction kδ . The optimality of each iterate kx  in step 1 is also desirable, in 
order to maintain the multi-objective optimisation framework throughout, which 
underlies the evaluation of kx . 
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3. Parallel Coordinates 
 
The multiple objective decision method described in this paper involves the decision 
maker specifying a bliss solution dx , and iteratively a sequence of acceptable (but not 
necessarily feasible) solutions }{ px in response to feasible solutions }{ kx  produced by 

the system. All of these solutions are points in the n-dimensional real space nℜ . The 
decision maker gradually discerns what is feasible and adjusts the specification of what 
he finds acceptable, accordingly.  
 
For the method to work successfully the decision maker must be able: 

• to see clearly how close his desires are from what can be achieved, 
• to specify accurately, yet in a natural way, what new compromise he is willing to 

make. 
 
So, what is needed is an interface that: 

• can display several points in n-dimensional space, showing clearly where and by 
how much they differ from each other, 

• allows the user to adjust the position of such points as a way of expressing what is 
acceptable and the direction towards which the system should search for the next 
solution. 

 
Although there are many ways of representing points in two, three or even four 
dimensions, it is not so easy to display points in n-dimensional space using a 2D display, 
where n may be 6, 7 or even higher. However, the parallel coordinates technique devised 
by Alfred Inselberg (Inselberg and Dimsdale, 1987). is able to do this, without any 
apparent limit on the number of dimensions. 
 
In this approach, a point in n-dimensional space is represented as a polygonal line - a 
series of n-1 line segments in 2-dimensional space. So, the point with Cartesian 
coordinates ),,,( 21 nvvv !  would, on a parallel coordinate display be represented by the 
poly-line comprising the  n-1 line segments connecting the points 

),(,),,2(),,1( 21 nvnvv ! .  
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Parallel coordinates can also be used when there is only a discrete set of values along a 
dimension, and, indeed, have met their most frequent application in the display of records 
in multi-dimensional databases, where dimensions might be product, sales area, customer 
location, and so on.  
 
Parallel coordinate displays are a popular visualisation tool in data mining. Outliers are 
easy to observe and it is possible to spot trends, correlations and clustering of the data 
points (i.e., the database records) by detecting patterns between the poly-lines. When a 
large number of data points are represented simultaneously the results can be confusing, 
although some systems allow you to highlight subsets of points in an instructive fashion: 

 

 
 
In our system, though, we normally display at most four data points at a time and so the 
danger of visual overload (i.e., clutter) is avoided.  
The conventional Cartesian representation of points in nℜ  may well be helpful when 
considering the mathematics underlying our algorithm, but the decision maker is likely to 
gain greater insight into his problem from the parallel coordinate representation, in which 
the various components of a solution are laid out side-by-side. 
 
 
4. The System in Action 
 
Our interactive multiple objective decision making system has been implemented in 
Microsoft Excel. Excel has the virtues of: 
 

• a built-in solver that can handle quadratic programming as well as linear 
programming problems,  

• a very flexible graphing system that can produce pretty much any kind of chart 
and allows for items on the graph to be manipulated, thus modifying the 
corresponding underlying data items,  

• the facility for positioning buttons, sliders and other input devices, and a simple, 
yet reasonably powerful programming language, Visual Basic for Applications, 
for harnessing and automating Excel's functionality - allowing useful custom tools 
to be prototyped with ease. 
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The simple architecture of the system is shown in the following diagram: 
 
 

decision
maker

I/O via parallel
coordinate chart

successive solutions,
weighting matrices and

other data held in
spreadsheet cells

solver for handling
quadratic

programming
problems

 
 

 
The parallel coordinate chart is implemented as a single X-Y scatter diagram with various 
series identified as the parallel axes and other series identified as the vertices of the 
polygonal lines which represent the different solution points.  
 
The data underlying the parallel coordinate chart, including the solution points and the 
labels used for calibrating the parallel axes is held in worksheet cells. Algorithm step 3, 
which involves updating the weighting matrix, is carried out on worksheet, using Excel's 
built-in matrix functions, whilst step1 - finding an optimal solution to the quadratic 
programming problem - is carried out with the aid of Excel's solver, which is supplied by 
Frontline Systems and uses the Generalized Reduced Gradient (GRG2) nonlinear 
optimization algorithm of Leon Lasdon and Allan Waren (Fylstra, Lasdon, Watson and 
Waren, 1998). 
 
The parallel coordinate chart acts as the user interface. It presents the user with the bliss 
point dx  and current optimal feasible solution kx , in the form of poly-lines. The decision 
maker then drags vertices on the  kx  poly-line to new positions along the axis lines, in 
accordance with the components of his new preferred solution px .  
 
The decision maker can now see three poly-lines, for dx , kx and px . Digital readouts 
adjacent to the vertices show coordinate values. When the decision maker is satisfied 
with his choice of px , he hits the "NEXT" button and a new feasible solution 1+kx  is 
computed, virtually instantaneously. The parallel coordinate display now shows all four 
points: dx , kx , px  and 1+kx  on the chart and allows the decision maker to form an 
impression of how successful the system has been in searching in the indicated direction 
for an acceptable solution. 
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If  1+kx  is still not acceptable, the decision maker hits the "NEXT" button again. The 

kx and px  lines are removed, the 1+kx  line is relabelled kx  and the system is ready for 
the next iteration.  
 
Because of the speed of the system and the very natural way that the components of 
consecutive solution points can be displayed and modified, the system provides a 
congenial laboratory for exploring and eventually reaching an acceptable compromise 
solution. 
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