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Abstract. The Bounded Retransmission Protocol is an industrial protocol designed for the 
transfer of large data files over unreliable communication lines. The protocol relies on specific 
assumptions on the timed behaviour of its components. This paper describes our experience 
with modelling and analysing the Bounded Retransmission Protocol using the LTSA. The 
LTSA uses labelled transition systems to specify behaviour, and compositional reachability 
analysis to incrementally generate, minimise, and analyse a system, based on its software ar-
chitecture. The tool was not originally designed to deal with real-time applications. However, 
by modelling time as a discrete entity, the LTSA does not need to be extended in order to han-
dle such systems. We discuss how the features of the tool can be exploited to model and ana-
lyse behaviours that involve time.  

1 Introduction 

The Bounded Retransmission Protocol (BRP) is a non-trivial extension of the Alternating-Bit 
Protocol, designed for the transfer of large data files over unreliable communication lines. BRP is 
a simplified variant of a telecommunication protocol used in one of Philips’ products. The proto-
col bases its correctness on specific assumptions about the timing aspects of a system. It has at-
tracted the interest of the research community because it falls beyond the size of classical aca-
demic case studies, and because it involves challenges in such issues as finding appropriate ab-
stractions and checking assumptions that involve time. As far as the timing assumptions of the 
protocol are concerned, there have been two main approaches to solving the problem. First, the 
protocol may be modelled in an “un-timed” way, in which case the timing assumptions on which 
its correctness is based need to be introduced as constraints in the system behaviour [1-4]. Sec-
ond, time may be modelled explicitly in the protocol. This is more challenging, but establishes a 
global view of the way the protocol works, and of the factors that may affect its correctness [5]. 
We use the timed version of the BRP case study as a way of estimating the capabilities of our 
current approach and toolset in dealing with non-trivial timed systems.  

The main objective in the development of our analysis methods and tools is to make these ac-
cessible to practising software engineers. We have therefore aimed at techniques that form an 
integral part of the software development process, that are intuitive to use, and that are supported 
by powerful automated tools. Our approach supports analysis directed by the software architec-
ture of a system [6-8]. In particular, it is based on the use of Labelled Transition Systems (LTS) 
to specify behaviour and Compositional Reachability Analysis (CRA) to check composite system 
models. The architecture description of a system drives CRA in generating the model of the sys-
tem based on models of its components. The model thus generated can be checked against the 
properties required of it. Previous papers have addressed the problem of verifying safety and 
liveness properties in the context of CRA [9, 10], as well as a special class of properties that we 
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call progress [11]. We have also proposed a novel way of dealing with fairness in an intuitive and 
efficient way, by combining a fair choice assumption, and an action priority scheme [11].   

Our tools were not originally designed to handle time. However, we found that, without ex-
tending them, it is possible to model timed systems in a straightforward fashion. This is achieved 
by modelling time as a discrete entity, and making processes that need to count time synchronise 
on a global “tick” action [12]. Our approach to fairness allows us to elegantly model the assump-
tion of maximal progress usually made on timed systems. Moreover, the integrity of a model 
with respect to time can be checked by using a simple progress property. On the other hand, 
counting time in terms of clock ticks is error-prone, and may increases the size of a model sig-
nificantly. Additionally, as will be discussed in the paper, introducing time in the context of CRA 
raises a number of issues. 

This paper provides a detailed description of our approach to the design of distributed systems, 
reflected through the BRP case study. Section 2 presents the problem that the protocol is de-
signed to solve, and lists informally the requirements against which the protocol is to be checked. 
Section 3 describes the software architecture of the system, and then discusses the behaviour of 
the protocol in terms of its architectural components. The timing constraints are also introduced 
and a first estimate is made on the values of timers that must be used for these constraints to hold, 
given the software architecture presented. Section 4 reports on our experience with modelling the 
protocol and its properties, whereas section 5 concentrates on the analysis of the model devel-
oped.  Analysis is performed in two stages. First, to show that the correctness of the protocol 
depends on the timing assumptions that we have set, we check the protocol without taking time 
into account. Second, we show that, given specific constraints on the timer values of the protocol, 
all properties required of it are satisfied. Finally, section 6 closes the paper with conclusions and 
plans for future work.  

2 Requirements 
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Figure 1: Structural requirements for a file transfer service 

The Bounded Retransmission Protocol (BRP) provides a transfer service for large data files 
within a limited amount of time. As illustrated in Figure 1, the protocol implements a component 
that is in charge of transferring files from a sending to a receiving client, S_CLIENT and 
R_CLIENT, respectively. It receives a file through port accept, breaks the file up into small data 
chunks, and delivers these chunks in order through port deliver. The protocol operates over lossy 
FIFO channels. As a result, chunks may get lost during transmission. Given the time limitations 
for file transfer, only a bounded number of retransmissions are allowed for each chunk. If the 
protocol is unsuccessful in transmitting any chunk of a file, transfer is aborted. The receiving 
client thus receives a (possibly empty) prefix of each file to be transferred. Transfer is considered 
successful when this prefix equals the entire file. The protocol is required to provide appropriate 
indications to both clients about the result of the transfer. Port “result” is used to send indications 
to the sender, whereas the receiver gets indications within the chunks delivered through port “de-
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liver”. Note that, the protocol may not be able to conclude whether the last chunk of a file was 
transferred successfully, in which case it reports a “don’t know” result to the S_CLIENT. In all 
other cases, the indications provided by the protocol are conclusive.  

The requirements for the protocol can be informally summarised as follows: 

• the chunks of a file sent by S_CLIENT are delivered to R_CLIENT in order and at 
most once each; 

• if S_CLIENT gets an indication that transfer of a file was successful, then all chunks 
of that file have been delivered to R_CLIENT; 

• if S_CLIENT gets an indication that transfer of a file was unsuccessful, then at least 
one chunk has not been delivered to R_CLIENT; 

• R_CLIENT gets an indication that a file has been transferred successfully, if and only 
if it has received all chunks of that file;  

• if R_CLIENT receives at least one chunk from a specific file, it can eventually con-
clude about the result of the transfer (i.e., it knows whether the transfer was completed 
or not); 

• the protocol is always eventually ready to receive a new file from S_CLIENT; 
• for each file that it submits to the protocol, S_CLIENT eventually receives a result re-

garding its transmission. 

The last two properties involve liveness issues; they force the protocol to do something useful, 
rather than checking that it does not do something wrong, which is the case with safety proper-
ties. In the following, we describe BRP, and prove that it satisfies the above requirements under 
strict timing constraints.     

3 The Bounded Retransmission Protocol (BRP) 

This section provides several descriptions of the protocol, at different levels of abstraction. First 
of all, we discuss the software architecture of the protocol in our Architecture Description Lan-
guage (ADL) Darwin [13]. Subsequently, we describe the way the protocol works, in terms of the 
functionality of its components. 

3.1 Software Architecture 

The BRP is an extended version of the Alternating-Bit Protocol (ABP), designed to deal with two 
additional requirements: (i) it is allowed a limited number of retransmissions, and (ii) it handles 
the transfer of large files, which it breaks down into smaller chunks. The ABP and BRP have 
identical software structures. In fact, only small variations need to be applied to the behaviour of 
the architectural components of their common structure to obtain one or the other protocol.  

As illustrated in the architecture of Figure 2, the protocols run a transmitter process on the 
S_CLIENT’s site, and a receiver process on the R_CLIENT’s site. Given the fact that Darwin 
does not distinguish between components and connectors, we include the channels over which 
the sender and receiver communicate as components in the architecture. As illustrated in Figure 
3, both the transmitter and the receiver are further decomposed into a timer component each, in 
addition to components TX and RX that provide their basic functionalities, respectively. 
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Figure 2: Software Architecture of ABP and BRP protocols 
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Figure 3: Structure of transmitter and receiver components 
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3.2 Protocol description 

This section describes BRP informally, in terms of the functionalities of the components illus-
trated in Figure 2 and Figure 3. The indications that TX reports to S_CLIENT through port result 
are the following: 

• ok – denotes that file transfer has been completed successfully; 
• nok  – denotes that  the transfer has been aborted; 
• don’t know – the transfer may have completed successfully, or the last frame may have 

got lost. 
 

The last indication reflects the fact that the protocol may not be able to give a definite result 
about the outcome of the transfer (result “don’t know”). This situation arises because no realistic 
implementation can conclude in all cases whether the last chunk was lost or not. The information 
about a successful delivery (ack) has to be transmitted over an unreliable communication me-
dium. Since a limited number of retransmissions are allowed, there is no way of knowing 
whether no acknowledgement means that the message was not delivered, or that the ack got lost.  

Component RX attaches the following indications to the data that it sends to R_CLIENT: 

• first – this is the first frame of a file; 
• int – this is an intermediate frame; 
• ok – this completes the transfer; 
• nok  – transfer was aborted. 

The protocol receives a file through port accept of component TX, which breaks the file up into 
frames. It then starts transmission of chunks (port send), where each chunk consists of:  

(i) a frame of the file;  
(ii) a bit ab that implements an alternating-bit scheme, used by the receiver to distinguish 

new messages from retransmissions; 
(iii) a bit f that indicates whether this is the first frame of the file; 
(iv) a bit l that indicates whether this is the last frame of the file.  

Note that, if both f and l are set, then the file consists of a single frame, and therefore the frame 
sent is both the first and the last one of the file. On sending a chunk to RX through 
S_CHANNEL, TX sets its TIMER to value T1, and waits either for an acknowledgement (port 
ack) or for a timeout to occur. In the former case, TX knows that the message has been transmit-
ted successfully. If this was the last frame of the file, it reports “ok” to S_CLIENT. If a timeout 
occurs, it assumes that either the message, or its acknowledgement has been lost, and retransmits 
the same chunk. This happens unless the maximum number of allowed retransmissions has been 
reached, in which case TX decides to abort the transfer of the file. It then reports to S_CLIENT 
“don’t know” if the message just sent contained the last frame of the file, and “nok” otherwise.  

The receiver remembers whether the previous frame was the last one of a file and the expected 
value of the alternating bit ab for new messages. Note that, on the receiver’s side, if the previous 
frame was the last of a file, then the next new message can only be the first frame of the subse-
quent file. On receipt of a message, RX checks the value of its ab. If ab has the expected value, 
then RX delivers it to R_CLIENT (port deliver), with the appropriate indication (if the chunk 
received is the last of the file, the indication is “ok”). If ab has a different value than the expected 
one, then RX assumes that the chunk received is a retransmission, and does not deliver it. In both 
cases, RX sends an acknowledgement to TX through channel R_CHANNEL (port reply), and sets 
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its timer to some value T2. It then expects either a new message, or a timeout to occur. A new 
message is tackled as described above. A timeout indicates that file transfer was aborted at the 
transmitter’s end. Provided that the last chunk of the file has not just been delivered, RX informs 
R_CLIENT that the transfer was given up (“nok”). In any case, if a timeout occurs, RX must 
synchronise again with TX on the alternating-bit scheme. It does this based on the ab value of the 
next message that it receives from TX. Note that, if the first frame of a new file is received before 
the timer expires, the alternating bit scheme is simply continued.    

As mentioned, the alternating-bit scheme is used to deal with duplicate messages. We briefly 
describe how the scheme works in terms of an example.  Assume that TX sends a message with 
ab = 1. RX expects the new message from TX to be tagged with this value. If the message is lost 
on its way, TX retransmits the message with ab = 1. If RX receives this second message, it 
knows that this is a message not yet delivered (since it bears the expected value for ab). It deliv-
ers the message to R_CLIENT, issues an ack, and changes the expected ab value to 0. If the ack 
is lost, TX retransmits the message. On receipt of the latter message, which is tagged with ab=1, 
the receiver does not deliver it; it knows that this is a retransmission, because the expected ab 
value for new messages is 0.  

The following property characterises the correct synchronisation of transmitter and receiver on 
the alternating-bit scheme: 

• at the receiver’s end, any consecutive messages tagged with the same bit, must bear iden-
tical contents, since they are considered to be retransmissions. 

This is a general property that applies to any protocol using the alternating bit scheme. For exam-
ple, we introduced this property in the analysis of the ABP [14].  

3.3 Timing constraints for correctness 

The protocol works correctly under strict timing requirements that reflect the following two as-
sumptions: 

(i) timeouts do not  occur prematurely. In other words, after TX sends a message, its 
timer expires iff either the message was lost on S_CHANNEL, or its corresponding 
acknowledgement was lost on R_CHANNEL. Additionally, when RX is in the process 
of receiving a file, its timer expires iff transfer has been (or will definitely be) aborted 
by TX. 

(ii) if transmission of a file is interrupted, RX must not receive any chunk from a new file 
before realising this fact. This is necessary for TX and RX to remain synchronised on 
the alternating bit scheme. We show in our section on analysis how the scheme can be 
broken if this assumption is not satisfied.   

The above assumptions are implemented by selecting appropriate values to which the timers used 
by the protocol are set. In what follows, we estimate what the minimal values must be for these 
requirements to hold. In the next section, we prove formally the correctness of the protocol given 
these values. 

 
Assumption (i)  

Let us denote with CD the maximum delay of the channels, with TRIES the maximum number of 
transmissions allowed for the same message (i.e. TRIES-1 retransmissions allowed), and let us 
assume that the time taken by RX to process a message is negligible. If no premature timeouts 
are to occur on the transmitter’s side, then the value T1 to which it sets its timer must be greater 
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than the maximum time it takes for an acknowledgement (corresponding to the message sent) to 
be received. Then obviously, T1 > 2* CD, which makes the minimum value for T1 : 2* CD + 1. 

Additionally, we must guarantee that T2 expires only after it is certain that the current file 
transfer is to be aborted. In other words, T2 must exceed the maximum delay between the moment 
that it sends an acknowledgement (this is when it resets its timer), and the moment where it is 
guaranteed that TX is going to abort (if it has not already done so). The worst case for this delay 
is illustrated on the left of Figure 4, which describes the following scenario. Component TX re-
ceives the ack to some chunk of the file CD time units after RX set its timer. Subsequently, TX 
makes TRIES attempts at sending the next chunk, but all of them are unsuccessful because 
S_CHANNEL loses the messages (if a message is received, RX will reset its timer). We know 
that TX attempts a new retransmission T1 time units after the previous one. If RX has not re-
ceived the chunk CD time units after the last retransmission, TX is bound to abort the transfer, 
since there is obviously no way it can receive an ack for this chunk. From the diagram of Figure 
4, we can thus conclude that:  

T2 > CD + (TRIES-1)* T1 + CD = 2*CD + (TRIES-1)* T1. 

The minimum value for T2 is thus: 2*CD + (TRIES-1)* T1 + 1. With T1 assuming its minimum 
value calculated above, we end up with the following minimal value for T2: TRIES * T1. 
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Figure 4: Minimal timing constraints for BRP correctness 

Assumption (ii)  
 
This is necessary for TX and RX to remain synchronised on the alternating bit scheme. We show 
in our section on analysis how the scheme can be broken if this assumption is not satisfied. 

To make sure that this assumption holds, we introduce a delay in the behaviour of TX, be-
tween the moment it decides to interrupt the transfer of the current file, and the moment of ac-
cepting a new file to transmit. After deciding to abort, TX thus sets its timer to some value T3, 
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and waits for it to expire before starting a new file transmission. The minimal value for T3 is de-
termined by the scenario illustrated on the right of Figure 4. According to that, T3 > CD + T2 – T1, 
therefore min T3 = T2 – T1 + CD + 1. 

4 Modelling 

We proceed by modelling the protocol in the language of our analysis tool, FSP [12]. We model 
the components based on the Software Architecture of Figure 2, and respect the interface names 
[7, 8, 15]. Modelling helps to understand the subtle details of the protocol. Additionally, the 
model generated may be used to establish correctness with respect to the requirements set in Sec-
tion 2. This is performed in an automated way, by using model checking techniques.  

One of the things that model checking can demonstrate on our example is that BRP is highly 
dependent on the timing assumptions stated in the previous section. Note that we do not wish to 
introduce the timing constraints using “synchronisation tricks” that will control the occurrence of 
timeouts in one component, by monitoring the occurrence of some events in other components 
(this is the approach used in the un-timed verifications of the protocol). Our aim is to perform 
analysis without affecting the modularity and structure established in the protocol’s software 
architecture. For this reason, we introduce timing constraints by selecting appropriate values for 
timers, as is typically done in such a distributed environment. In addition, it is obvious that for 
this protocol to operate correctly, some knowledge must be available about maximum channel 
delays and processing speed of the components. These play a crucial role in establishing values 
for timers, and needs to be reflected in our model. 

We model time as a discrete entity, as currently supported by our methods and tools. In what 
follows, we discuss the experience we obtained by facing several choices and pitfalls in model-
ling BRP, a protocol that is far from trivial.  

4.1  Constants & Ranges 

 
The following constants and ranges are used in our specification of the protocol. Note that the 
timer values T1, T2 and T3 are set to the minimal values calculated above.  
 

const TRIES = 2    // total number of transmissions 

const FILE_LENGTH = 3   // #chunks in a file 

const CD = 2     // max channel delay 

 

range BIT = 0..1 

range CHUNKS = 1..FILE_LENGTH // chunk ids 

range DELAYS = 0..CD   // possible channel delays 

 

set LABELS = {first, int, ok, nok} 

set BOOL = {true, false} 

 

const T1 = 2*CD + 1 

const T2 = T1 * TRIES 

const T3 = T2 - T1 + CD + 1 

We make several abstractions in order to avoid generating an unnecessarily large state space. 
First of all, we do not include the contents of frames to the messages. Rather, we characterise 
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each frame by its sequence in the file, i.e. frame ids fall within range CHUNKS (values from 1 to 
FILE_LENGTH). Due to the fact that the protocol behaviour does not depend on the contents of 
the values that are transmitted, it is sufficient to check its correctness for FILE_LENGTH = 3 
[16]. However, we can easily change the value of this constant, and we have indeed checked cor-
rectness for several values of FILE_LENGTH. Note that, although the id of a chunk gives its 
exact position within a file, the protocol behaviour does not make use of this information. As 
mentioned in the description of the protocol, it is the various bits added to data sent that are used 
to communicate all the necessary information in the protocol behaviour. The chunk sequence 
numbers are only used in our model to simplify the state space, and in order to make the verifica-
tion task easier.   

We have checked the protocol for various values of the CD and TRIES constants. DELAYS is 
a range that describes the potential delays that a channel may exhibit. Set LABELS contains the 
indications that the receiver appends to chunks before delivering them to the R_CLIENT. Finally, 
timers are set to their minimal values, as described previously.   

4.2 Components and time 

Our tools currently support the possibility of modelling time as a discrete entity. This choice is 
motivated by the fact that this approach to dealing with time does not require additions to our 
tools. Moreover, an un-timed model (where timeouts would typically occur non-
deterministically) can be easily extended to incorporate timing aspects either for simulation pur-
poses only [17] or by modifying specific components such as timers to deal with time explicitly. 
We hope that with extensive experimentation within the current framework, we will be able to 
decide on what additional modelling and analysis techniques we may wish to introduce in order 
to facilitate the process of dealing with time. In particular, we wish to investigate the area of 
timed automata.  

The passing of time is modelled as a global tick action, and a process counts time by synchro-
nising with the global clock on action tick. Our framework deals very elegantly with the assump-
tion of maximal progress, as well as with the basic correctness requirements for timed systems, 
related to zeno executions and time deadlock. The assumption of maximal progress states that 
time can only pass when no internal actions of the system are eligible. In other words, internal 
actions have priority over action tick [11]. We consider a system as closed, when the interesting 
part of the behaviour of its environment has been included in the model, and therefore the system 
is not expected to interact with components that are not part of it. In this case, all actions in the 
system can be considered as internal, and therefore they are urgent with respect to the passage of 
time. Therefore, in our approach, maximal progress for a closed system is imposed by making the 
tick action low priority: “>> {tick}”. Additionally, the fact that a system is free of both zeno 
behaviours, and of time deadlocks, can be demonstrated by simply asserting the progress prop-
erty: “progress NoZeno_NoDeadlock = {tick}” [11].  

Two types of components in the BRP software architecture need to incorporate time, namely 
component type TIMER and component types R_CHANNEL and S_CHANNEL. Note that the 
channels for the receiver and sender need not be of different types. However, we provide a differ-
ent model for channel R_CHANNEL; the messages that it transmits do not contain data, which 
results in R_CHANNEL having fewer states than S_CHANNEL. This reduces the state space of 
our case study.  
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A timer behaves as follows:    
 

TIMER = ({tick, cancel} -> TIMER | tset[init:1..T2] -> COUNT_DOWN[init]), 

COUNT_DOWN[time:1..T2] =  ( tick -> COUNT_DOWN[time-1] 

     | tset[init:1..T2] -> COUNT_DOWN[init] 

     | cancel -> TIMER), 

COUNT_DOWN[0] =  ( {timeout, cancel} -> TIMER  

| tset[init:1..T2] -> COUNT_DOWN[init]).  

// no time can pass until timeout has been sorted out 

A timer is a process which, when set (action tset) to a specific value x, counts x clock ticks and 
then produces a timeout event. The timer may be cancelled by the process that uses it, in which 
case it goes back to its initial state. When x clock ticks have been counted by the timer, i.e., when 
zero clock ticks remain to be counted (state COUNT_DOWN[0]), the timer does not allow time 
to pass because the process that has set it must handle the timeout immediately (immediately 
meaning before time passes, although other instantaneous events may happen in between, due to 
interleaving). Alternatively, if the process decides that it no longer needs the timer (action can-
cel), the latter returns to its initial state. Finally, the process may decide to reset the timer. 

 
A lossy channel that may delay up to CD time units behaves as follows:  

 
R_CHANNEL = ( in -> (pick_del[dl:DELAYS] -> DECIDE[dl]) 

     | tick -> R_CHANNEL), 

DECIDE[picked_value:DELAYS] =   if (picked_value == 0)  

then NO_DELAY  

      else DELAY[picked_value], 

DELAY[picked_value:DELAYS]=( when (picked_value>1) tick -> DELAY[picked_value-1] 

          | when (picked_value == 1) tick -> NO_DELAY 

          | in -> ERROR), 

NO_DELAY =  ( {out, lose} -> R_CHANNEL | in -> ERROR). 

 
The channel inputs a message, and picks a delay dl at random, within range DELAYS. It then 
counts dl clock ticks, before deciding whether the message is to be transmitted (action out) or lost 
(action lose). This channel has capacity of one, because we claim that this is sufficient when no 
premature timeouts occur (assumption (i)). To make sure that our claim is correct, we introduce 
the choice “in -> ERROR” at appropriate states of the channel. This means that, if a new message 
is input to the channel, while the channel has not finished with the transmission of the previous 
message, the channel transits to an ERROR state. If this state is reachable in the global LTS of 
BRP (detected by safety checks), then we will know that our claim is not correct.  

It is important to allow the channel to pick delays at random, rather than setting its delay to the 
fixed value of CD. The channel delay is not standard; it is less than or equal to CD, which means 
that transmission times vary within some range of values. Indeed, this is a trap that we did not 
avoid in our initial model. As a result, the minimal value for timer T3 was erroneously calculated 
to a smaller value. 

The software architecture of BRP as illustrated in Figure 2 and Figure 3, describes the way 
components are put together, and has been used to produce the model of the entire protocol [7, 
14]: 
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||BRP=(tx:TRANSMITTER || tr_chnl:S_CHANNEL || rx:RECEIVER || rec_chnl:R_CHANNEL)  

 / {tx.send / tr_chnl.in, 

    rx.rec / tr_chnl.out, 

    rx.reply / rec_chnl.in, 

    tx.ack / rec_chnl.out, 

    accept/tx.accept, 

    result/tx.result, 

    deliver/rx.deliver, 

    tick/ {tx.tick, rx.tick, rec_chnl.tick, tr_chnl.tick} } >> {tick}. 

 
We give low priority to action tick ( >> {tick} ) in order to impose maximal progress. Maximal 
progress imposes a condition on timed models that time can only pass when no internal actions 
are enabled. This is a common assumption across a variety of models of timed concurrency, and 
restricts situations where an enabled internal action never occurs because all that keeps happen-
ing is the action tick, i.e. passage of time [18].  

For the case of the BRP, we assume that both the S_CLIENT and R_CLIENT are always ready 
to accept output, and that S_CLIENT does not impose any timing constraints on the protocol to 
receive the next file. Finally, the correctness of the protocol does not depend on S_CLIENT be-
ing ready to provide a new file when the protocol is ready for it. As a result, we can model and 
check BRP as a closed system. We consider a system as closed when the interesting part of the 
behaviour of its environment has been included in the model, and therefore the system is not 
expected to interact with components that are not part of it. In a closed system, all actions may be 
viewed as internal, and therefore maximal progress reduces to giving low priority to action tick.  

In the presence of maximal progress, one should be particularly careful with the specification 
of timed components. For example, there may be no meaning in modelling a choice between 
some action and the passage of time (tick); unless the action is blocked due to synchronisation 
reasons in the global model, the passage of time is not really eligible. This also justifies our 
model of the channel. The fact that transmission delay may vary for each message is modelled by 
action pick_del that “picks” a delay to be applied, rather than as a sequence of choices between 
actions tick and {out, lose}.   

The models of the components that have not been discussed in this section can be found in the 
Appendix. We would like to make a remark here related to the way component RX has been 
modelled. According to the descriptions of the protocol provided in other papers [2, 5], the re-
ceiver is supposed to reset its local timer only when the message it receives is a new message.  In 
our model of RX, RX resets its local timer each time it receives a message from the sender, 
whether that is a duplicate or not. In essence, this does not affect the correctness of protocol. 
However, the minimum value for timer T2 is smaller in our case, which also results in our models 
to have fewer states (since they need to count to a smaller value). This is not, of course, supposed 
to suggest the way in which the protocol is to be implemented, which should be left to the devel-
oper of a system in which BRP may be applicable. 

4.3 Properties 

Our approach supports the following ways of introducing “properties” to be checked on a model. 
 

A. Include ERROR states in component specifications. 
 

Our tools detect safety violations by checking reachability of the error state in the LTS of a sys-
tem [9]. The error state is state “-1” in our LTSs, and is represented by the pre-defined process 



 12

ERROR in FSP specifications. Error states can be introduced either explicitly in the FSP models 
of the system components, or by means of properties that are composed with the system. In the 
former case, the system designer may write (…a -> ERROR…) to state that at action a takes the 
component from its current state to an illegal state. Presence of the error state in the final model 
reflects the fact that the illegal state of the component is not avoided in all cases. 

For example, in Section 3.2 we mentioned that at the receiver’s end, if the last frame of a file 
is received, the next new frame must be the first frame of the following file. We have included 
this assumption in the behaviour of RX, as follows: 
 
... 

UNKNOWN_AB = ( rec[ab:BIT][f:BIT][l:BIT][x:CHUNKS] ->  

    if (f != 1) then ERROR //expecting first chunk... 

    else NEW_MESG[ab][f][l][x]), 

... 

KNOWN_AB[eab:BIT][got_last:BOOL] =  

( rec[eab][f:BIT][l:BIT][x:CHUNKS] ->  

if ((f!=1) && (got_last == ’true)) then ERROR 

else NEW_MESG[eab][f][l][x]), 

... 

 
When RX is in a state where the previous file transmission has been completed or aborted, RX 
transits in an error state if it receives a new chunk that is not the first one of a file.  

 
B. Introduce component properties that express assumptions on the environment. 
 
Our approach to model checking allows us to introduce properties at any layer of the structural 
hierarchy of a system. Properties are expressed as automata, that are included into the system as 
ordinary components, and that monitor the behaviour of the system without affecting it, unless 
the latter violates the property that they express [14]. Local properties that are introduced at in-
termediate levels of the hierarchy normally refer to properties that apply to subcomponents (and 
that are checked at the component level), or to assumptions that the component makes on its con-
text, and that justify its behaviour. In the latter case, the component will not usually satisfy the 
properties in isolation, but rather when composed with part of, or the whole of its context. 

An example of such a property is the one that we described in Section 3.2, which refers to 
component RX, and has to do with synchronisation on the alternating-bit scheme: “at the re-
ceiver’s end, any consecutive messages tagged with the same bit bear identical contents”. This 
property is expressed as follows: 

 
property ALT_BIT = INIT_MODE, 

INIT_MODE = ( rec[ab:BIT][f:BIT][l:BIT][x:CHUNKS] -> CHECK_MODE[ab][f][l][x]), 

CHECK_MODE[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =  

 ( rec[ab][f][l][x] -> CHECK_MODE[ab][f][l][x] // same ab => same contents 

| rec[!ab][f:BIT][l:BIT][y:CHUNKS] -> CHECK_MODE[!ab][f][l][y] 

 | timeout -> INIT_MODE). 

 

||RECEIVER = (RX || TIMER || ALT_BIT). 

 

The receiver process is thus made up of component RX combined with its local property and a 
timer. 
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C. Introduce properties that express the system requirements. 
 
At this stage, we introduce properties that express the requirements we have stated for the system 
in Section 2. The requirements on message delivery to R_CLIENT are all expressed by the fol-
lowing property, whose corresponding LTS is illustrated in Figure 5: 

 
property REC_RESULT = CHECK_DELIVERY[1],  

CHECK_DELIVERY[x:1..FILE_LENGTH] =  

if (x == 1 && FILE_LENGTH == 1)  

then ( deliver[1].ok -> REC_RESULT) 

else if (x == 1 && FILE_LENGTH >1)  

then ( deliver[1][’first] -> CHECK_DELIVERY[2]) 

  else if (x > 1 && x < FILE_LENGTH) 

    then ( deliver.nok -> REC_RESULT  // transfer aborted 

          | deliver[x][’int] -> CHECK_DELIVERY[x+1]) 

  else if (x == FILE_LENGTH)  

then ( deliver.nok -> REC_RESULT  // transfer aborted 

        | deliver[FILE_LENGTH].ok -> REC_RESULT). 

 
The above property checks that for a file of length FILE_LENGTH, chunks are delivered in order 
and with the correct indication, until either transmission is aborted in which case indication nok 
is delivered, or the last chunk (id FILE_LENGTH) is delivered with indication ok. Moreover, 
whenever at least one chunk of a file is received, an indication ok or nok is delivered, before a 
new file transmission begins. Finally, each chunk is delivered at most once.   

 

REC_RESULT 

deliver.1.first 

deliver.nok 
deliver.2.int 
deliver.3.ok 

deliver.1.first 

deliver.nok 

deliver.2.int 

deliver.3.ok 

deliver.1.first 

deliver.nok 

deliver.2.int 

deliver.3.ok 

-1 0 1 2 

 

Figure 5: LTS for safety property REC_RESULT 

 
The requirements at the sending client’s side are expressed by the following property, whose 
corresponding LTS is illustrated in Figure 6: 
 

property SEND_RESULT = ( accept.file -> DECIDE), 

DECIDE = ( deliver[FILE_LENGTH].ok -> {result.ok, result.dknow} -> SEND_RESULT 

  | {result.dknow, result.nok} -> SEND_RESULT). 
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The property states that, after a file is accepted, one of the following outcomes are legal. Only if 
the last chunk is received by R_CLIENT, can the result reported be ok. This covers the require-
ment according to which if S_CLIENT gets an indication that transfer of a file was successful, 
then all chunks must have been delivered. It suffices of course to check that the last one is deliv-
ered, since we are also checking with property REC_RESULT that chunks are delivered in order. 
Moreover, the result can only be nok if the last chunk has not been transmitted. This expresses 
the requirement that at least one chunk has not been transmitted if the result reported is nok.  

The above safety requirements are checked by composing the model of the BRP with the prop-
erties, as follows: 

|| SAFE_BRP = (BRP || REC_RESULT || SEND_RESULT). 

 

SEND_RESULT 

accept.file 

deliver.3.ok 
result.ok 

result.dknow 
result.nok 

accept.file 

deliver.3.ok 

result.ok 

result.dknow 
result.nok 

accept.file 
deliver.3.ok 

result.ok 
result.dknow 

result.nok 

-1 0 1 2 

 

Figure 6: LTS for safety property SEND_RESULT 

 
Finally, we also need to introduce some liveness requirements. Firstly, the basic requirement for 
timed systems is that no time deadlock occurs, and no zeno executions are exhibited. Both prop-
erties are expressed by the following progress property [11]: 

progress NO_ZENO_NO_HALT = {tick} 

Naturally, if action tick can always eventually happen, neither time deadlock, nor zeno execu-
tions (where infinitely many actions occur without time passing) are possible.  

Another progress property that applies to our case is that files can always eventually be ac-
cepted, meaning that the protocol can always conclude with the transmission of a file and be 
ready to accept another: 

progress ACCEPT = {accept.file} 

As we expect property ACCEPT to hold, we can express property �accept ⇒ ◊ result) as follows 
[19]: 

progress RESULT = if {accept.file} then {result.ok, result.nok, result.dknow} 



 15

The above, combined with safety property SEND_RESULT, guarantees that for each file ac-
cepted, a result is eventually produced. This completes modelling of the requirements set for the 
protocol in Section 2.  

5 Analysis 

In order to check the correctness of the protocol, we perform compositional reachability analysis 
(CRA) as described in [14]. That means that the model for BRP is composed from those of its 
components gradually, as described by its corresponding FSP expression (the latter has been de-
rived by the software architecture descriptions of Figure 2 and Figure 3. When analysing timed 
systems with maximal progress, one should be particularly careful about applying minimisation 
with respect to observational equivalence at intermediate stages of analysis. The reason is that 
cycles made up of internal actions may disappear. When a choice between an internal action that 
starts such a cycle with a tick action exists, different results will occur by applying maximal pro-
gress to the LTS before and after minimisation. In the former case, tick will never be selected. In 
the latter, the cycle will disappear with minimisation, and therefore tick will be the only choice at 
the corresponding state. As we have not yet determined how we would like to deal with this prob-
lem, we do not apply minimisation at intermediate phases of CRA. Rather, after checking that the 
protocol is correct, we apply minimisation to obtain a smaller LTS that describes the behaviour 
of the protocol in terms of its interface, and can be used as a component of a larger system.   

5.1 Untimed version 

To show that the correctness of the protocol depends on the timing assumptions that we have set, 
we check the protocol without taking time into account. We perform this by removing the 
TIMER components from both the RECEIVER and the TRANSMITTER. As a result, timeouts in 
TX and RX occur non-deterministically since they no longer need to synchronise with the TIM-
ERS. We use LTSA to check BRP against safety, and get the following result: 

 
States Composed: 55340 Transitions: 194563 in 16013ms 

Trace to property violation in tr_chnl:S_CHANNEL: 

  accept.file 

  tx.send.0.1.0.1 

  tx.send.0.1.0.1 

In the above counterexample, the first chunk is sent twice. However, as indicated by the fact that 
the error state is derived from component S_CHANNEL, the channel has not dealt with the first 
chunk, when it receives a new copy of it. That indicates that TX has timed out prematurely. This 
violation therefore describes the fact that channels of capacity one are not sufficient when TX 
and RX may timeout prematurely. This, however, does not mean that the protocol requires infi-
nite capacity channels. In fact, since message loss may happen anyway, the correctness of the 
protocol should not be affected by the fact that a channel has capacity one, and therefore loses 
messages that are sent to it while it is full. For this reason, we remove the transitions to ERROR 
states from the channel specifications, and check BRP again. The following result is obtained: 

States Composed: 55340 Transitions: 184521 in 15542ms 

Trace to property violation in rx:RECEIVER: 

  accept.file 

  tx.send.0.1.0.1 
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  rx.rec.0.1.0.1 

  deliver.1.first 

  rx.reply 

  tx.ack 

  tx.send.1.0.0.2 

  deliver.nok 

  rx.rec.1.0.0.2  

This counterexample describes a scenario where the RX times out, assuming that the file trans-
mission has been aborted (obvious from the fact that it reports deliver.nok). It then expects that 
the new chunk that will be received will be the first chunk of a new file, whereas the chunk that is 
received is in fact the second chunk of the first file (rx.rec.1.0.0.2). That indicates that TX has not 
in fact aborted transmission, but the receiver has simply timed out too early. The error state roots 
from the specification of component RX, intended to detect exactly such problems.  

If, in addition, we check component CHECK_BRP, which includes the safety properties that 
express the requirements, we get as a result that these properties are also violated: 

 property SEND_RESULT violation.. 

  property REC_RESULT violation... 

We conclude that, indeed, the protocol depends on its timing constraints for correctness. In what 
follows, we analyse the protocol again given its original specifications, i.e. including both the 
TIMER components and the error states in the channel specifications.  

5.2 Timed version 

With the TIMER components included, and with the values calculated in Section 3.3, we check 
first the BRP component, and subsequently SAFE_BRP, against safety. The following results are 
obtained: 

States Composed: 5029 Transitions: 9002 in 260ms // result for BRP 

No deadlocks/errors 

 

 States Composed: 5050 Transitions: 9027 in 211ms // result for SAFE_BRP 

No deadlocks/errors 

In both cases, the state space is significantly smaller than that obtained for the untimed version, 
since the timing constraints also restrict the behaviour of the protocol, as required for correctness. 
We thus prove that the protocol satisfies all its requirements given the timing constraints that we 
have imposed. Additionally, our results show that the channels never need to receive a new mes-
sage while another message is in transit, and therefore capacity of one is sufficient. Note that the 
increase in the state-space introduced by composing BRP with its properties in SAFE_BRP is 
negligible. Moreover, when properties are violated, as in the following case, the state-space may 
even be reduced, because properties prune out behaviour that roots at erroneous system states [9].    

An interesting question at this point is: are the values T1, T2 and T3, calculated in Section 3.3 
minimal? Or would the protocol still work with smaller values? Let us try to reduce value T2 by 
one, and check component BRP for safety: 
 

States Composed: 4971 Transitions: 8955 in 381ms 

Trace to property violation in rx:RECEIVER: 

  accept.file 

  tx.send.0.1.0.1 
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  rx.rec.0.1.0.1 

  deliver.1.first 

 rx.reply 

 (tick) * 2  // abbreviation for two consecutive ticks 

 tx.ack 

 tx.send.1.0.0.2 

 (tick) * 5 

  tx.send.1.0.0.2 

 (tick) * 2 

 deliver.nok 

 rx.rec.1.0.0.2 

  
Similarly to the counterexample obtained in Section 4.1, this scenario describes an execution 
where RX timeouts too early. As a result, it receives the second chunk of the previous file when it 
expects the first chunk of a new file. We set T2 back to its original value, and now try decrement-
ing the value of T3. We obtain the following result: 
 

property rx:RECEIVER violation...... 

States Composed: 5194 Transitions: 9388 in 381ms 

Trace to property violation in ?: 

 accept.file 

 tx.send.0.1.0.1 

 rx.rec.0.1.0.1 

 deliver.1.first 

 rx.reply 

 tx.ack 

 tx.send.1.0.0.2 

 rx.rec.1.0.0.2 

 deliver.2.int 

 rx.reply 

 tx.ack 

 tx.send.0.0.1.3 

 (tick) * 5 

 tx.send.0.0.1.3 

 (tick) * 2 

 rx.rec.0.0.1.3 

 deliver.3.ok 

 rx.reply 

 (tick) * 3 

 result.dknow 

 (tick) * 7 

 accept.file 

 tx.send.0.1.0.1 

 rx.rec.0.1.0.1 

 
This counterexample is much longer, and takes a bit more effort to understand. The tool is not 
able to locate the component where the ERROR state roots. However, by careful study of the 
counterexample, we understand that the alternating-bit scheme is broken, and therefore property 
ALT_BIT that has been included in the RECEIVER is violated. We describe the problem in the 
last 9 lines of the counterexample. The receiver gets a message rx.rec.0.0.1.3, replies to it, and is 
waiting either for a new message to arrive, or for a timeout to occur. The timeout will occur after 
T2 = 10 time units. In the meanwhile, the TRANSMITTER does not receive an acknowledgement 
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for this last chunk of the file. As it has completed all its retransmissions, it aborts transmission, 
reports result.dknow, and after T3 time units, accepts a new file to transmit. It also restarts the 
alternating-bit scheme with value 0. Unfortunately, the RECEIVER has not yet timed out, and 
therefore it expects that messages tagged with value 0 are retransmissions. Property ALT_BIT 
detects the fact that a message with different content (rx.rec.0.1.0.1) is assumed as a retransmis-
sion, and leads BRP to an ERROR state.  

We can see that, long counterexamples are difficult to understand. This is particularly so in 
cases where time is involved, as above; counterexamples become longer, and more complicated. 
We therefore think that in such cases, it would be useful to be able to replay counterexamples in 
the context of some domain-specific animation, where such scenarios take shape, and are much 
easier to interpret. We intend, in the future, to implement a domain-specific animation for the 
protocol, as described in [17]. 

We would like to mention here that we have checked the protocol for several values of both 
our timer constants, and other constants such as FILE_LENGTH, TRIES, etc. When values of 
timer constants are increased, the correctness of the protocol remains unaffected, in contrast with 
cases where they are decreased, as already discussed. We are therefore confident that the values 
we have calculated are indeed minimal. 

5.3 Liveness 

We have checked the safe version of the protocol against the liveness properties introduced in 
Section 4.3. No violations were detected. 

5.4 Abstraction 

Having proved correctness of the BRP, we can now obtain a model of its interface behaviour, as 
follows: 

 
minimal || UNTIMED_BRP = BRP \ {tick}. 

minimal || ABSTRACTED_BRP = UNTIMED_BRP @ {accept, result, deliver}. 

The prefix minimal describes the fact that we wish the LTS for a specific component to be mini-
mised with respect to observational equivalence. We perform minimisation in two steps. Firstly, 
we abstract time from our model, since it is no longer needed. Second, we abstract all actions that 
do not form part of the component’s interface (see Figure 2). Minimisation in this fashion is more 
efficient, and this is the way we proceed for timed case studies. This is due to the way in which 
observational minimisation is implemented. Observational minimisation is applied in two steps 
[20]. First, a transformation is performed to the graph of the system: the reflexive transitive clo-
sure of the τ relation is computed, and observable actions are made to absorb internal ones. Sec-
ond, strong minimisation is applied to the graph resulting from the first step. When the τ relation 
is very large, the graph obtained from the first stage is very large, and therefore expensive to 
minimise.  

The LTS of ABSTRACTED_BRP has just 29 states. This LTS can be used in the context of 
larger systems. Abstraction thus allows one to avoid including unnecessary details, as one moves 
higher on the architectural hierarchy of a system, thus often avoiding state explosion as well.  

If we restrict the file length to simply one chunk, we obtain a very small LTS, which can be 
clearly illustrated, and gives some intuition about the way the protocol works (see Figure 7). The 
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diagram clearly illustrates that non-determinism is introduced (at states 1 and 3) by the fact that 
unreliable channels are used for the transmission.  

 

accept.file tau 

tau 

deliver.1.ok 
tau 

tau 

result.ok 

result.dknow 

0 1 2 3 4 5 

 

Figure 7: Abstracted BRP behaviour for FILE_LENGTH = 1 

6 Discussion and Conclusions   

This paper reported the experience obtained by applying our approach to the modelling and 
analysis of the BRP. Our approach uses CRA based on the software architecture to incrementally 
generate, minimise and analyse the behaviour of a system. It is supported by the LTSA, a tool 
written in Java™ that can be run as an application or applet, and which is available at 
http://www-dse.doc.ic.ac.uk/concurrency. Correctness of the BRP relies on specific timing as-
sumptions, an aspect that cannot be made explicit in an un-timed model of the protocol. Although 
the LTSA tool does not contain features designed specifically for dealing with real-time systems, 
we have shown that it handles discrete time systems in an efficient way. In particular, our notions 
of fairness, progress, and action priority, proved elegant in modelling maximal progress and the 
basic correctness requirements in timed systems, i.e. that a system exhibits no zeno executions 
and no time deadlocks.  

Discrete time counted in terms of clock ticks is a straightforward way of modelling timed sys-
tems in tools that are not specifically aimed at such systems. It is also easy to understand, since it 
does not require additions to the specification language of a tool. However, it can be error-prone 
and tedious. As discussed in the paper, one needs to have a clear understanding of the timed 
guards that control a transition, and must implement those in an appropriate fashion. Subtle mis-
takes can easily be committed in this context, as was the case for the channel delay in section 4.2, 
for example. These modelling concerns are even bigger in the presence of the maximal progress 
assumption.  

Modelling timed systems becomes much easier with timed automata, although one has to first 
invest the time to understand the new model [21]. The abstraction mechanisms associated with 
timed automata can also be exploited to avoid the significant increase in the state-space of a sys-
tem, which can result from selecting an unnecessarily fine unit of time in models that count time 
explicitly. We intend to investigate the work on timed automata further, and we consider the pos-
sibility of extending the LTSA in that direction, although in a way that keeps in line with our 
existing approach and requirements. 

In analysing timed systems in the context of CRA, we currently avoid minimisation at inter-
mediate subsystems, and perform minimisation only after the global system has been obtained. 
Moreover, we apply maximal progress only at the global system. Minimisation at the final stage 
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provides useful abstractions that focus on specific aspects of the system. Additionally, when the 
system is used as a component of a larger system that is not concerned with timing aspects, the 
abstracted model can be used in order to avoid state explosion. However, an issue that we intend 
to investigate in the future is how the notion of time and maximal progress can be incorporated 
more efficiently in our compositional setting, in particular as far as compositional minimisation 
is concerned. 
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APPENDIX 

/******************* FSP code for the BRP case study *******************/ 

 

range BIT = 0..1 

const TRIES = 2 

const FILE_LENGTH = 3 

const CD = 2  // max channel delay 

const MAX_WAIT = 3 

 

range CHUNKS = 1..FILE_LENGTH 

range DELAYS = 0..CD 

 

set LABELS = {first, int, ok, nok} 

set BOOL = {true, false} 

 

const T1 = 2*CD + 1 

const T2 = T1 * TRIES  

const T3 = T2 - T1 + CD + 1 

 

 

TX = ACCEPT[0], 

ACCEPT[ab:BIT] = ( accept.file -> oper.reset -> if (FILE_LENGTH == 1)   

then SEND[ab][1][1][1] 

        else SEND[ab][1][0][1] 

            ), 

SEND[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =  

  ( oper.inc -> send[ab][f][l][x] -> tset[T1] -> SENDING[ab][f][l][x] 

  | full -> DECIDE[l]), 

DECIDE[l:BIT] = ( when (l ==1) result.dknow -> SYNCHRONISE 

     | when (l == 0) result.nok -> SYNCHRONISE), 

SYNCHRONISE = (tset[T3] -> timeout -> ACCEPT[0]), 

SENDING[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =  

  ( timeout -> SEND[ab][f][l][x] 

  | ack -> cancel -> COMPLETED[ab][l][x]), 

COMPLETED[ab:BIT][l:BIT][x:CHUNKS] =  

  ( when (l == 1) result.ok -> ACCEPT[!ab] 

  | when (l == 0) oper.reset -> if (x+1 == FILE_LENGTH)  

then SEND[!ab][0][1][x+1] 

       else SEND[!ab][0][0][x+1] 

)  + {tset[i:1..T2]}. // timer operations 

 

 

// variable used by the transmitter to count the total transmissions of a chunk 

CNT = COUNTER[0], 

COUNTER[i:0..TRIES-1] = (oper.inc ->COUNTER[i+1] | oper.reset ->COUNTER[0]), 

COUNTER[TRIES] = (full -> COUNTER[TRIES] | oper.reset->COUNTER[0]).  
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TIMER = ({tick, cancel} -> TIMER | tset[init:1..T2] -> COUNT_DOWN[init]), 

COUNT_DOWN[time:1..T2] =  ( tick -> COUNT_DOWN[time-1] 

     | tset[init:1..T2] -> COUNT_DOWN[init] 

     | cancel -> TIMER), 

COUNT_DOWN[0] =  ({timeout, cancel} -> TIMER  

| tset[init:1..T2] -> COUNT_DOWN[init]).  

// no time can pass until timeout has been sorted out 

 

||TRANSMITTER = (TX || CNT || TIMER) @ {send, accept, result, ack, tick}. 

 

S_CHANNEL = ( in[ab:BIT][f:BIT][l:BIT][x:CHUNKS] ->  

    (pick_del[dl:DELAYS] -> DECIDE[ab][f][l][x][dl]) 

   | tick -> S_CHANNEL), 

DECIDE[ab:BIT][f:BIT][l:BIT][x:CHUNKS][delay:DELAYS] =  

  if (delay == 0) then NO_DELAY[ab][f][l][x] 

       else DELAY[ab][f][l][x][delay], 

NO_DELAY[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =   

  ( {out[ab][f][l][x], lose} -> S_CHANNEL 

  | in[ab:BIT][f:BIT][l:BIT][x:CHUNKS] -> ERROR), 

DELAY[ab:BIT][f:BIT][l:BIT][x:CHUNKS][delay:0..CD] =  

  ( when (delay > 1) tick ->  DELAY[ab][f][l][x][delay-1] 

  | when (delay == 1) tick -> NO_DELAY[ab][f][l][x] 

  | in[ab:BIT][f:BIT][l:BIT][x:CHUNKS] -> ERROR 

) @ {in, out, tick}. 

 

R_CHANNEL = ( in -> (pick_del[dl:DELAYS] -> DECIDE[dl])  

| tick -> R_CHANNEL), 

DECIDE[picked_value:DELAYS] =    if (picked_value == 0)  

then NO_DELAY  

     else DELAY[picked_value], 

NO_DELAY =  ( {out, lose} -> R_CHANNEL | in -> ERROR), 

DELAY[picked_value:DELAYS] =  

( when (picked_value > 1) tick ->  DELAY[picked_value-1] 

  | when (picked_value == 1) tick -> NO_DELAY 

  | in -> ERROR) @ {in, out, tick}. 

 

RX = UNKNOWN_AB, 

UNKNOWN_AB = ( rec[ab:BIT][f:BIT][l:BIT][x:CHUNKS] ->  

   if (f != 1) then ERROR //expecting first chunk... 

     else NEW_MESG[ab][f][l][x]), 

KNOWN_AB[eab:BIT][got_last:BOOL] =  

(rec[eab][f:BIT][l:BIT][x:CHUNKS] -> if ((f!=1) && (got_last == ’true)) 

then ERROR 

        else NEW_MESG[eab][f][l][x] 

|rec[!eab][f:BIT][l:BIT][x:CHUNKS]-> reply-> tset[T2] -> KNOWN_AB[eab][got_last] 

| timeout -> if (got_last == ’false) then (deliver[’nok] -> UNKNOWN_AB) 

          else UNKNOWN_AB), 

NEW_MESG[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =  

  if (f == 1 && l ==0) then DELIVER[ab][’first][’false][x] 

    else if (l==1) then DELIVER[ab][’ok][’true][x] 

    else DELIVER[ab][’int][’false][x], 

DELIVER[ab:BIT][lb:LABELS][got_last:BOOL][x:CHUNKS] =  

  (deliver[x][lb] -> reply -> tset[T2] -> KNOWN_AB[!ab][got_last]) 
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+ {tset[i:1..T2], cancel}. 

// property ALT_BIT 

// consecutive messages with the same alt-bit must have identical contents 

// unless a timeout comes between them 

 

property ALT_BIT = INIT_MODE, 

INIT_MODE = ( rec[ab:BIT][f:BIT][l:BIT][x:CHUNKS] -> CHECK_MODE[ab][f][l][x]), 

CHECK_MODE[ab:BIT][f:BIT][l:BIT][x:CHUNKS] =  

  ( rec[ab][f][l][x] -> CHECK_MODE[ab][f][l][x] 

        | rec[!ab][f:BIT][l:BIT][y:CHUNKS] -> CHECK_MODE[!ab][f][l][y] 

  | timeout -> INIT_MODE). 

 

||RECEIVER = (RX || TIMER || ALT_BIT) @ {reply, rec, deliver, tick}. 

 

||BRP=(tx:TRANSMITTER || tr_chnl:S_CHANNEL || rx:RECEIVER || rec_chnl:R_CHANNEL)  

 / {tx.send / tr_chnl.in, 

    rx.rec / tr_chnl.out, 

    rx.reply / rec_chnl.in, 

    tx.ack / rec_chnl.out, 

    accept/tx.accept, 

    result/tx.result, 

    deliver/rx.deliver, 

    tick/ {tx.tick, rx.tick, rec_chnl.tick, tr_chnl.tick} } >> {tick}. 

 

 

/*************************** SAFETY *******************************/ 

 

property REC_RESULT = CHECK_DELIVERY[1],  

CHECK_DELIVERY[x:1..FILE_LENGTH] =  

if (x == 1 && FILE_LENGTH == 1)  

then ( deliver[1].ok -> REC_RESULT) 

else if (x == 1 && FILE_LENGTH >1)  

then ( deliver[1][’first] -> CHECK_DELIVERY[2]) 

  else if (x > 1 && x < FILE_LENGTH) 

    then ( deliver.nok -> REC_RESULT  // transfer aborted 

          | deliver[x][’int] -> CHECK_DELIVERY[x+1]) 

  else if (x == FILE_LENGTH)  

then ( deliver.nok -> REC_RESULT  // transfer aborted 

        | deliver[FILE_LENGTH].ok -> REC_RESULT). 

 

property SEND_RESULT = ( accept.file -> DECIDE), 

DECIDE = ( deliver[FILE_LENGTH].ok -> {result.ok, result.dknow} -> SEND_RESULT 

  | {result.dknow, result.nok} -> SEND_RESULT). 

 

|| SAFE_BRP = (BRP || REC_RESULT || SEND_RESULT). 

 

/*************************** LIVENESS *******************************/ 

 

progress NO_ZENO_NO_HALT = {tick} 

progress ACCEPT = {accept.file} 

progress RESULT = if {accept.file} then {result.ok, result.nok, result.dknow} 

// ACCEPT and RESULT guarantee [](accept => <> result) 


